

Hydrogen Bond Dynamics: Hydrogen Bond Dynamics: Hydrogen Bond Dynamics: From Simple to Complex From Simple to Complex From Simple to Complex

IUPAC Workshop "Hydrogen Bonding and Other Molecular Interactions" Pisa, Italy September 7, 2005 "Hydrogen Bonding and Other **Molecular Interactions"**

Work done at Work done at Work done at JILA/Department of Chemistry and JILA/Department of Chemistry and JILA/Department of Chemistry and **Biochemistry** National Institute for Standards and **Technology** University of Colorado Boulder, CO

Thanks in advance to Nesbitt group and collaborators! collaborators! collaborators!

Today's Topics Today's Topics Today's Topics From simple to complex

I) From the Simple… (H 3 O ⁺ I) From the Simple… (H) 3 O +)

- Arguably the simplest (and strongest) (and strongest) (and strongest) hydrogen bond! hydrogen bond! hydrogen bond!
- Ubiquitous role in aqueous chemistry and biology. biology. biology.
- Likely abundant polyatomic ion species in interstellar dust clouds clouds
- Large amplitude floppy QM tunneling in "umbrella" mode

Inversion

Experimental Experimental

- Sub-Doppler molecular linewidths (≈40 MHz in Ne expansion) Sub-Doppler molecular linewidths (≈40 MHz in Ne expansion)
- Servoloop locked optical transfer cavities for high frequency precision (≈20 MHz) Servoloop locked optical transfer cavities for high frequency precision (≈20 MHz)
- Shot noise limited detection sensitivity: 1.5×10^{-5} (N_{min} $\approx 10^{7}$ #/cm³/qs)

Jet Cooled Radical/Ions Jet Cooled Radical/Ions

- \bullet • High resolution spectroscopy of highly reactive chemical transients…
- \bullet • ...under maximally simplified low **T** conditions conditions conditions

• Post docs and grad students eager for "hot" experimental tips from their research advisor… research advisor… research advisor…

• …research advisor ruining several days of careful alignment careful alignment careful alignment

Tunneling Dynamics in Tunneling Dynamics in Tunneling Dynamics in H 3 O ⁺ Isotopomers? H 3 O ⁺ Isotopomers Isotopomers ?

- • $\mathbf{H}_{3}\mathbf{O}^{+}$ vs $\mathbf{H}\mathbf{D}_{2}\mathbf{O}^{+}$ and $\mathbf{H}_{2}\mathbf{DO}^{+}$ \bullet
- $\bullet \quad \Rightarrow$ *Symmetry breaking* from C_{3v} to \mathbf{C}_s (tunneling through a \mathbf{C}_2v trans state) • \Rightarrow *Symmetry breaking* from C_{3v} to C_s (tunneling through a C_{2v} trans state)
- ••**Makes** *all four* **stretch tunneling** transitions allowed in HD_2O^+ and $\rm H_2$ DO $^+$
- ••**• Permits direct tunneling** splitting measurements in a *single* IR vibrational band
- ⇒ Map out inversion barrier by systematic "tuning" of tunneling masses from H_3O^+ to $\mathrm{H_2DO^{+}}$ to $\mathrm{HD_2O^{+}}$ to $\mathrm{D_3O^{+}}$ • \Rightarrow Map out inversion barrier by systematic "tuning" of tunneling masses from H_3O^+ to $\rm H_2$ DO⁺ to $\rm HD_2O^+$ to $\rm D_3O^+$

Global Infrared Spectrum of HD 2 O + HD 2 O +

- ••• Direct tunneling splittings in a single vibrational band
	- ΔE_{tun} " = 27.032 cm⁻¹

$$
- \Delta E_{\rm tun} = 17.761 \, \rm cm^{-1}
$$

••**• Large difference between** ground and excited state ground and excited state ground and excited state tunneling splittings

Completing the "Isotopomer
Quartet"? Quartet"?

ΔE_{tun} " = 55.35 cm⁻¹ H H H D H D D D D ΔE_{tun} " = 27.03 cm⁻¹ ΔE_{tun} " = 15.36 cm⁻¹ $\boxed{\mathbf{D}}$ H $\mathbf H$

Isotope Dependent Isotope Dependent **Tunneling Tunneling**

a Liu & Oka, PRL 1985; ^b Tang & Oka, JMS 1999; c Araki & Saito, JCP 1998; ^d Petek et al. JCP 1989. All units in cm-¹.

