

Hydrogen Bond Dynamics: From Simple to Complex

IUPAC Workshop "Hydrogen Bonding and Other Molecular Interactions" Pisa, Italy September 7, 2005

Work done at JILA/Department of Chemistry and Biochemistry National Institute for Standards and Technology University of Colorado Boulder, CO

Thanks in advance to Nesbitt group and collaborators!

Today's TopicsFrom simpleto complex

I) From the Simple... (H_3O^+)

- Arguably the simplest (and strongest) hydrogen bond!
- Ubiquitous role in aqueous chemistry and biology.
- Likely abundant polyatomic ion species in interstellar dust clouds
- Large amplitude floppy QM tunneling in "umbrella" mode

Begemann, and Saykally, PRL 1983; Liu & Oka, PRL 1985; Verhoeve and Dymanus, CPL 1989; Araki and Saito, JCP 1998.

World Le Large A Inve

Experimental

- Sub-Doppler molecular linewidths (≈40 MHz in Ne expansion)
- Servoloop locked optical transfer cavities for high frequency precision (≈20 MHz)
- Shot noise limited detection sensitivity: 1.5 x 10⁻⁵ ($N_{min} \approx 10^7 \#/cm^3/qs$)

Jet Cooled Radical/Ions

- High resolution spectroscopy of highly reactive chemical transients...
- ...under maximally simplified low T conditions

• Post docs and grad students eager for "hot" experimental tips from their research advisor...

• ...research advisor ruining several days of careful alignment

Tunneling Dynamics in H₃O⁺ Isotopomers?

- H_3O^+ vs HD_2O^+ and H_2DO^+
- \Rightarrow Symmetry breaking from C_{3v} to C_s (tunneling through a C_{2v} trans state)
- Makes *all four* stretch tunneling transitions allowed in HD₂O⁺ and H₂DO⁺
- Permits direct tunneling splitting measurements in a *single* IR vibrational band
- \Rightarrow Map out inversion barrier by systematic "tuning" of tunneling masses from H₃O⁺ to H₂DO⁺ to HD₂O⁺ to D₃O⁺

Global Infrared Spectrum of HD₂O⁺

- Direct tunneling splittings in a single vibrational band
 - $-\Delta E_{tun}^{"} = 27.032 \text{ cm}^{-1}$

$$-\Delta E_{tun}$$
' = 17.761 cm⁻¹

• Large difference between ground and excited state tunneling splittings

Completing the "Isotopomer Quartet"?

Isotope Dependent Tunneling

	Bowman's	Halonen's	Expt
		Ground state	
H_3O^+	46	56.02	55.346 (6) ^a
H_2DO^+	33	41.14	41.4 (26)
HD_2O^+	22	27.49	27.032 (7)
D_3O^+	12	15.79	15.355504 (4) ^c
V ₀	690	650	??
		Excited State	
H_3O^+	32	39.08	38.747 (6) ^b
H_2DO^+	21	26.74	26.3 (26)
HD_2O^+	13	18.02	17.761 (5)
D_3O^+	7	10.23	9.942 (6) ^d

^a Liu & Oka, PRL 1985; ^b Tang & Oka, JMS 1999; ^c Araki & Saito, JCP 1998; ^d Petek et al. JCP 1989. All units in cm⁻¹.

Rush-Wiberg (HBJ) Approach

$$\left[\frac{d^2}{dq^2} + \left[2\mu(q)/\hbar^2\right]\left[E - V(q)\right]\right]\psi(q) = 0$$

- Geometry optimization and frequency calculations at CCSD(T)/AVTZ along the tunneling path
- CBS energies extrapolated from CCSD(T), AVnZ (n=D,T,Q)
- ZPE corrections for all other vibrational modes
- Reduced mass µ(q) from the vibration-rotation G-matrix coupling (Rush and Wiberg, Hougen-Bunker-Johns)
- 1D tunneling eigenvalues/ eigenfunctions solved on vertically scaled CCSD(T) PES to extract barrier height

Tunneling Barrier Height

- $E_{barrier} \approx 664 \text{ cm}^{-1}$ estimate for tunneling in H_3O^+ isotopomers
- In quite good agreement with *ab initio* calculations of Halonen et al

II) ...to Complex (RNA folding)

- Conformational change *crucial* to biological activity (the earliest enzymes ("ribozymes") made from self folding RNA)
- Hierarchical RNA folding stabilized by specific *H-bonding tertiary interactions* (e.g. tetraloop-receptor, A-rich bulge, etc)
- Structural information alone is not enough!

