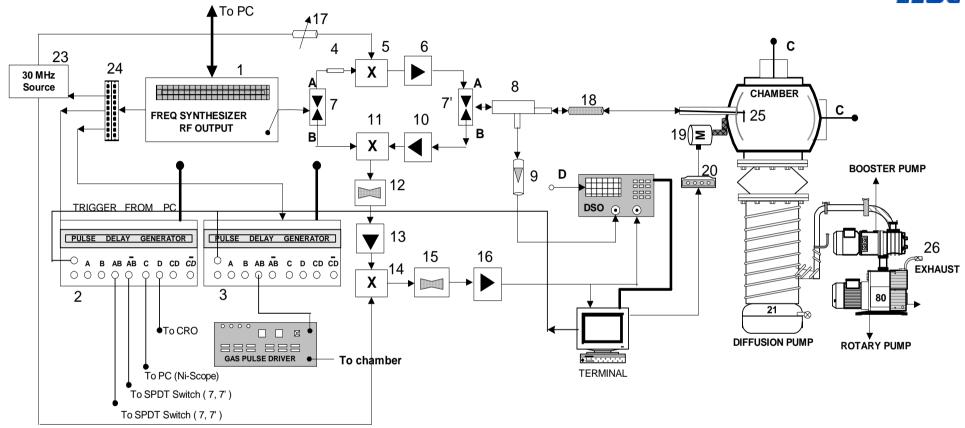
ROTATIONAL SPECTRA AND STRUCTURE OF HYDROGEN BONDED COMPLEXES: TOWARDS A HYDROGEN BOND RADIUS

E. Arunan
Inorganic and Physical Chemistry Department
Indian Institute of Science
Bangalore. 560 012 INDIA

7 September 2005 IUPAC WORKSHOP, PISA

Outline


- Pulsed Nozzle Fourier Transform
 Microwave Spectrometer.
- 'Hydrogen bonded complexes':

```
-C_6H_6-H_2O (O-H\bullet \bullet \bullet \pi),
```

- $-C_6H_6$ -HCN and C_6H_6 - C_6H_6 (C-H••• π)
- $-C_6H_6-H_2S$ (S-H••• π)
- $-C_2H_4-H_2S$ (S-H••• π)
- $-Ar_2-H_2S$ (H bond?)
- Definition of a Hydrogen bond radius for several HX groups.
- Conclusions

Pulsed Nozzle Fourier Transform Microwave Spectrometer

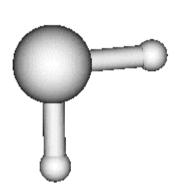
Similar to FT-NMR. Instead of RF, a microwave pulse is applied. Double superheterodyne detection is used by which the signal In 2-26 GHz range is brought down to \leq 1MHz before digitization

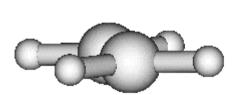
Balle and Flygare, 1979

E. Arunan et al. Curr. Sci. 2002

$C_2H_4-H_2S$

- C_2H_4 -HX (X = F, Cl, and OH) all have Π -hydrogen bonded structures.
- Is H₂S strong enough as a ∏ hydrogen bond donor?
- Compare H₂O/H₂S complexes.
- Where to look for C₂H₄-H₂S transitions?


Rotational constants (MHz) for similar complexes



В	HF	H ₂ O	HCI	H ₂ S	
Ar	3065.7	2988.2	1678.5	1681.4	
Ar ₂	3576.5	3457.2	1733.9	1733.1	
	1739.1	1731.8	1667.9	1617.7	Weak
	1161.0	1144.6	844.5	830.3	acceptors
Ar ₃	1188.2	1172.1	843.9	819.0	
C_6H_6	2048.5	1994.8	1237.7	1168.5	Strong acceptor
C_2H_4	24122	25960	25457	?	
	4368.0	3823.6	2308.1	?	Moderate
	3898.7	3452.1	2168.0	?	acceptor

Constant (MHz)	6-31 G*	6-311 ++G**
A	22884	22945
В	1967	2000
С	1858	1917

Search for C₂H₄-H₂S

- $1_{01} \rightarrow 2_{02}$ for C_2H_4 -HCl is at 8951.4 MHz
- Mausumi started searching for the same transition for C₂H₄-H₂S from 8950 MHz down. Ab initio predictions at 7650 and 7834 MHz
- After a long, long search, she observed it at7685.3 MHz (closer to C₂H₄-Ar 7655.7 MHz reported last year).
- Other lines could be predicted and observed.
- Each line was split in to four (two doublets).

