

Comparing the topological properties of the experimentally determined EDD obtained by X-ray and neutron diffraction to the theoretically calculated values for hydrogen bonding and other intra- and inter-molecular interactions

Enrique Espinosa

Laboratoire d'Ingénierie Moléculaire pour la Séparation et les Applications des Gaz Université de Bourgogne, CNRS (UMR 5633) - DIJON (France)

But Why $\rho(\mathbf{r})$ leads to atomic positions ?

Introduction Atomic positions experimentally determined Hypothesis : $\rho(\mathbf{r})$ exhibits local maxima at nuclei.... $\rho(\mathbf{r})$ local maxima Nuclei positions

But Is the hypothesis true ?

Atomic positions

Hydrogen bonding interactions What can we do?

Introduction

The topological analysis of $\rho(\mathbf{r})$: What for ?

"Atoms in Molecules- A Quantum Theory" (1990)

Along the bond direction, saddle distribution at $S(r = r_{BCP})$:

ρ, $\nabla^2 ρ$, $λ_i$ (i = 1,2,3), G, V, H $\leftarrow \rightarrow$ Interatomic Interactions

... and to new structure and properties

Understanding the behaviours of $\rho(r)$ properties at BCP's

Experimental data set : $83 \times (X = C, N, O)$ CS - interactions : 1.54 < d(H...O) < 2.65 Å

The shorter the internuclear distance, the stronger the interaction : Electron clouds recover much better each other $\longrightarrow \rho^{CP} \uparrow$ CS interaction : The price to pay $\longrightarrow \nabla^2 \rho^{CP} \uparrow$ Exponential functions : Good fittings

Acta Cryst. 1999, B55, 563-572.

Understanding the behaviours of $\rho(r)$ properties at BCP's

Abramov's functional :

Virial theorem (local form) at r_{BCP} : $2G_{CP} + V_{CP} = \frac{1}{4}\nabla^2 \rho_{CP}$

For d(H...O) \oint : G^{CP} \uparrow and |V^{CP}| \uparrow

 $|V^{CP}| \text{ and } G^{CP} \text{ interpretations :}$ Energy densities Pressures $|V^{CP}| \uparrow \longleftrightarrow \rho^{CP} \uparrow$ $G^{CP} \uparrow \longleftrightarrow \nabla^2 \rho^{CP} \uparrow \dots \text{ when } \rho^{CP} \uparrow$

Exponential fittings for G^{CP}, V^{CP} and De (theoretical data) (?!)

Chem. Phys. Lett. **1998**, 285, 170-173.

- De = E(X-H...O-Y) - E(X-H) - E(O-Y)

De = System property

V^{CP} = Local quantity

De ≈ -1/2 V^{CP}

V^{CP} reflects De ... \dots as a \bigstar boundary condition

1.- Checking U and De = $1/2 V^{CP}$ against energetic properties (kJ/mol)

$U_0 + De_0$	Ice VIII _{exp} (Theor.)
8.1	5.9 / 9.0
De_0	Ice (Exp.)
21.7	28.0
De ₀	Ice VIII (Theor.)
25.8	23.5
24.2	22.1 / 24.3
$-De_0 + U_0^{pol}$	Ice VIII _{exp} (Theor.)
-17.7	-19.5
De ₀	Ice Ih _{theo} (Theor.)
36.6	33.0
29.0	29.9
	$U_0 + De_0$ 8.1 De_0 21.7 De_0 25.8 24.2 $-De_0 + U^{pol}_0$ -17.7 De_0 36.6 29.0

2.- Checking against the linear expansion coefficient (α_{lce} = 5·10⁻⁵ K⁻¹)

Assuming $r_0^{OK} = 1.958 \text{ Å}$:	Our model	$\alpha_{\sf lce}$
Expected r ₀ ^{273K} value	1.989 Å	1.985 Å

J. Chem. Phys. 2000, 113, 5686-5694.

3.- Comparing interaction potentials to U = $-\zeta \cdot H^{CP}$

Experimental data set : 83 X-H...O (X = C, N, O) CS - interactions 1.54 < d(H...O) < 2.65 Å

What about systems exhibiting d(H...O) < 1.54 Å?

Experimental examples present a short range of internuclear distances !

