Hydrogen Bonding and Other Interactions in Biological Systems

I sabel Rozas

School of Chemistry Trinity College Dublin I reland

> RNA performs essential and diverse functions within the cell (gene replication and expression) \rightarrow interaction with proteins.

➤ The most important interaction established between the RNA bases and amino acids is through HBs: Glutamic acid and Asparagine show a good number of HB contacts with the RNA bases (mostly with Guanine and Uracil).

> Donor-acceptor arrangements of the Nucleic bases \rightarrow many possible interactions.

> The ability to form HB of amino acid \rightarrow three types of small ligands:

Acceptor/acceptor HB groups such as carboxylate (Glu & Asp) Donor/acceptor HB groups such as formamide (Gln & Asn) Donor/donor HB groups such as guanidinium (Arg)

Hydrogen Bonding and Other Interactions in Biological Systems: RNA bases and amino acid models, donor-acceptor cases

Hydrogen Bonding and Other Interactions in Biological Systems: RNA bases and amino acid models, donor-acceptor cases

B3LYP/6-31+G**, AIM, NBO

	E _{I+BSSE} kcal/mol	<i>р</i> (bср)	∇² <i>ρ</i> (bcp)	Q transf.	E(2)
A:HCONH ₂ (1/6)	-11.57	0.0293 0.0292	0.0819 0.0688	-0.005	11.84 17.38
G:HCONH ₂ (6/1)	-18.08	0.0374 0.0336	0.1044 0.0950	0.011	18.83 14.15
C:HCONH ₂ (3/4)	-15.24	0.0320 0.0303	0.0900 0.0743	-0.005	13.90 17.88
U:HCONH ₂ (4/3)	-11.48	0.0321 0.0291	0.0905 0.0855	0.013	14.17 9.60

Rozas, Alkorta, Elguero, J. Phys. Chem. B, 3335, 108 (2004)

Hydrogen Bonding and Other Interactions in Biological Systems: RNA bases and amino acid models, donor-acceptor cases

B3LYP/6-31+G**, AIM, NBO

	E _{I+BSSE} kcal/mol	<i>р</i> (bср)	∇² <i>ρ</i> (bcp)	Q transf.	E(2)
A:HCO ₂ H(1/6)	-15.07	0.0285 0.0599	0.0815 0.1040	-0.065	10.41 44.94
G:HCO ₂ H(6/1)	-19.08	0.0375 0.0614	0.1076 0.1524	-0.037	18.17 37.96
C:HCO ₂ H(3/4)	-16.46	0.0326 0.0518	0.0943 0.1011	-0.046	13.35 37.76
U:HCO ₂ H(4/3)	-13.37	0.0302 0.0489	0.0867 0.1408	-0.026	11.77 25.34

Rozas, Alkorta, Elguero, J. Phys. Chem. B, 3335, 108 (2004)

Hydrogen Bonding and Other Interactions in Biological Systems: RNA bases and amino acid models, donor/donor-acceptor/acceptor cases

Hydrogen Bonding and Other Interactions in Biological Systems: RNA bases and amino acid models, acceptor-acceptor case

B3LYP/6-31+G**, AIM, NBO

	E _{I+BSSE} kcal/mol	<i>р</i> (bср)	∇² <i>ρ</i> (bcp)	Q transf.	E(2)
G:CN ₃ H ₆ (4/7)	-37.75	0.0460 0.0158	0.1311 0.0488	0.113	17.88 23.61
C:CN ₃ H ₆ (2/3)	-35.04	0.0447 0.0275	0.1342 0.0652	0.114	21.63 16.21
U:CN ₃ H ₆ (4/4)	-23.07	0.0274 0.0251	0.0855 0.0811	0.059	8.25 7.76

Rozas, Alkorta, Elguero, Org. Biomol. Chem., 366, 3 (2005)

Hydrogen Bonding and Other Interactions in Biological Systems: RNA bases and amino acid models, acceptor-acceptor case

B3LYP/6-31+G**, AIM, NBO

	E _{I+BSSE} kcal/mol	<i>р</i> (bср)	∇² <i>ρ</i> (bcp)	Q transf.	E(2)
A:HCO ₂ (4/4)	-19.10	0.0360 0.0144	0.0956 0.0470	-0.075	17.32 2.45
G:HCO ₂ (2/3)	-36.95	0.0467 0.0384	0.1229 0.1047	-0.151	21.23 27.74
C:HCO ₂ (4/5)	-29.85	0.0451 0.0181	0.1230 0.0469	-0.106	26.85 5.69