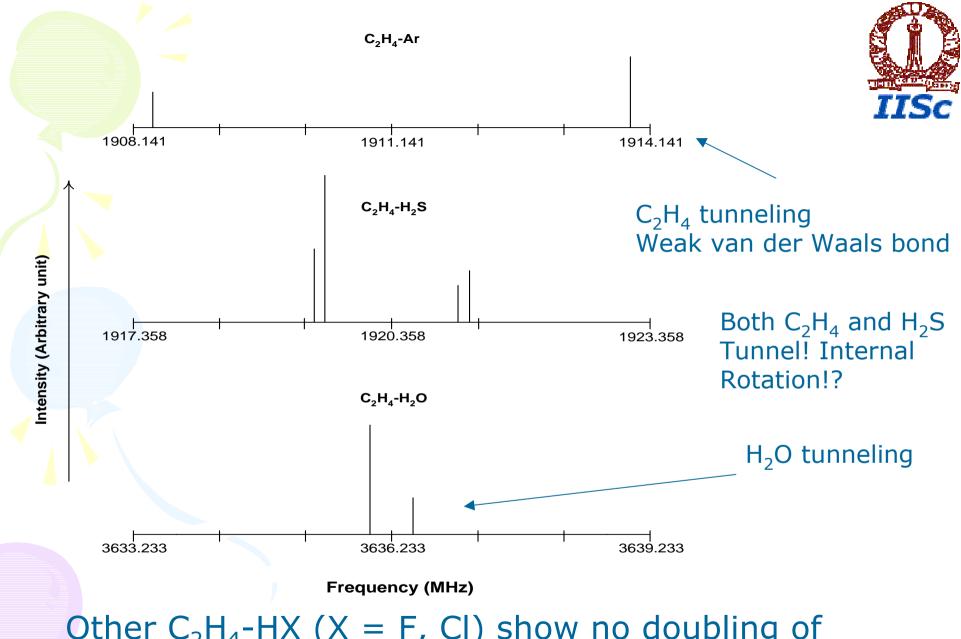
Observed transitions for C₂H₄-H₂S

	Freq	Res.	Freq	Res.	Freq	Res.	Freq	Re T .T
	(MHz)	(kHz)	(MHz)	(kHz)	(MHz)	(kHz)	(MHz)	(kHz)
0 ₀₀ -1 ₀₁	3839.2887	6.6	3839.5289	3.3	3842.5789	9.1	3842.8441	3.9
1 ₁₁ -2 ₁₂	7567.9895	2.0	7568.2071	-5.6	7573.8046	-5.1	7574.0447	-4.7
1 ₀₁ -2 ₀₂	7677.8746	4.2	7678.3620	6.5	7684.4786	12.1	7685.0082	3.1
1 ₁₀ -2 ₁₁	7779.9832	-1.5	7780.7434	0.8	7788.0750	-5.5	7788.9219	-5.1
2 ₁₂ -3 ₁₃	11350.9490	-3.6	11351.2883	-1.5	11359.7351	-6.7	11360.0947	-5.6
2 ₂₁ -3 ₂₂	11491.0770	-7.6	11491.8364	-7.1	11503.1952	-6.8	11504.0171	-10.2
2 ₂₀ -3 ₂₁	11492.4402	-5.8	11493.2019	-8.2	11504.5662	-9.1	11505.4004	-8.0
2 ₀₂ -3 ₀₃	11515.0758	4.4	11515.8051	10.9	11525.0275	10.1	11525.8346	15.0
2 ₁₁ -3 ₁₂	11668.8501	-1.7	11669.9797	-6.2	11681.0539	-5.2	11682.3206	-4.6
3 ₁₃ -4 ₁₄	15132.6796	-4.8	15133.1301	-2.6	15144.5033	-4.3	15144.9772	-6.4
3 ₂₂ -4 ₂₃	15319.6033	7.2	15320.6143	7.9	15335.8775	8.9	15336.9759	10.9
3 ₂₁ -4 ₂₂	15323.0052	6.4	15324.0305	8.4	15339.3111	9.8	15340.4269	10.0
3 ₀₃ -4 ₀₄	15350.1954	3.5	15351.1487	1.8	15363.5568	6.8	15364.6246	15.6
3 ₁₂ -4 ₁₃	15556.3646	-3.1	15557.8716	-3.5	15572.7576	-5.4	15574.4373	-6.9
4 ₁₄ -5 ₁₅	18912.7730	-0.5	18913.3293	-2.5	18927.7185	-1.5	18928.3108	-1.1
4 ₀₄ -5 ₀₅	19182.5398	0.09	19183.7196	0.2	19199.3912	-1.7	19200.6394	-6.2
4 ₁₃ -5 ₁₄	19442.0792	-1.6	19443.9559	-1.4	19462.7645	-1.3	19464.8552	-1.2

Fitted parameters for C₂H₄-H₂S

Parameters	L1	L2	U1	U2
A (MHz)	25961(34)	25968(42)	26189(55)	26204(61)
B (MHz)	1972.682(2)	1972.937(2)	1974.891(3)	1975.178(3)
C (MHz)	1866.658(2)	1866.646(2)	1867.732(3)	1867.715(3)
$d_1(kHz)$	-0.80(2)	-0.82(2)	-0.74(3)	-0.76(4)
d ₂ (kHz)	-0.21(2)	-0.22(2)	-0.24(3)	-0.24(3)
D _J (kHz)	14.30(2)	14.31(2)	13.26(3)	13.28(3)
D _{JK} (MHz)	1.0587(2)	1.0575(3)	0.9691(4)	0.9684(4)
Sd (kHz)	4.4	5.6	7.1	8.1

C₂H₄-HDS/H₂S studies



- D₂S showed both splitting, small became smaller and large became larger.
- HDS showed only the smaller splitting, comparable to D₂S.
- Obviously the smaller splitting is due to C₂H₄ tunneling.
- Larger splitting is due to internal rotation of H₂S. In general tunneling splitting decreases on deuteriation.

Fitted Parameters for C₂H₄-H₂³⁴S, C₂H₄-HDS, C₂H₄-D₂S

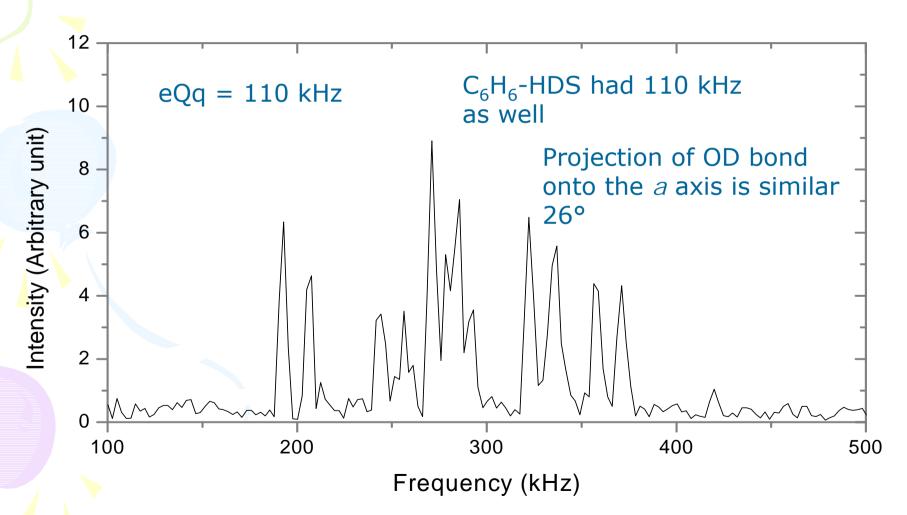
			A(GHz)	B(MHz)	C(MHz)	D _J (kHz)	$D_{JK}(MHz)$	Sd(kHz)
		L1	25.9(16)	1922.87(1)	1822.06(1)	13.7(5)	1.011(17)	34.1
	2 11 11 346	L2	25.9(16)	1923.11(1)	1822.05(1)	13.8(5)	1.010(17)	35.0
•	C ₂ H ₄ -H ₂ ³⁴ S	U1	25.9(14)	1924.73(1)	1822.85(1)	12.6(5)	0.928(15)	31.5
		U2	26.0(14)	1925.00(1)	1822.83(1)	12.7(5)	0.927(15)	30.9
		L1	25.7(9)	1927.60(1)	1830.31(1)	11.9(2)	0.924(13)	45.5
	C ₂ H ₄ -D ₂ S	L2	25.6(9)	1927.67(1)	1830.30(1)	11.8(3)	0.925(13)	46.9
		U1	25.7(10)	1931.52(1)	1832.60(1)	12.0(3)	0.904(15)	53.4
		U2	25.7(10)	1931.60(1)	1832.60(1)	12.0(3)	0.904(16)	54.8
		L	25.9(10)	1964.60(1)	1859.51(1)	11.1(4)	0.882(18)	46.7
	C ₂ H ₄ -HDS	U	25.9(10)	1964.68(1)	1859.50(1)	11.1(4)	0.882(18)	47.8

Other C_2H_4 -HX (X = F, Cl) show no doubling of energy levels! Hydrogen bond is too strong. Larger the barrier smaller the splitting!