Structure + *Dynamics* ⇒ **Function**

Tertiary Interactions (P4-P6 Domain: *Tetrahymena* Group I Ribozyme)

Cate, J.H, et al. *Science*, 1996

- Ubiquitous RNA "tetraloop- receptor" binding interaction
- Driven by [Mg⁺⁺] (shielding of repulsive phosphate backbone interactions)
- Responsible for folding complete ribozyme into enzymatically active form

Single RNA Constructs

Watching Single RNA Molecules Fold? (Fluorescence Resonance Energy Transfer)

- Excitation transfer from "donor" (I_D) to "acceptor" (I_A) which fluoresces at a *different* color
- Folding detected by *changes* in FRET efficiency $\approx I_A/(I_D + I_A)$ $\propto 1/[1+(r/r_0)^6]$
- "Molecular ruler" on the 10 Å -100 Å length scale

Experimental Apparatus pulsed Scenning steg Fielescope Pulsed laser linear polarization igle phot counting

• Time stamped detection (color, polarization, macro and microtime)

- Explicit FRET correction for crosstalk, direct excitation, and background
- Fluorescence/folding/orientation dynamics on time scales from $< 10^{-9}$ sec to $> 10^3$ sec!

Single RNA FRET Imaging

- FRET identification of docked/undocked constructs
- Heterogeneity at the single molecule level ("average" behavior not the whole story!)

Effects of [Mg++]

- Reversible folding for majority of single RNA constructs (65%)
- Heterogeneous presence of "nondockers" (34%) and "superdockers" (1%) with no folding dynamics on experimental time scale

FRET Titrations

Real Time Docking/Undocking

Mg++ Dependence

- Rapid increase in docked vs. undocked conformations with [Mg⁺⁺]...
- ...but dominated by *increase* of k_{dock} with [Mg⁺⁺]
- Docking kinetics *not* rate limited by entropic folding effects
- Mg⁺⁺ mediated "pre-folding" of tetraloop receptor to achieve stable docking interaction

Single Molecule Kinetics...

- "Concentration" ill defined molecule A is either there or isn't!
- Think in terms of *probability* of A if definitely present at t=0, i.e. N(t) ≈ [A(t)]/A₀ = exp(-kt) from ensemble kinetics
- More useful concept "Survival probability", $P(\tau)$ $N(t) = 1 - \int_{0}^{1} d\tau P(\tau)$ $\Rightarrow P(\tau) = -dN(\tau)/dt \approx k \exp(-k\tau)$
- P(τ) *exponentially distributed* in τ (for simple 2state kinetic systems)

Sample Kinetic Histograms

- Survival probability predicts exponential distribution of open(closed) event durations
- Rate constants from semi-log plots of histograms of open/closed time durations

Stern-Volmer Analysis

- k_{dock}, k_{undock} and K_{eq} = k_{dock}/ k_{undock} as function of [Mg⁺⁺]
- Rapid increase in K_{eq} with [Mg⁺⁺] (as expected)...
- ...but dominated by increase of k_{dock} with [Mg⁺⁺] (Walter et al)
- Docking kinetics *not* rate limited by entropic effects

Free Energy Landscape (Dependence on Mg⁺⁺)

- ΔG's from k_{docked}, k_{undocked} at low and high Mg⁺⁺

Acknowledgement

Feng Dong Julie Fiore Jose Hodak Chris Downey

Joel Bowman Lauri Halonen Art Pardi

Large Amplitude Quantum Effects (CH₅+)

Summary (I)

- First high resolution IR spectra of H₂DO⁺
- Boltzmann tunneling analysis for ground and V₃ excited states (41.4±2.6 cm⁻¹ and 26.3±2.6 cm⁻¹)
- Good agreement with high level ab initio

- Kinetic studies of isolated tertiary interactions at the single RNA level by spatial- and time-resolved FRET
- Clear RNA subpopulation heterogeneity in the single molecule dynamics
- Free energies for docking in absence ($\Delta G = 0.42$ kcal/mol) and presence ($\Delta G = -1.75$ kcal/mol) of saturating Mg⁺⁺

Molecular Interactions in Reaction Dynamics

- Classic "H + LH" system (Polanyi et al)
- Non-Arrhenius kinetic behavior (Houston et al)
- Smaller N=3 permits explicit PES grid sampling in full 3D (MCSCF/MRCI+Q, spin orbit, derivative coupling)...
- ...and extrapolation to complete basis set limit