Rush-Wiberg (HBJ) Approach -Wiberg (HBJ) Approach (HBJ) Approach

$$
\left[\frac{d^2}{dq^2} + \left[2\mu(q)/\hbar^2\right]E - V(q)\right]\psi(q) = 0
$$

- •Geometry optimization and frequency calculations at CCSD(T)/AVTZ along the tunneling path
- CBS energies extrapolated from $CCSD(T)$, $AVnZ (n=D,T,Q)$
- ZPE corrections for all other vibrational modes
- Reduced mass $\mu(q)$ from the vibration-rotation G-matrix coupling (Rush and Wiberg, Hougen-Bunker-Johns)
- 1D tunneling eigenvalues/ eigenfunctions solved on vertically scaled CCSD(T) PES to extract barrier height

Tunneling Barrier Height Tunneling Barrier Height

- •• $E_{\text{barrier}} \approx 664 \text{ cm}^{-1}$ estimate for tunneling in H₃O⁺ isotopomers isotopomers isotopomers tunneling in H_3O^*
- ••• In quite good agreement with *ab* agreement with agreement with *ab initio* calculations of Halonen et al

II) …to Complex (RNA folding)

- •• Conformational change *crucial* to biological Conformational change *crucial* to biological activity (the earliest enzymes ("ribozymes") activity (the earliest enzymes ("ribozymes") made from self folding RNA) made from self folding RNA)
- Hierarchical RNA folding stabilized by Hierarchical RNA folding stabilized by specific *H-bonding tertiary interactions* (e.g. specific *H-bonding tertiary interactions* (e.g. tetraloop-receptor, A-rich bulge, etc) tetraloop-receptor, A-rich bulge, etc)
- • Structural information alone is not enough! Structural information alone is not enough! \bullet

Structure + *Dynamics* ⇒ Function

**Tertiary Interactions
P4-P6 Domain: Tetrahymena Group I Rib (P4-P6 Domain:** *Tetrahymena* **Group I Ribozyme) -P6 Domain: P6 Domain:** *Tetrahymena Tetrahymena* **Group I Group I Ribozyme Ribozyme)**

Cate, J.H, et al. Cate, J.H, et al. *Science***, 1996** *Science***, 1996**

- ••• Ubiquitous RNA "tetraloop- receptor" binding interaction -- receptor" binding interaction
- ••• Driven by $[Mg^{++}]$ (shielding of repulsive phosphate backbone interactions)
- ••• Responsible for folding complete ribozyme into enzymatically active form

Single RNA Constructs

Watching Single RNA Molecules Fold? Watching Single RNA Molecules Fold? Watching Single RNA Molecules Fold? (Fluorescence Resonance Energy Transfer)

- •• Excitation transfer from Excitation transfer from "donor" (I_{D}) to "acceptor" (I_{A}) which fluoresces at a *different* which fluoresces at a *different* color color
- •• Folding detected by *changes* in Folding detected by *changes* in FRET efficiency $\approx I_A/(I_D + I_A)$ $\propto 1/[1+(r/r_0)^6]$
- "Molecular ruler" on the 10 Å -100 Å length scale 100 Å length scale

\overline{a} TCSPC ROUTER Pulsed laser Pulsed laser linear polarization **Inverted microscope microscope** Pinhole Polarizer APD1 APD2 APD3 APD4 Dichroic beamsplitters Filters Filters $1/7$ Scanning stage Objective Γ sample Telescope Telescope Glass tree" counting "tree" Pinhole Polarizer APD1 APD2 APD3 APD4 Dichroic beamsplitters Filters Imaging lens Sample Glass **Experimental Apparatus Experimental Apparatus** single photon single photon pulsed

• Time stamped detection (color, polarization, macro and microtime) • Time stamped detection (color, polarization, macro and microtime)

- Explicit FRET correction for crosstalk, direct excitation, and background Explicit FRET correction for crosstalk, direct excitation, and background
- Fluorescence/folding/orientation dynamics on time scales from $\leq 10^{-9}$ sec to $> 10^{3}$ sec!

Single RNA FRET Imaging Single RNA FRET Imaging

- FRET identification of docked/undocked constructs constructs constructs
- Heterogeneity at the single molecule level single molecule level single molecule level ("average" behavior "docked" not the whole story!)

Effects of [Mg++ Effects of [Mg] ++

- •• Reversible folding for majority of single RNA constructs (65%) • Reversible folding for majority of single RNA ${\rm constructs}$ (65%)
- ••Heterogeneous presence of "nondockers" (34%) and "superdockers" (1%) with no folding dynamics on experimental time scale • Heterogeneous presence of "nondockers" (34%) and "superdockers" (1%) with no folding dynamics on experimental time scale

FRET Titrations

Real Time Docking/Undocking Real Time Docking/Undocking

Mg++ Dependence ++ Dependence

- 50 µM \blacksquare Rapid increase in docked vs. undocked conformations with $\left[\mathrm{Mg^{++}}\right]$ … \bullet
	- •**•** ...but dominated by *increase* of ${\rm k}_{\rm dock}$ with $[{\rm Mg^{++}}]$ \bullet
	- ••**• Docking kinetics** *not* **rate** limited by entropic folding effects
	- •• \bullet Mg⁺⁺ mediated "pre-folding" of tetraloop receptor to achieve stable docking interaction