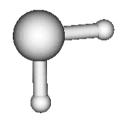
Splitting observed for H₂S, HDS and D₂S

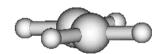
Smaller MH7	Larger MHz
0.14	1.67
0.12	1.33
0.035	_
0.035	3.11
	MHz 0.14 0.12 0.035

SH bond in H₂S moves as C₂H₄ rotates


Deuterium bond is stronger than Hydrogen bond

J=0→1 spectrum of C₂H₄-HDS showing D quadrupole coupling and C₂H₄ tunneling splitting




Substitution analysis

H₂S/HDS/D₂S/H₂³⁴S rotational constants can give substitution distances for both H and S from c.m.:

$$|r| = \left[\left(\frac{1}{2\mu} \right) (\Delta I_a + \Delta I_b + \Delta I_c) \right]^{\frac{1}{2}}$$

They are 1.034 Å, 1.852 Å, and 2.163 Å, respectively

Is C₂H₄-H₂S a hydrogen bonded complex?

- Geometry is nearly the same as C₂H₄-H₂O
- Binding energy (kcal mol⁻¹) is less! MP2 results

	6-311++ G**	6-311++ G(3df,2p)	6-311++ G(3df,pd)	6-311++ G(3df,3pd)	Aug-cc- pVTZ
ΔΕ	-0.9	-1.53	-1.48	-1.43	-1.0
ΔE_{ZPE}	0.17	-0.75	-0.68	-0.63	-0.63
BSSE	1.26	0.59	0.61	0.81	1.21

S-H stretching frequency

	S-H symmetric stretching	S-H asymmetric stretching
H_2S	2818	2838
Ar-H ₂ S	2817	2836
Ar_2-H_2S	2818	2837
$H_2S-H_2S(a)$	2817	2836
$H_2S-H_2S(d)$	2806	2830
C_2H_4 - H_2S	2807	2829

Thiophenol in benzene solution shows a 16 cm⁻¹ red shift!

Ar₂-H₂S

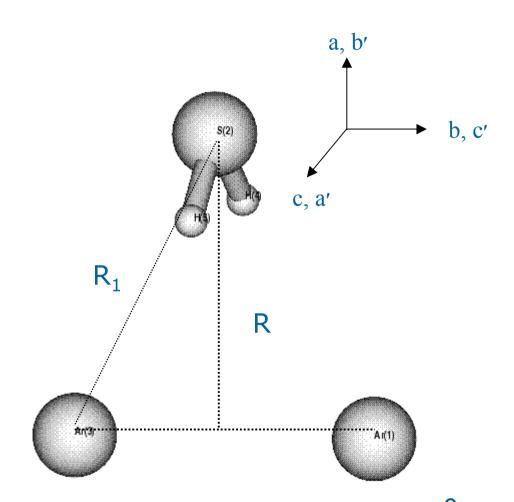
- Ar_m-H₂O complexes have been investigated in detail.
- Studies on analogous H₂S complexes would be useful for proper understanding
- Are these hydrogen bonded or van der Waals complexes?

Ar₂-H₂S asymmetric top

Assuming H_2S to be effectively spherical, implies that only a dipole is present

 $ee \leftrightarrow eo$ and $oo \leftrightarrow oe$

 C_{2v} symmetry and two indistinguishable Ar nuclei imply that some rotational levels will be missing


oo and oe levels are not allowed.

Rotational and Centrifugal Distortion constants for Ar₂-H₂S isotopomers

Parameters	Ar_2 - H_2S	Ar ₂ -HDS	Ar_2-D_2S
A (MHz)	1733.0982 (11)	1734.2134 (14)	1735.441 (5)
В	1617.6570 (05)	1604.4189 (07)	1594.506 (2)
C	830.2755 (03)	827.0251 (03)	824.068 (2)
D ₁ (kHz)	9.269 (05)	8.853 (07)	7.48 (2)
D_2	25.577 (19)	40.278 (26)	82.0 (1)
D_{J}	22.200 (10)	21.365 (14)	18.09 (5)
${ m D_{JK}}$	3.336 (41)	33.263 (57)	114.5 (4)
D_{K}	6.172 (82)	-22.25 (11)	-86.3 (9)
H_{J} (Hz)			1.2(3)
${ m H_{JK}}$			-54(7)
H_{K}			652(28)
Sd (kHz)	2.3	3.1	7.2

The Ar_2 center to H distances are 1.547 Å and 1.401 Å Both H are closer to Ar_2

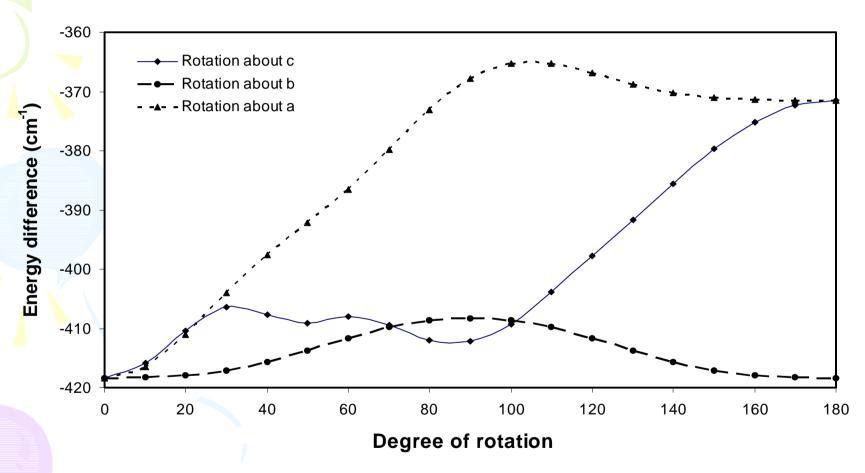


Table 4 The interaction energies obtained from ab initio calculations." The values are in cm-1

