Dihydrogen Bonds and Ducks

If It Walks Like a Duck and Quacks Like a Duck, Is It a Duck?

Mark A. Zottola University of Alabama-Birmingham

BK1157 – The First Reported Dihydrogen Bond

Hydrogen positions were refined, not assigned
Contacts between BH HN and BH HO (H2O)

1993 – The Dihydrogen Bond Postulated as a Hydrogen Bond

- Calculations at MP2/6-31g**
 - Strength of complexes mirrored Bronsted acidity of hydrogen bond donor
 - Frozen core MP2
 calculations implied the dihydrogen interaction
 preferred to be with one
 hydrogen

Borazane and the Geometrical Preferences of the Dihydrogen Bond

R2B - H - H - NR2

CSD search revealed wide range of (B)HHN and (N)HHB angles
– D_{H-H} Avg. 1.96 Å, 1.7 – 2.2 Å, 0.13 Å
– NH···HB (Ψ) Avg. 149°, 117 – 171°, 17°
– BH···HN (θ) Avg. 120°, 90-171°, 26°

Borazane and the Dihydrogen Bond

Calculations (parameterized CI) reveal
- D_{H-H} 1.82 Å, Ψ = 158.7°, θ = 98.8°
- ΔE(H-H) = 6.1 Kcals per interaction

Dihydrogen Bonds Follow Classical Definition of Hydrogen Bonds

- Directionality
 - High level calculations show dihydrogen interactions prefer one hydrogen over another
 - Spherical symmetry of 1s orbitals mean wide range of acceptable geometries
 - Crystallographic database work bears this out
- Strength
 - Strength of dihydrogen bonds follows Bronsted acidity of donor hydrogen

Is The Dihydrogen Bond a Hydrogen Bond?

- Atoms in Molecules (AIM) Theory
 - Developed by Bader
 - Analyzes the electron topology based on QM wavefunction
- Popelier
 - Borrowed concepts developed by Bader
 - Examined Borazane (H3B-NH3) dimer for evidence of hydrogen bonding

Popelier's Criteria For Hydrogen Bonds

- Bond must have a bond critical point (BCP) and bond path (BP) connecting hydrogen bond donor and acceptor
- Electron density at bcp from 0.002-0.035 au
- Laplacian ranges +0.024 to +0.135 au
- Mutual overlap of donor and acceptor
- Donor should have increased positive charge, decreased dipolar polarization and a decrease in the atomic volume

Examination of Borazane Dimer by Popelier

- Calculated structure using mp²/6-31g**
- The BH HN interactions met all criteria
- Thus dihydrogen bonds were indeed hydrogen bonds

But Is It?

- Structure is not the ground state but a transition state
- Global minimum depends on whether one uses full or frozen core MP²!

Questioning The Calculations On Dihydrogen Bonds

• Is this interaction real?

– Are ground state molecules seeing this effect?

• What is the appropriate level of theory for studying this?

– Is MP² (frozen core) appropriate?

More Questions on Dihydrogen Bonds in Borazane Dimer

- How strong is the interaction?
 - What role do dipolar interactions play
- How similar is this to a "normal" hydrogenbonded system?
 - Can this interaction be tuned to acceptor strength
 - Is this as reversible as a hydrogen bond?
 - Can dihydrogen bonds exhibit cooperativity?

Re-Examination of The Borazane Dimer

- Frozen core vs. Full
 - Frozen core calculations result in asymmetric structures
 - No obvious rationale for this result
 - Full MP² calculations including core orbitals give perfectly symmetric structures
 - Therefore gold-standard MP2(full) with an augmented Dunning correlation consistent double zeta basis set should work well

Death of The Gold Standard

- Examination of a paper by Grabowski et al on Metal hydrides with mildly acidic hydrogens
 - "Gold Standard" calculations performed
 - Interaction energy of ~ 4 kcals/mol
 - Bond lengths for metal hydrides seemed off

Metal Hydrides as a Function of Basis Set and Method

Hydride	Li-H	Na-H	K-H
experimental	1.5949	1.8873	2.2440
6-311++G(2d,p)			
B3LYP	1.5949	1.8873	2.2444
B3PW91	1.5992	1.8946	2.2440
MPW1PW91	1.5983	1.8923	2.2423
MP2(fc)	1.5976	1.9050	2.2454
MP2(full)	1.5948	1.8883	2.2444
CCSD	1.5991	1.9102	2.2654
aug-cc-pVDZ			
MP2(fc)	1.6197	1.9199	2.2440
MP2(full)	1.5957	1.9008	2.2440
CCSD	1.6252	1.9288	na