Single Molecule Kinetics… Single Molecule Kinetics…

- \bullet "Concentration" ill defined molecule A is either there or isn't!
- Think in terms of *probability* of A if definitely present at t=0, i.e. $N(t)$: ≈present at t=0, i.e. $N(t) \approx [A(t)]/A_0 = exp(-kt)$ from ensemble kinetics ≈ \approx [A(t)]/A₀ = exp(-kt) from
- More useful concept "Survival probability", P(τ) $N(t) = 1 - \int d\tau P(\tau)$ $\Rightarrow P(\tau) = -dN(\tau)/dt$ ≈ $\Rightarrow P(\tau) = -dN(\tau)/dt \approx k \exp(-k\tau)$ -- $\int d\tau P(\tau)$ ≈ \approx k exp($-k\tau)$ $\pmb{0}$
- P(τ) *exponentially distributed* in τ (for simple 2state kinetic systems) -

Sample Kinetic Histograms Sample Kinetic Histograms

- ••• Survival probability predicts exponential distribution of open(closed) event durations
- ••• Rate constants from semi-log plots of histograms of open/closed time durations

Stern-Volmer Analysis

- • $k_{\rm dock}$, $k_{\rm undock}$ and $K_{\rm eq}$ = $k_{\rm dock}$ $\mathbf{k}_{\text{undock}}$ as function of [Mg⁺⁺] \bullet \bf{k}_{dock} , \bf{k}_{undock} and \bf{K}_{eq} = \bf{k}_{dock} / ${\bf k}_{\rm undock}$ as function of [Mg⁺⁺]
- ••• Rapid increase in K_{eq} with Rapid increase in K_{eq} with
[Mg⁺⁺] (as expected)…
- ••• ...but dominated by *increase* of \bf{k}_{lock} with $\left[\text{Mg}^{++}\right]$ (Walter et al)
- ••**• Docking kinetics** *not* **rate** limited by entropic effects limited by entropic effects limited by entropic effects

Free Energy Landscape Free Energy Landscape Free (Dependence on Mg++) (Dependence on Mg++)

- • ΔG 's from $k_{\rm docked}$, k_{undocked} at low and high Mg⁺⁺ \bullet
- Decrease in k_{undock} with Mg^{++} implies $\Delta G_{\rm docked}$ drops *faster* than forward activation barrier $\Delta \rm{G}^{\rm{\neq}}$ with $\rm{Mg^{++}}$

Acknowledgement Acknowledgement

Feng Dong Feng Dong Julie Fiore Julie Fiore Jose Hodak Jose Hodak Chris Downey Chris Downey

Joel Bowman Joel Bowman Lauri Halonen Lauri Halonen Art Pardi Art Pardi

Large Amplitude Quantum Effects Large Amplitude Quantum Effects Large Amplitude Quantum Effects (CH 5 +) (CH 5 +)

Summary (I) Summary (I)

- First high resolution IR spectra of H₂DO⁺
- Boltzmann tunneling analysis for ground and v_3 excited states $(41.4 \pm 2.6 \text{ cm}^{-1} \text{ and } 26.3 \pm 2.6 \text{ cm}^{-1})$
- Good agreement with high level *ab initio* Good agreement with high level Good agreement with high level *ab initio ab initio*

- Kinetic studies of isolated tertiary interactions at the single RNA level by spatial- and time-resolved FRET - and time-resolved FRET
- Clear RNA subpopulation heterogeneity in the single molecule dynamics molecule dynamics molecule dynamics
- Free energies for docking in absence ($\Delta G = 0.42$ kcal/mol) and presence (ΔG = -1.75 kcal/mol) of saturating Mg⁺⁺ saturating Mg⁺⁺

Molecular Interactions in Reaction Dynamics Dynamics Dynamics

- • \bullet Classic "H + LH" system (Polanyi et al) \bullet
- ••• Non-Arrhenius kinetic behavior (Houston et al)
- ••• Smaller $N=3$ permits explicit PES grid sampling in full 3D (MCSCF/MRCI+Q, (MCSCF/MRCI+Q, (MCSCF/MRCI+Q, spin orbit, derivative coupling)…
- ••• ...and extrapolation to complete basis set limit complete basis set limit complete basis set limit

v_{HF} =3 Σ[HF]dl / (x10 $\frac{9}{\text{cm}^2}$ $0 \t 5 \t 10 \t 5 \t 5$ $\rm 0$ 1 2 3 4 5 **What Does Experiment Say?** v_{HF} =2 $0 \leq 15$ Σ[HF]dl / (x10 $\frac{9}{\text{cm}^2}$ 0 1 2 3 4 5