Energy	6-311++G**	G**	6-311++G(3df,2p)	3(3df,2p)	aug-cc-pVDZ	DZ	aug-cc-pVTZ	TZ	aug-α-pVQZ	CBS
	MP2	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2	MP2
ΔE	-347.7	-353.6	-418.3	-364.3	-393.4	-352.0	-484.1	-421.5	-4 71.1	Ι
ΔE^{CP}	46.2	Ľ	-263.0	-197.9	-242.4	-188.7	-350.9	-290.9	- 401.1	-507.1
ΔE^{ZPE}	181.9	190.0	-159.8	-94.7	-125.1^{b}	-71.4^{b}	-233.6	-173.6	-283.8°	-418.2
BSSE	394.2	407.9	155.3	166.3	151.0	163.3	133.2	130.6	70.0	I
" BSSE =	$\{E_{\Lambda \eta}^*(M) - ational enerational frequency$	$+ E_{\Lambda_{12}}^{*}(M) +$ gy correction of	$E_{\mathrm{H},\mathrm{S}}^{*}(M)] -$ over ΔE^{CP} . C	"BSSE = $[E_{Ar_1}^*(M) + E_{Ar_2}^*(M) + E_{H_2S}^*(M)] - [E_{Ar_1}^*(C) + E_{Ar_2}^*(C) + E_{H_2S}^*(C)]$; see text point vibrational energy correction over ΔE^{CP} . CBS extrapolation was done using the aug- ∞ -nsed vibrational frequencies calculated at MP2/ ang- ∞ -nVTZ level.	$_{\mathrm{tr}_{2}}^{*}(C)+E_{\mathrm{H}_{2}}$ n was done u	$s^*(C)$; see text sing the aug- ∞	for details; pVnZresult	ΔE^{ZPE} is the ir is (ref. 43). b Z	for details; $\Delta E^{\rm ZPE}$ is the interaction energy after zero-pVnZ results (ref. 43). ^b Zero point energy corrections	ifter zero- orrections
used vibra	ational frequ	uencies calcula	ted at MP2/	used vibrational frequencies calculated at MP2/ aug-cc-pVTZ level.	wel.					

Barrier for internal rotation of H₂S

Potential is anisotropic, rotation about axes that break H bonds have higher barrier

Table 5 All the vibrational frequencies (in cm⁻¹) of Ar₂-H₂S, bending and stretching frequencies of H₂S in H₂S-H₂S (both H-bond donor and acceptor) and free H₂S, calculated at the MP2 level of theory

	MP2/6-311++G(3df,2p)	-G(3df,2p)		MP2/aug-cc-pVTZ	ZTV	
Vibrational modes	Ar ₂ -H ₂ S	$\mathrm{H}_2\!\mathrm{S-H}_2\!\mathrm{S}^a$	H ₂ S	Ar_2-H_2S	H ₂ S-H ₂ S"	H ₂ S
Intermolecular bending	26	Ι	Ι	32	Ι	Ι
Intermolecular stretching (Ar-Ar)	26	I	Ι	26	I	I
Torsion about 'b'-axis of H ₂ S	27	I	Ι	19	I	I
Intermolecular stretching (Ar ₂ -H ₂ S)	37	I	Ι	45	l	I
Torsion about 'c'-axis of H ₂ S	43	I	Ι	43	I	I
Torsion about 'a'-axis of H ₂ S	49	I	Ι	63	I	I
H-S-H bending	1214	1223/1215	1217	1209	1216/1209	1212
S-H symmetric stretch	2776	2741/2773	2776	2773	2729/2769	2771
S-H asymmetric stretch	2794	2786/2792	2795	2792	2783/2789	2791
"First entry is for the donor H ₂ S and the second entry is for acceptor H ₂ S.	second entry is fo	r acceptor H ₂ S.				

How accurate are these frequencies? Experimental Centrifugal distortion constants can help

Table 6 Distortion constants (in kHz) and inertial defects^a (in a.m.u. Å²) from experiment and ab initio force field

Distortion constants	Experiment	MP2/6-311++G	(3df,3pd)	MP2/aug-cc-pV	TZ
Frequency scaling factor	1.0	1.0	0.7	1.0	0.7
d_1	-2.26(2)	3.14	6.29	3.74	7.49
d_2	2.565 (5)	-0.91	-1.81	-0.80	-1.60
D_J	41.34 (2)	19.09	38.17	20.15	40.30
D_{JK}	-69.47(6)	-31.35	-62.69	-32.87	-65.74
D_K	31.79 (4)	13.95	27.89	14.53	29.05
δI_a	_	-1.835	-2.595	-1.582	-2.237
δI_b	_	-1.735	-2.454	-1.667	-2.358
δI_c	_	-0.708	-1.002	-0.497	-0.703
Δ	4.650	2.862	4.047	2.751	3.891

[&]quot;Harmonic vibration-rotation contribution to inertial defect, defined as $I_{\alpha} = (I_0)_{\alpha} - \delta I_{\alpha}$.

Now that we have reliable distances, what do we do with them?

Can we determine a hydrogen bond radius?

Pauling defined different radii for atoms

Ithaka, 1960)

Covalent Radius

Ionic Radius

Metallic Radius

van der Waals Radius

Bonding:

Covalent

Ionic

Metallic

van der Waals

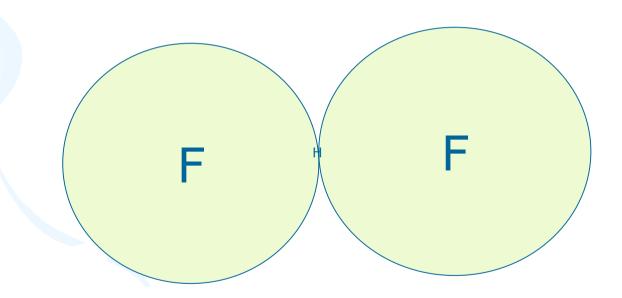
Hydrogen bonding

Is there a Hydrogen bond radius??

CAN THERE BE A HYDROGEN BOND RADIUS? IIs

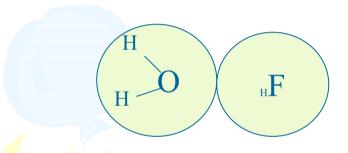
 Jeffrey in his book "Introduction to hydrogen bonding" commented that it will not be possible to define a hydrogen bond radius as C-OH is different from P-OH as donor and C=O is different from C₂-O as an acceptor.

Why no hydrogen bond radius so far?