Dihydrogen As a Function of Basis Set and Method

Experimental value 0.7414 (0.000)

6-311++G(2d,p) aug-cc-pVDZ B3LYP 0.7608 0.0194 B3LYP 0.7442 0.0028 MPW1PW91 0.7588 0.0174 0.7444 0.0030 MPW1PW91 MP2(fc/full) 0.7549 0.0135 0.7383 -0.0031 MP2(fc/full) CCSD 0.7617 0.0203 CCSD 0.7435 0.0021

Conclusions On Calculations

- MP2 calculations with Dunning's double zeta basis sets are inherently unreliable
 - The structures for simple metal hydrides and molecular hydrogen cannot be reliably reproduced
- Pople's triple split basis set a better choice
 - Calculations are less time consuming
 - DFT methods can be superior to higher order methods

Are Dihydrogen Bonds Possible in The Ground State?

- Borazane dimer with MP²(full) or MPW1PW91 with 6-311+g(2d,p) symmetric
- Structures still meet Popelier criteria for hydrogen bonds
- This is a ground state interaction

Electron Density Plot For Borazane Dimer

Ground State Dihydrogen

Bonds?

	Dihydrogen Bond Donor	Dihydrogen Bond Acceptor
Charge	0.394	-0.647
Dipole Polarization	-0.00571	-0.1801
Volume	30.20	85.84
ρ (dimer)	0.01726	-0.012 (Laplacian)
Dimer		
Charge	0.439	-0.646
Dipole Polarization	-0.00991	-0.1803
Volume	21.78	81.45
Boron (Qzz/V/q)	-0.0568/24.13/+1.847	0.0564/25.55/+1.842

- Borazane dimer has locative dihydrogen interaction
- Evidence barely supports dihydrogen interaction

How Strong Are Dihydrogen Bonds?

- Complexes of water or HF with borazane have interaction energies of 6 8 kcals/mol
- Crabtree reported a value of 6.1 kcals/mol from borazane dimer
- What is role of dipole stabilization in these systems?
 - How much do electrostatics dominate the dihydrogen bond?
 - Which is stronger dipolar interaction or the dihydrogen bond?

Assessing The Role of Dipolar Interactions

Assessing The Role of Dipolar Interactions

Closing The Circle

- dE = 3.34 kcals/mol
 - Approximate
 energy of
 dihydrogen bond is
 4.6 kilocalories
 - Explains Crabtree neutron diffraction structure of borazane

Can Dihydrogen Bonds Be Cooperative?

• Examined Structures of LiH(HF)_2 , $\text{LiH(H}_2 \text{ O})_2$ and $\text{LiH(NH}_3)_2$

Cooperative Complexes?

Transition State

Popelier's Criteria For Hydrogen Bonds

- Bond must have a bond critical point (BCP) and bond path (BP) connecting hydrogen bond donor and acceptor
- Electron density at bcp from 0.002-0.035 au
- Laplacian ranges +0.024 to +0.135 au
- Mutual overlap of donor and acceptor
- Donor should have increased positive charge, decreased dipolar polarization and a decrease in the atomic volume

Cooperative Dihydrogen Bonds?

	Dihydrogen Bond Donor	Dihydrogen Bond Acceptor
Charge	0.532	-0.743
Dipole Polarization	-1.606	-1.165
Volume	20.41	146.8
ρ	0.0452	
Dimer		
Charge	0.556	-0.656
Dipole Polarization	-0.118	-0.146
Volume	19.48	119.1
ρ	0.0554	

- Water complex shows cooperativity
- Geometry dependent on Brønsted acidity of donor and charge on hydridic hydrogen

Why Selective Cooperativity?

- Unlike hydrogen bonds, dihydrogen bonds do not connect tautomers
- Dihydrogen bonds stabilize intermediates on path to produce dihydrogen

Cooperativity in Other Systems

- Li π electron interaction more important
- Interproton distance of 2.67 Å

Observations

- Dihydrogen bonds are relatively weak
- Calculations on dihydrogen-bonded systems are sensitive to the level of calculation
- Cooperativity seen only in special circumstances
- Dihydrogen bonds rarely show cooperativity

Conclusions

- Dipolar and induced dipolar interactions are important in dihydrogen-bonded structures
- Dihydrogen bonded structures do not connect resonance forms and reflect the ease of dihydrogen formation
- Popelier guidelines are exactly that and only that
- Despite fulfilling the Popelier criteria, dihydrogen bonds are not true hydrogen bonds

Acknowledgements

- Alabama Supercomputer Center
- Dr. Roger Klein
- IUPAC

Change In Dipolar Interaction

Monomer Structures

Relationship between Charge Density at BCP and Dipole