- ••**•** *Rotationally bimodal* $HF(v)$ distributions quite uncharacteristic of *direct* reaction quite uncharacteristic of quite uncharacteristic of *direct* reaction reaction dynamics
- •• Strong rotational peaking in HF(v, high J) states corresponding to $HF(v+1, J\approx 0)$ states in transition region Strong rotational peaking in $HF(v, high J)$ states corresponding to HF(v+1,J≈0) states
in transition region

Transition State Resonances Transition State Resonances (in F--H--D) (in F-- H--D)

- ••• Quasibound resonance wave functions (high "skew angle" due to H-L-H dynamics) - L -H
- ••• "Quantum chattering" of H between **D** and **F** atoms (Liu, Skodje et al) (Liu, Skodje et al)
- ••• Resonance "signature" predicted in HF(v_{HF}=2,J) rotational quantum state distributions

Resonance "Signature" in Nascent Resonance "Signature" in Nascent Resonance "Signature" in Nascent Product States Product States Product States

- ••• Near quantitative agreement for F+HD with predictions from exact QM dynamics calculations on state-of-the-art potential surface (Stark-Werner)
- ••• Similar contributions from transition state resonance dynamics in F+HCl?

F + HCl Transition State HCl Transition State State

*Sayos, et. al. PCCP 1 (6): 947-956 MAR 15 1999

- Similar exothermicity to F + HD (≈ 33 kcal/mol)
- Somewhat higher reaction barrier (≈ 4 kcal/mol)
- *Strongly bent* F-H-Cl transition state $(\theta \approx 123^{\circ})$

F + HCl Reaction Path F + HCl Reaction Path

(Dynamically weighted **MCSCF)** *(Dynamically weighted (Dynamically weighted* **MCSCF)**

reaction path and PES's (no spurious "root flipping")

Exothermicity Benchmarks

••• CBS extrapolation $(AVnZ, n=D,T,Q,5...)$ converges nicely, but still missing some (core) correlation energy (few kcal/mol)

Correlation Scaling Correlation Scaling

- $E_{corr} = E_{MRCI} E_{MCSCF}$ $E_{corr} = E_{MRCI}$ - E_{MCSCF}
- Define $E_{true} = E_{MCSCF} + \gamma E_{corr}$
- Empirically calibrate γ *once* based on experimental reaction exothermicity
- Use *same* $γ$ for all points on PES (Peterson et al) et al)

In Practice… In Practice…

Obtaining *Diabatic* **Surfaces**

• 1A', 2A', 1A" *diabatic* surfaces built up from "^θ scans" at constant r_{HC} , r_{HF}

• Match *adiabatic* surfaces at $\theta = 0$, 180 (i.e. zero coupling)

• Analytical fits to full 3D diabatic surfaces and nonadiabatic couplings

Interesting Potential Interesting Potential Landscapes? Landscapes? Landscapes?

- • E_{Σ} > E_{Π} at large distances, E_{Σ} < E_{Π} in **E** $>E_{\text{Z}} > E_{\text{H}}$ at large
distances, $E_{\text{Z}} < E_{\text{H}}$ in
chemical region \bullet
- •• \cdot Implies Σ, Π *crossing* surfaces for *collinear* F-HCl for *collinear collinear* F-HCl geometry… geometry… geometry…
- ••• ...but 1A', 2A' *noncrossing* surfaces for *bent* geometry for *bent* geometry geometry
- •• Conical intersection seam!!! \bullet

Conical Intersection Seams… Conical Intersection Seams…

• Conical seam regions accessible at energies $< E_{TS}$

… and Van … and Van Van der Waals Wells der Waals Wells

 \bullet Dipole-induced dipole "trap" for nascent $HF(v)$ --Cl products!

Hi gh J States? A Ph ysical Hi gh J States? A Ph h J States? A Physical Picture Picture Picture

•

 \bullet

•

 \bullet

- "Franck-Condon" projection of resonance wf onto asymptotic HF states states
	- \Rightarrow structured HF(v=2,J) distributions due to bend resonance wave function (e.g. H ²O photolysis studies by Andresen, Schinke, Crim) <u>resonance wave function (e.g. </u> H₂O photolysis studies by
Andresen, Schinke, Crim)
- Vibrational predissociation of dipole bound "HF(v=3)--Cl" van der Waals complex • Vibrational predissociation of dipole bound "HF(v=3)--Cl" van
- • \rightarrow \Rightarrow peaking in HF($\Delta v = -1, J \approx 11$) (e.g. VdW's fragmentation studies by Miller, Klemperer and others) \bullet • \Rightarrow peaking in HF($\Delta v = -1$, $J \approx 11$) (e.g. VdW's fragmentation studies by Miller, Klemperer and others)