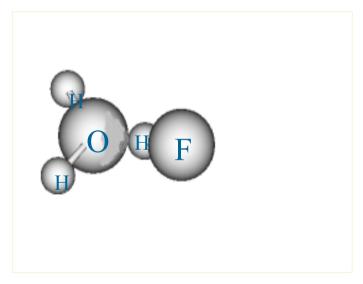

- Unlike other 'bonding' involving two atoms, hydrogen bond involves at least 3, X-H•••Y.
- Li Bian (JPC-A 2003, 107, 11517) says H bond donors dominate the properties and acceptors don't. Can we define it for various donors?

- No, locating H is not easy. X-ray data is unreliable.
- Neutron data is reliable but scarce.
- Microwave structural data are limited to gas phase complexes. Location of H is difficult, but possible.
 - Quadrupole coupling, dipole moment, spinspin coupling and rotational constants

Pauling's H bond FHF-



Two F⁻ interacting simultaneously with H⁺ Size of H⁺ is 0.66 fm



Which of the two cartoons represent H_2O ---HF complex truly?

Buckingham and Fowler

van der Waals spheres of F and O in contact. H is immersed in F

Gadre, Arunan Hydrogen occupies some space

H in HF is certainly not H+

B----HX

B: H-bond acceptor **HX**: Donor

Buckingham and Fowler interpreted the intermolecular distances between Z and HX as the sum of the van der Waals radii of Z and X.

(Can. J. Chem. 1985, 62, 2018)

В	BHF		BHCl		BHBr		
	r(ZF)	$\sigma(Z) + \sigma(F)$	r(ZCl)	$\sigma(Z) + \sigma(Cl)$	r(ZBr)	$\sigma(Z) + \sigma(Br)$	
H_2S	3.246	3.20	3.809	3.65	3.991	3.80	
HCN	2.805	2.85	3.405	3.30	3.610	3.45	
CH ₃ CN	2.751	2.85	3.294	3.30	3.494	3.45	
H_2O	2.684	2.75	3.215	3.20	3.414	3.35	
H ₃ N	2.71	2.85	3.136	3.30	3.255	3.45	

Z is the atom in B, H-bonded to HX. For B---HF, r(Z---X) is within 0.1Å of the sum of the van der Waals radii of Z and X. For B---HCl and B---HBr it is within 0.2 Å or more.

*Do Z---H distances mean anything?

Comparison of structural properties observed for C₆H₆--HX dimers

Dimer	B ₀ (MHz)	D _J (kHz)	D _{JK} (kHz)	(Å) r	θ (deg)
C ₆ H ₆ -HF	2048.540	3.1	74	2.25	22
C ₆ H ₆ -HCl	1237.684	1.22	13.4	2.32	23.0
C ₆ H ₆ -HCN	1219.911	1.12	18.0	2.41	15.2

^a C₆H₆ c.m. to H distance

Gutowsky, Arunan et al., J. Chem. Phys. 103, 3917 (1995)

Gadre and Bhadane interpretation:

[J. Chem. Phys. 107, 5625 (1997)]

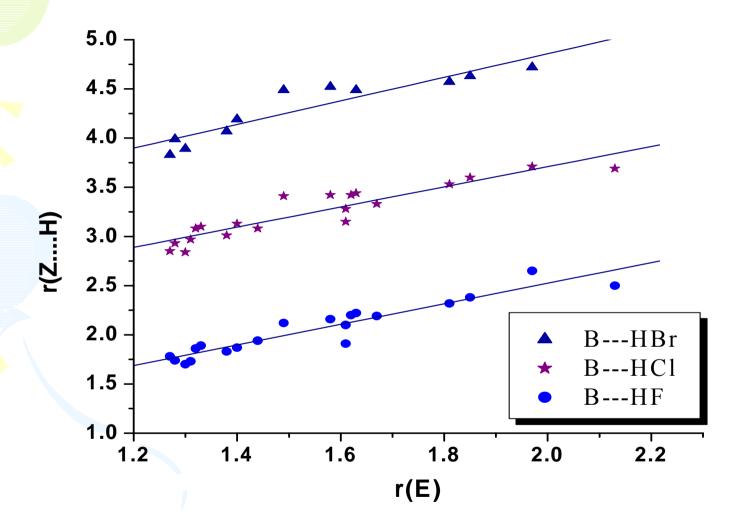
* Molecular Electrostatic Potential(MESP) at a point 'r', due to nuclear charge $\{Z_A\}$ at $\{R_A\}$ and electron density $\rho(r)$ is defined as:

$$V(r) = \sum_{A}^{N} Z_A / |r - R_A| - \int \rho(r') d^3 r' / |r - r'|$$

- * MESP minima symbolize the electron localization in a molecule.
- * \mathbf{r}_{ESP} is the distance between Z and MESP minima; Z is the atom or centre in B, bonded to the H.

They studied the B---HF complexes and obtained the correlation:

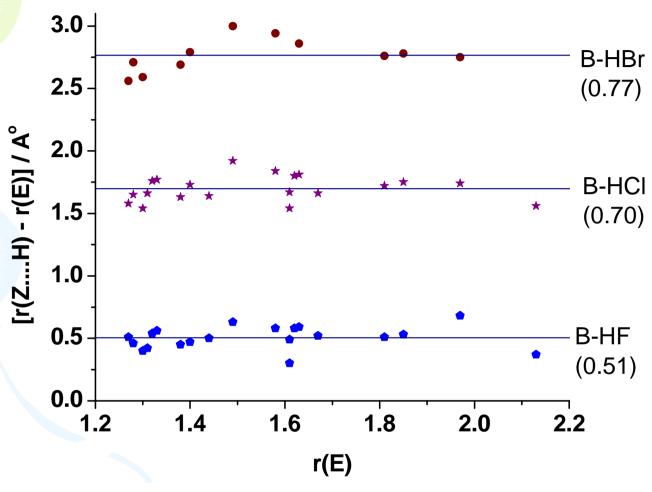
$$r_{HYD} = (r_{ESP} \times 1.04) + 0.47$$


* $\mathbf{r}_{\mathbf{HYD}}$ is the Z---H distance in the complex B---HX.

* **CONCLUSION:** 0.47Å is the van der Waals radius of H

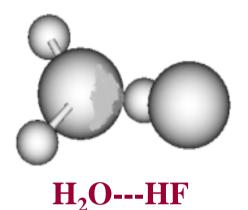
NB: Pauling suggested the van der Waals radius of H to be 1.2 Å.