Rozas, Alkorta, Elguero, Org. Biomol. Chem., 366, 3 (2005)

Conclusions

> The E_1 s of the donor-donor and acceptor-acceptor complexes are larger than those of the donor-acceptor complexes \rightarrow influence of the charged monomers

Several good correlations were found between HB distances and $\rho(bcp)$ and $\nabla^2 \rho(bcp)$ and as well a correlation was found between the orbital energy E(2) and $\rho(bcp)$

 $E(2) = 929.90\rho(bcp) - 15.08$, R²= 0.9, n= 27 HB acceptor is an O atom: $E(2)=796.98\rho(bcp) - 12.36$, R²=0.98, n=20 HB acceptor is an N atom: $E(2) = 898.73 \rho(bcp) - 8.67$, R² = 0.99, n= 7

 $E(2) = 708.71\rho(bcp) - 7.27$, R²= 0.92, n= 22 HB acceptor is an O atom: $E(2) = 716.99\rho(bcp) - 8.14$, R²= 0.95, n= 19

Hydrogen Bonding and Other Interactions in Biological Systems: supramolecular systems

Keegan, Kruger, Nieuwenhuyzen, O'Brien, Martin, Chem. Commun., 2192 (2001)

Hydrogen Bonding and Other Interactions in Biological Systems: Guanidinium vs Chloride and Sulfate anions

MP2/6-31+G * , AIM, NBO

	E _{I kcal/mol}	<i>р</i> (bcp)	∇²ρ(bcp)	Q transf.	E(2)
1	-109.32	0.0369	0.0982	0.231	28.31
2	-98.71	0.0307	0.0742	0.251	137.67
3	-150.76	0.0235	0.0713	0.098	9.09

Rozas, Kruger, J. Chem. Theory Comput., in press (2005)

Hydrogen Bonding and Other Interactions in Biological Systems: Guanidinium vs Chloride and Sulfate anions

 $E_1 \rightarrow$ -15.27 / -21.56 kcal/mol

E₁→ -102.08 / -327.84 kcal/mol

Rozas, Kruger, J. Chem. Theory Comput., in press (2005)

Conclusions

> The E_1 s are very large \rightarrow influence of the charged monomers

> Several good correlations were found between HB distances and $\rho(bcp)$ and $\nabla^2 \rho(bcp)$ and as well a correlation was found between the orbital energy E(2) and $\rho(bcp)$

 $E(2) = 815.92 \rho(bcp) - 11.46$, R²= 0.90, n= 25. HB acceptor is an N atom: $E(2) = 1310.60\rho(bcp) - 24.26$, R²= 0.99 n=4 HB acceptor is an O atom: $E(2) = 763.63\rho(bcp) - 10.65$, R²= 0.92 n= 21

Very high E₁s in complexes with charged monomers... could be a consequence of the method used???

Hydrogen bonds in biological ligand-receptor complexes are usually enhanced/supplemented by electrostatic forces

> Are the two different forces working at the same time but independently???

Are HBs enhanced??? Do they really become stronger??? How much???

Systems:

Interaction energies (kcal/mol)

	minus	neutral	plusminus	plus
B3LYP/ 6-31 <i>G</i> *	23.24	2.48	107.73	5.84
B3LYP/ TZVP	27.66	2.33	115.18	6.03
MP2/ 6-31 <i>G</i> *	25.56	4.32	109.32	7.23
MP2/ 6-311++ <i>G</i> **	26.57	4.44	113.71	7.36
MP2/ aug-cc-pVDZ	26.12	4.24	113.13	8.02
CBS-QB3	24.73	2.44	113.23	6.45
G3MP2	24.42	2.60	112.23	<i>5.99</i>