We need :

- a) X-A...B-Y systems permitting a continuous analysis from weak to strong interactions
- b) Theoretical calculations

Theoretical calculations and data sets

• The isolated H...F pairwise interaction :

6-311++G** basis set/ GAMES and GAUSSIAN98 NBO and CASSCF methods Topological and MO analyses 0.80 Å < d(H...F) < 2.50 Å

• 79 X-H...F-Y complexes (n, + and -) :

6-311++G** basis set/ GAUSSIAN98 Optimised geometries at MP2 perturbation method $[F...H...F]^-$ and FH...FH complexes partially optimised 0.92 Å < d(H...F) < 2.80 Å

J. Chem. Phys. 2002, 117, 5529-5542.

J. Chem. Phys. 2002, 117, 5529-5542.

The isolated H...F pairwise interaction

d_{cov} is the geometry related to a Covalence Degree

The H...F interaction and the 79 X-H...F-Y complexes

Regions I and III : Similar $\nabla^2 \rho_{CP}$ behaviours / values **Region II :** Similar $\nabla^2 \rho_{CP}$ behaviours, but...shift of values and ...shift of characteristic distances : d_{cov} d_{max} d_0 H...F 1.90 1.96 1.62 H-X...F-Y 1.39 1.35 1.20

The X-H...F-Y data set : $d_{cov}(+) < d_{cov}(n) < d_{cov}(-) < d_{cov}[F...H...F]^{-}$... and similar classifications for d_{max} and d_0 .

The H...F interaction and the 79 X-H...F-Y complexes

The greater the ρ_{CP} magnitude the stronger the interaction

One exponential fits well ρ_{CP} vs. d(H...F) data, but... ... the log-linear plot indicates two exponential functionalities

Characterising differences between systems : $\nabla^2 \rho_{CP}$ more sensitive than ρ_{CP}

2.4

1.4

d(H...F)

G_{CP} in region III : Similar behaviours/values

G_{CP} in regions II and I : $G_{CP}(X-H...F-Y) > G_{CP}(H...F)$

Comparing both data sets : Quite different behaviours !

G_{CP} is more sensitive than **V**_{CP}

What about BCP quantities and system properties ?

Based on d_{cov} , the Bond Degree parameter : B.D. = H_{CP}/ρ_{CP}

What about BCP quantities and X-H...F-Y properties ?

Neutral X-H...F-Y complexes involving *pure* CS interactions

	Conclusions	
» (Chemical information is reflected by the form of atoms interact to each other	
»	Interatomic surfaces resulting from interatomic interactions	
	System properties should be summarized at these surfaces	
	where the information is coded.	

Thanks to

Ibon Alkorta José Elguero

Elies Molins

Claude Lecomte Mohamed Souhassou Instituto Química Médica (C.S.I.C.) - Madrid (Spain)

Instituto de Ciencia de Materiales (C.S.I.C.) - Barcelona (Spain)

L.C.M³.B. - Nancy Université Henry Poincaré (France)

Roger Guilard

L.I.M.S.A.G. - Dijon Université de Bourgogne (France)

J. Chem. Phys. 2002, 117, 5529-5542.

83 X-H...O (X = C, N, O) CS - interactions 1.54 < d(H...O) < 2.65 Å

The curvatures at CP : exponential functionalities The *cleanest* experimental behaviour : λ_3^{CP} vs. d(H...O))

Acta Cryst. 1999, B55, 563-572.

About the evaluation of the local energies at BCP's

Chem. Phys. Lett. 2001, 336, 457-461.

Introduction

Experimental electron density studies

The $\rho_{\text{mul}}(\mathbf{r})$ multipolar model

$$\rho_{mul}(\mathbf{r}) = \sum_{i=1}^{Nat} \rho_i(\mathbf{r})$$

$$\rho_i(\mathbf{r}) = \rho_{core}(\mathbf{r}) + P_{val}\kappa^3 \rho_{val}(\kappa \mathbf{r}) + \sum_{l=0}^{l} \sum_{m=0}^{l} \kappa^{3} R_{nl}(\kappa^{3} \mathbf{r}) P_{l\pm m} y_{l\pm m}(\theta, \varphi)$$

 $\rho_{core}(r)$: unperturbed spherical distribution

 $P_{val}\kappa^3 \rho_{core}(\kappa r)$: perturbed spherical valence distribution $\sum \kappa'^3 R_{nl}(\kappa' r) P_{l\pm m} y_{l\pm m}(\theta, \varphi)$: perturbed no-spherical valence distribution