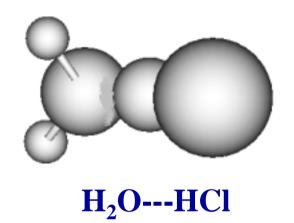
r(Z...H) vs **r(E)**

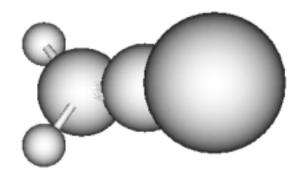


B-HX, X = F, Cl, Br, CN, CCH, OH and SH (ab initio)

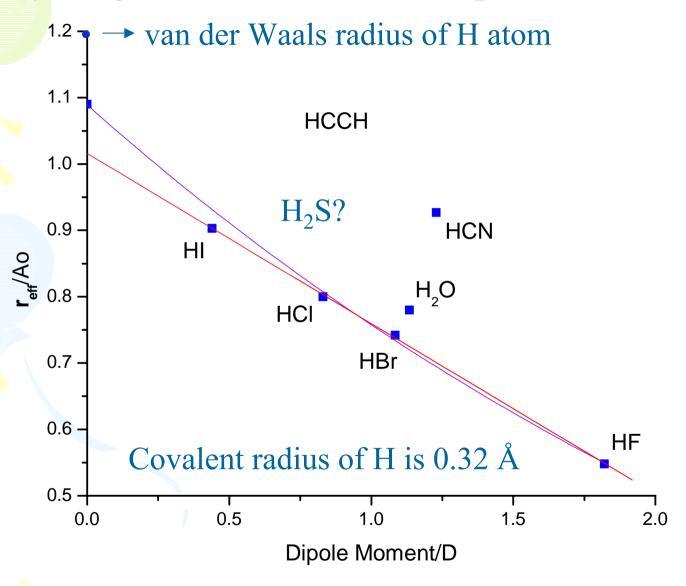
[r(Z...H) - r(E)] vs r(E)




"Hydrogen Bond Radius"


$$\mathbf{r}(\mathbf{Z...H}) = \mathbf{r}(\mathbf{E}) + \mathbf{r}(\mathbf{H})$$

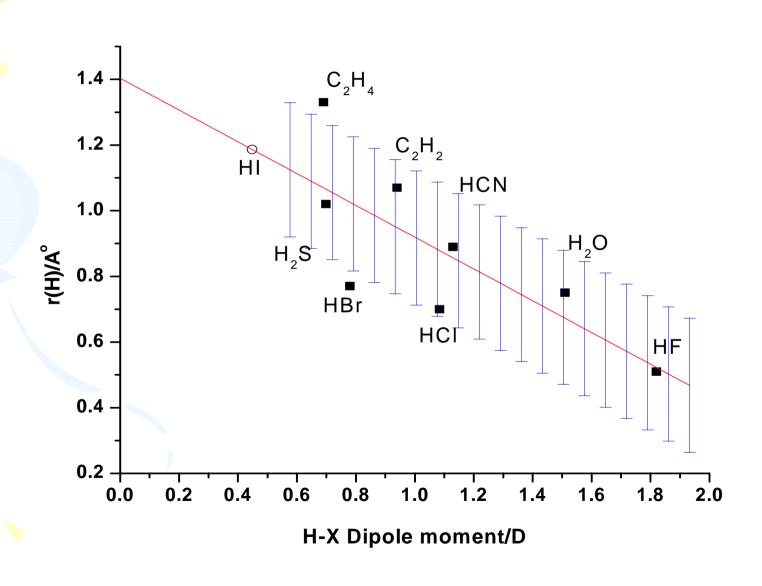
Models of $H_2O---HX$



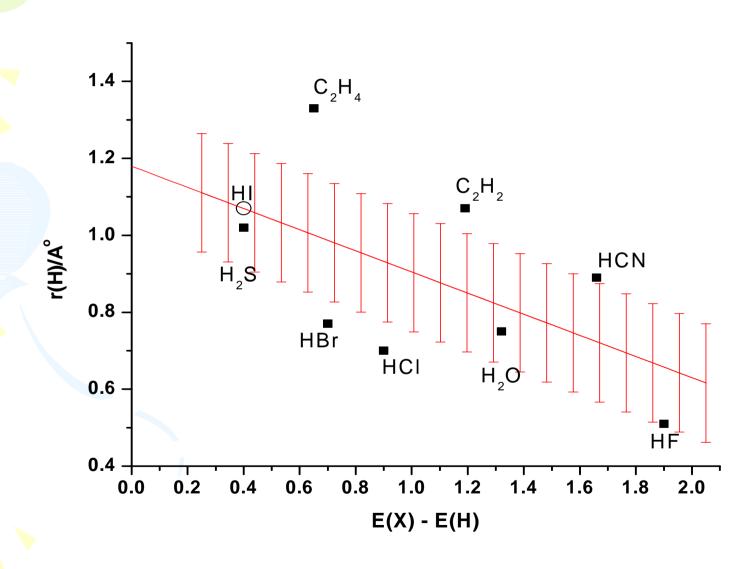
H₂O---HBr

Hydrogen in HX has certain effective $size(r_{eff})$ and it increases from HF to HI. (Figures are not to scale)

Hydrogen bond radius vs dipole moment


r(H) values from empirical and theoretical analysis

	Empirical		MP2	B3LYP	
r(E)	HF	MP2	MP2	HF	MP2
HF	0.54 ± 0.07	0.51 ± 0.09	0.50 ± 0.06	0.48 ± 0.04	0.46 ± 0.05
HCI	0.73 ± 0.08	0.70 ± 0.10	0.69 ± 0.10	0.67 ± 0.10	0.63 ± 0.10
HBr	0.79 ± 0.11	0.77 ± 0.13			
HCN	0.92 ± 0.08	0.89 ± 0.12			
H ₂ O	0.78 ± 0.06	0.75 ± 0.09	0.76 ± 0.08	0.76 ± 0.08	0.75 ± 0.08
НССН	1.08 ± 0.07	1.07 ± 0.08			
H ₂ S]		1.02 ± 0.10	1.05 ± 0.12	1.03 ± 0.13



r(H) vs Electronegativity difference

Is H bond radius real?

- Klein, has concluded recently by Atoms in Molecules theory that H bonded to O should be assigned a radius of 0.8 Å, instead of 1.2 Å
 R. Klein J. Computational Chem. 2003
- Gillespie has come to a similar conclusion for OH by analyzing structural data for several ligands
 - Gillespie Inorg. Chem. 2004

Did any one else think about hydrogen bond radius Before?