HB distances (Å) and electron density characteristics at the bcps

		minus	neutral	plusminus	plus
B3LYP/ 6-31 <i>G</i> *	d(HB) ρ(bcp) ∇²ρ(bcp)	2.33 2.39 0.0208 0.0181 0.0595 0.0543	2.82 0.0064 0.0248	2.04 0.0377 0.0866	2.65 0.0092 0.0350
B3LYP/ TZVP	d(HB) ρ(bcp) ∇²ρ(bcp)	2.28 2.33 0.0224 0.0201 0.0598 0.0559	2.85 3.29 0.0060 0.0045 0.0192 0.0166	2.01 0.0414 0.0756	2.63 0.0094 0.0316
MP2/ 6-31 <i>G</i> *	d(HB) ρ(bcp) ∇²ρ(bcp)	2.30 2.36 0.0217 0.0190 0.0635 0.0579	2.68 3.30 0.0085 0.0054 0.0340 0.0185	2.04 0.0369 0.0892	2.59 0.0103 0.0398
MP2/ 6-311++ <i>G</i> **	d(HB) ρ(bcp) ∇²ρ(bcp)	2.24 2.31 0.0241 0.0208 0.0644 0.0591	2.69 3.36 0.0082 0.0053 0.0284 0.0183	1.94 0.0484 0.0712	2.57 0.0106 0.0368
MP2/ aug-cc-pVDZ	d(HB) ρ(bcp) ∇²ρ(bcp)	2.26 2.32 0.0234 0.0210 0.0598 0.0541	2.67 3.22 0.0090 0.0069 0.0278 0.0214	1.99 0.0427 0.0912	2.54 0.0122 0.0349

Atomic charges calculated with NBO and AIM methods

		minus	neutral	plusminus	plus
B3LYP/ 6-31 <i>G</i> *	СІНН	-0.91 -0.89 0.44 0.45 0.44 0.46	-0.29 -0.26 0.41 0.40 0.42 0.41	-0.78 -0.79 0.45 0.52 0.45 0.52	-0.30 -0.27 0.46 0.48 0.46 0.48
B3LYP/ TZVP	СI Н Н	-0.92 -0.89 0.42 0.44 0.42 0.44	-0.26 -0.25 0.37 0.37 0.38 0.38	-0.78 -0.78 0.44 0.50 0.44 0.50	-0.28 -0.27 0.43 0.46 0.43 0.46
MP2/ 6-31 <i>G</i> *	СI Н Н	-0.91 -0.90 0.44 0.48 0.44 0.48	-0.28 -0.27 0.41 0.42 0.42 0.43	-0.79 -0.81 0.46 0.55 0.46 0.55	-0.30 -0.29 0.46 0.51 0.46 0.51
MP2/ 6-311++G**	СI Н Н	-0.91 -0.89 0.41 0.45 0.42 0.46	-0.24 -0.25 0.37 0.38 0.38 0.40	-0.75 -0.78 0.43 0.52 0.43 0.52	-0.26 -0.27 0.43 0.47 0.43 0.47
MP2/ aug-cc-pVDZ	СI Н Н	-0.90 -0.90 0.43 0.51 0.43 0.51	-0.26 -0.27 0.39 0.44 0.40 0.45	-0.76 -0.81 0.45 0.58 0.45 0.58	-0.29 -0.30 0.45 0.52 0.45 0.52

Atomic energy calculated with AIM method

		minus	neutral	plusminus	plus
B3LYP/ 6-31 <i>G</i> *	СI Н Н	-461.27 -0.41 -0.46	-461.27 -0.45 -0.44	-461.35 -0.36 -0.36	-461.31 -0.40 -0.40
B3LYP/ TZVP	СI Н Н	-460.77 -0.43 -0.43	-460.66 -0.48 -0.47	-460.81 -0.39 -0.39	-460.70 -0.43 -0.43
MP2/ 6-31 <i>G</i> *	СI Н Н	-460.15 -0.40 -0.39	-460.17 -0.44 -0.43	-460.23 -0.34 -0.34	-460.21 -0.39 -0.39
MP2/ 6-311++G**	CI H H	-459.90 -0.43 -0.42	-460.03 -0.47 -0.46	-460.07 -0.37 -0.37	-460.05 -0.42 -0.42
MP2/ aug-cc-pVDZ	СI Н Н	-459.72 -0.38 -0.37	-459.97 -0.42 -0.42	-459.82 -0.33 -0.33	-459.98 -0.38 -0.38

Conclusions (so far ...)

Large E₁s for plusminus >> minus >> positive > neutral

> At all levels of calculation, correlations were found between HB distances and $\rho(bcp)$ and $\nabla^2 \rho(bcp)$ as well as correlations between the orbital energy E(2) and $\rho(bcp)$

Large decrease in CI- atomic charge in plusminus complex >> minus > plus > neutral

Positive/negative charge assisted HBs (plusminus) are the strongest in terms of electron density characteristics at the bcp and distances >> minus >> plus > neutral

Hydrogen Bonding and Other Interactions in Biological Systems: Acknowledgments

I bon Alkorta (Instituto de Química Médica, CSIC, Madrid, Spain) José Elguero (Instituto de Química Médica, CSIC, Madrid, Spain) Paul Kruger (School of Chemistry, Trinity College Dublin, Ireland)