- Rotationally bimodal HF(v) distributions quite uncharacteristic of direct reaction dynamics
- Strong rotational peaking in HF(v, high J) states corresponding to HF(v+1,J≈0) states in transition region

Transition State Resonances (in F--H--D)

- Quasibound resonance wave functions (high "skew angle" due to H-L-H dynamics)
- "Quantum chattering" of H between D and F atoms (Liu, Skodje et al)
- Resonance "signature" predicted in HF(v_{HF}=2,J) rotational quantum state distributions

Resonance "Signature" in Nascent Product States

- Near quantitative agreement for F+HD with predictions from exact QM dynamics calculations on state-of-the-art potential surface (Stark-Werner)
- Similar contributions from transition state resonance dynamics in F+HCl?

F + HCl Transition State

Method	Basis	Bend Angle	ΔE^{\ddagger}
		(degree)	(kcal/mol)
UMP2*	6-311G(3d2f,3p2d)	137.4	6.2
PUMP2*	6-311G(3d2f,3p2d)	137.4	4.7
PUMP4*	6-311G(3d2f,3p2d)	137.4	4.0
CCSD(T)	AVQZ	118.0	2.2
MRCI+Q	AVDZ	126.2	4.2
	AVTZ	126.4	4.2
	AVQZ	125.9	4.2
	CBS	125.7	4.2
	Scaled	123.5	3.8

*Sayos, et. al. PCCP 1 (6): 947-956 MAR 15 1999

- Similar exothermicity to F + HD (≈ 33 kcal/mol)
- Somewhat higher reaction barrier (≈ 4 kcal/mol)
- *Strongly bent* F-H-Cl transition state ($\theta \approx 123^{\circ}$)

F + HCl Reaction Path

(Dynamically weighted MCSCF)

 Continuously weighted # of states in MCSCF ⇒ smooth reaction path and PES's (no spurious "root flipping")

Exothermicity Benchmarks

Method	avdz	avtz	avqz	cbs	Error
HF	-19.3	-18.83	-18.67	-18.57	-14.49
MCSCF	-23.1	-22.87	-22.75	-22.68	-10.38
MRCI	-30.41	-29.98	-29.91	-29.87	-3.19
MRCI+Q	-31.33	-31.04	-30.94	-30.88	-2.18
MP2	-37.17	-37.52	-37.78	-37.95	4.89
CCSD	-32.27	-32.5	-32.62	-32.69	-0.37
CCSD(T)	-32.41	-33.1	-33.29	-33.39	0.33

• CBS extrapolation (AVnZ, n=D,T,Q,5...) converges nicely, but still missing some (core) correlation energy (few kcal/mol)

Correlation Scaling

- $E_{corr} = E_{MRCI} E_{MCSCF}$
- Define $E_{true} = E_{MCSCF} + \gamma E_{corr}$
- Empirically calibrate γ *once* based on experimental reaction exothermicity
- Use *same* γ for all points on PES (Peterson et al)

In Practice...

Obtaining *Diabatic* Surfaces

• 1A', 2A', 1A" *diabatic* surfaces built up from " θ scans" at constant r_{HCI} , r_{HF}

• Match *adiabatic* surfaces at $\theta = 0$, 180 (i.e. zero coupling)

• Analytical fits to full 3D diabatic surfaces and non-adiabatic couplings

Interesting Potential Landscapes?

- $E_{\Sigma} > E_{\Pi}$ at large distances, $E_{\Sigma} < E_{\Pi}$ in chemical region
- Implies Σ, Π crossing surfaces for collinear F-HCl geometry...
- ...but 1A', 2A' noncrossing surfaces for bent geometry
- Conical intersection seam!!!

Conical Intersection Seams...

• Conical seam regions accessible at energies $< E_{TS}$

... and Van der Waals Wells

• Dipole-induced dipole "trap" for nascent HF(v)--Cl products!

High J States? A Physical Picture

- "Franck-Condon" projection of resonance wf onto asymptotic HF states
- ⇒ structured HF(v=2,J) distributions due to bend resonance wave function (e.g. H₂O photolysis studies by Andresen, Schinke, Crim)
- Vibrational predissociation of dipole bound "HF(v=3)--Cl" van der Waals complex
- ⇒ peaking in HF($\Delta v = -1$, J ≈ 11) (e.g. VdW's fragmentation studies by Miller, Klemperer and others)