Acta Cryst. (1962). 15, 758

Hydrogen-Bond Radii

By S. C. Wallwork

Department of Chemistry, University of Nottingham, England

(Received 23 October 1961)

A table of classified average intermolecular hydrogen-bond distances $(Y-H\cdots Z)$ is presented. It is shown that these average distances can be represented, to a sufficient degree of accuracy, by the sums of two hydrogen-bond radii, one a constant for each donor group Y-H and one a constant (approximately equal to the van der Waals radius) for each acceptor group Z.

Wallwork assumed that the heavy atom distances are sum of van der Waals radii of acceptors and H bond radii of donors. However, he was disappointed not to find any correlation with the donor properties

Conclusions

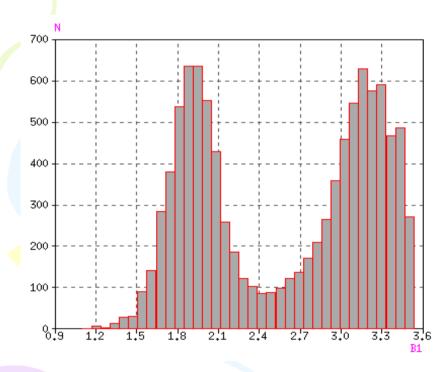
- A home-made PNFTMW spectrometer has been used to obtain rotational spectrum for several H₂S complexes.
- C₂H₄-H₂S and Ar₂-(H₂S) complexes have been identified.
- Both these complexes may be classified as hydrogen bonded, depending on the definition used.
- A hydrogen bond radius has been defined.
 Consistent with both gas phase and condensed phase structural data.

Acknowledgements

- P. K. Mandal, Mausumi Goswami, Raghavendra, Aiswarya and Dharmendar Ramdass (FTMW work)
- B. Lakshmi and Sujeetha (CSD analysis)
- DST, CSIR, Director IISc.
- Profs. S.R.Gadre, A.G.Samuelson, and P.C. Mathias

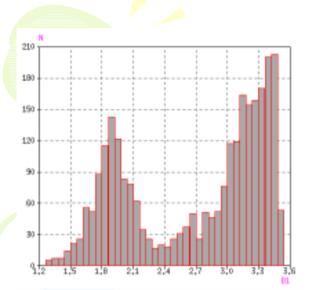
NH and SH groups

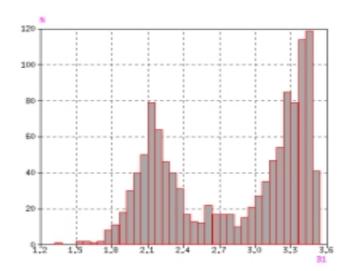
- Gas phase data do not exist. And there is not much hope of generating a data base either!
- NH_3 acts as a proton donor in only two cases $(NH_3)_2$ and C_6H_6 - NH_3 .
- Our laboratory is looking at a series of H₂S complexes. Will need a few more years!


X-ray and neutron diffraction

- Cambridge crystal structure database analysis!
- A wealth of information!
- Could define hydrogen bond radius for OH,
 NH and CCH groups
- How?
- X-ray diffraction is less reliable for locating H. Hence, in the past heavy atom distances were only interpreted!

H---O Distances from the database

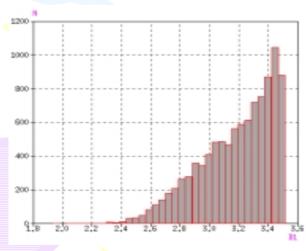


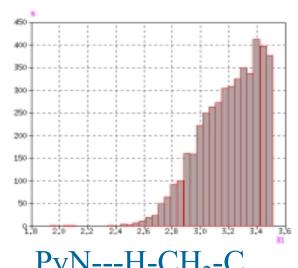

40 36 32 28 24 20 16 12 8 4 9 9 1,2 1,5 1,8 2,1 2,4 2,7 3,0 3,3 3,6 B1

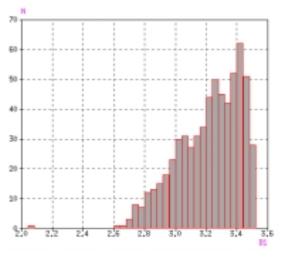
X-ray diffraction

Neutron diffraction

O-H---O=C contacts

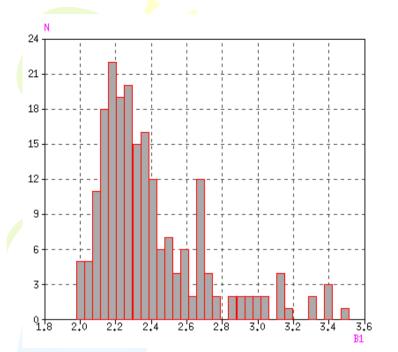


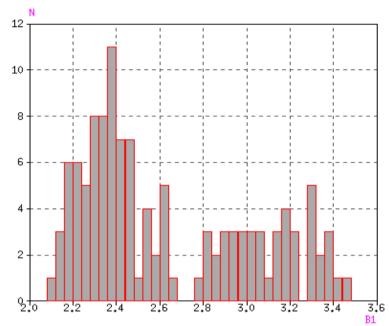



IISc

PyN---H-O

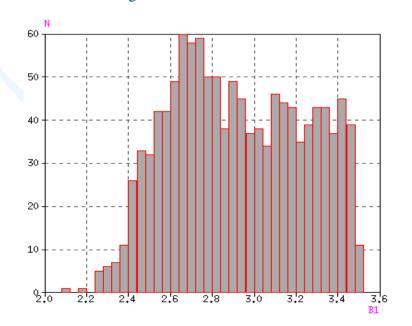
PyN---H-N





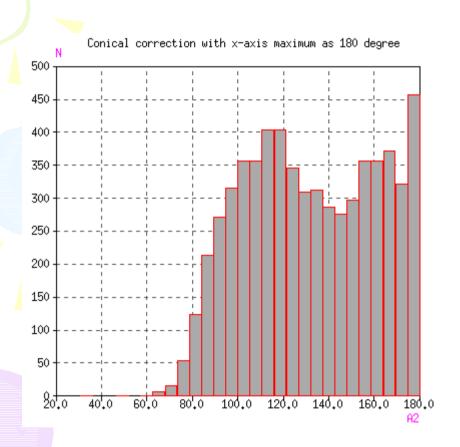
PyN---H-C PyN---H-CH₂-C

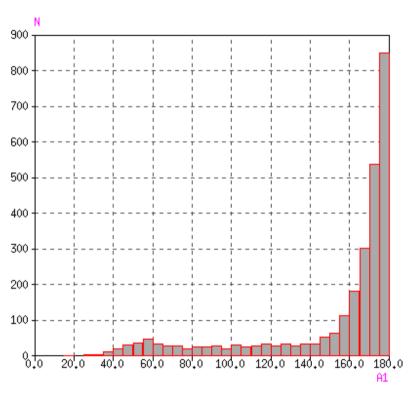
PyN---H-CH₂-CH₂



C=O---H-CCl₃

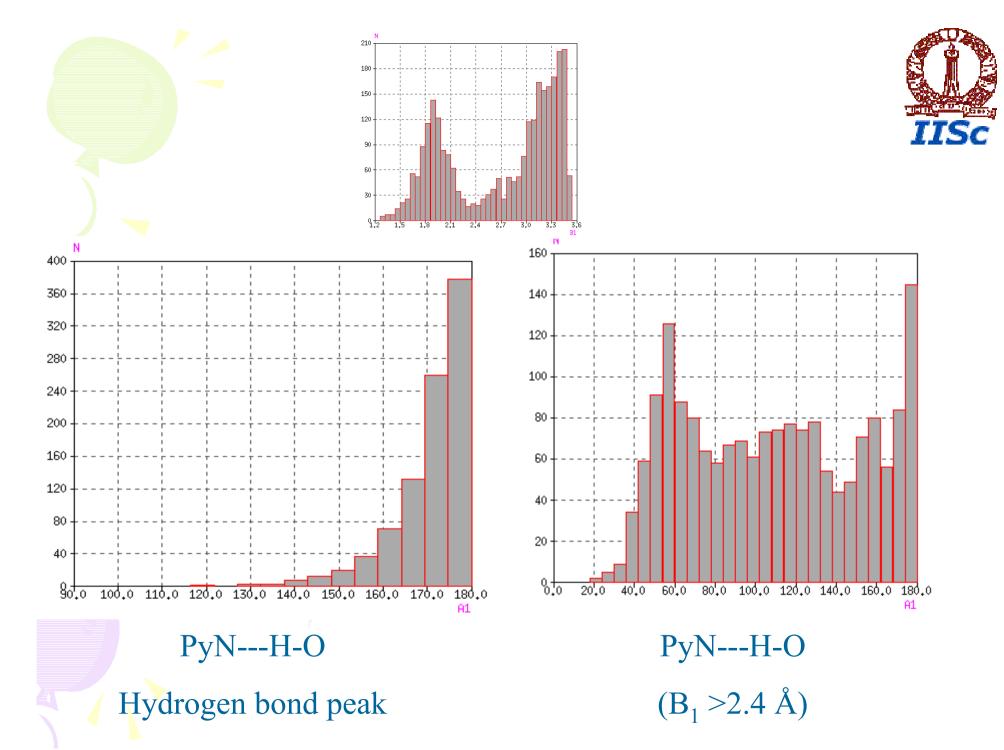
$$C=O---H-C\equiv C$$

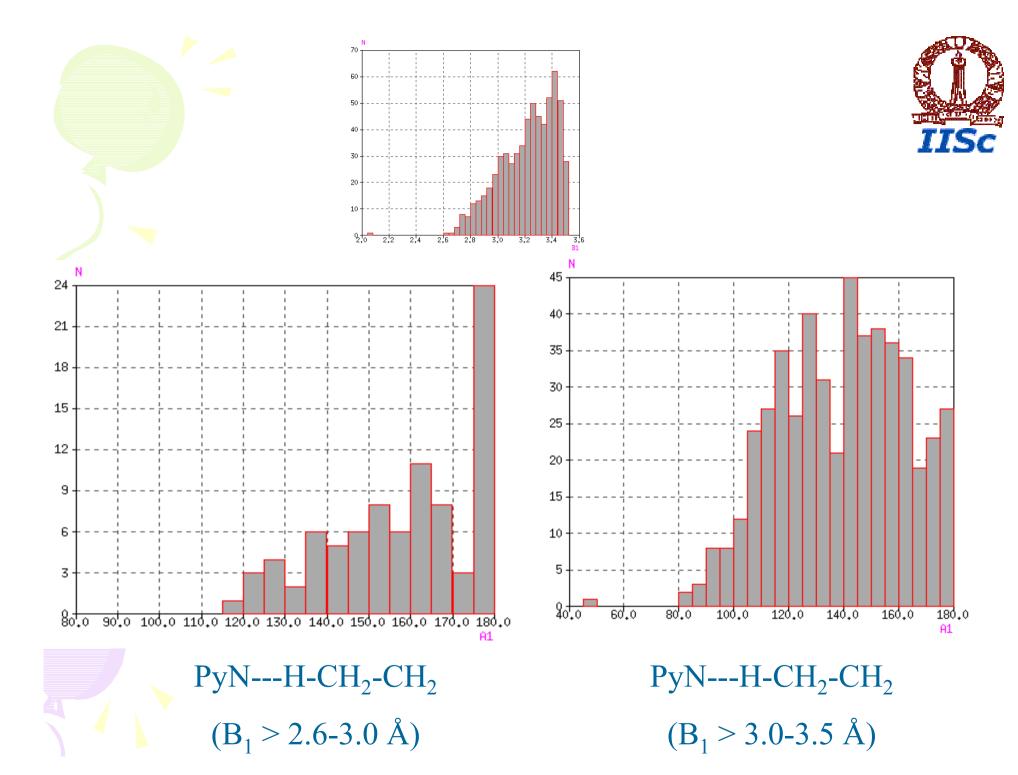



$$C=O---H-C=O$$

So, what about CH groups without electronegative substituents?

- Some believed in hydrogen bonding by such groups.
- Others did not. Controversial!
- Desiraju and Steiner looked at the hydrogen bond angles! They were convinced and most others are too!


N•••H-X angle distribution IISC



Pyridine-H-CH₂-CH₂

Pyridine-HO

H bond radius from X-ray crystal structure database IISc

H-X	CN (1.34)	Pyridine (1.27)	C ₂ O (1.22)	C=O (1.26)
Н-О	0.64	0.59	0.76	0.59
H-N	0.86	0.83	0.83	0.72
H-C≡C	-	-	_	1.10
Н-С=О	-	-	1.30	1.18
HCCl ₃	, -	1.10	1.10	0.90

Lakshmi, Samuelson, Jovan Jose, and Arunan New J. Chem. 2005