

	Fo	orman	nide ··	<i>H₂O</i>)	1:1 a	ě	۹Q
F - F 1	3		- 2				2	ę
	Parent ^a	NH2-DCOH	¹⁵ NH ₂ -COH =(H-O)	ND H -COH	NH D -COH	NH ₂ -COH	NH ₂ -COH	NH2-COH
A/ MHz	11227.9330(23)	11224.4801(33)	10925.1667(27)	10844.4309(24)	10419.4158(49)	11221.9584(35)	11191.9592(21)	11140.3424(36)
B/ MHz	4586.9623(16)	4528.4531(13)	4565.9951(10)	4588.54771(69)	4514.1426(14)	4286.04140(99)	4287.0567(14)	4520.03865(10)
C/ MHz	3258.8277(12)	3228.9331(11)	3222.31874(95)	3226.77112(64)	3151.8641(13)	3103.50898(94)	3105.3851(14)	3218.02144(10)
$\Delta / u \tilde{A}^2$	-0.10814(41)	-0.10973(41)	-0.10439(39)	-0.12118(37)	-0.11529(44)	-0.10644(44)	-0.29761(44)	-0.12682(40)
$\Delta_{\rm g}/{\rm kHz}$	7.844(70)	[7.844]*	[7.844]	[7.844]	[7.844]	[7.844]	[7.844]	[7.844]
$\Delta_{\rm HC}/\rm kHz$	24.24(48)	[24.24]	[24.24]	[24.24]	[24.24]	[24.24]	[24.24]	[24.24]
$\Delta_{\rm K}/{\rm kHz}$	[0.0]	[0.0]	[0.0]	[0.0]	[0.0]	[0.0]	[0.0]	[0.0]
δ_j / kHz	2.728(58)	[2.728]	[2.728]	[2.728]	[2.728]	[2.728]	[2.728]	[2.728]
δ_{K}/kHz	[0.0]	[0.0]	[0.0]	[0.0]	[0.0]	[0.0]	[0.0]	[0.0]
χ _m /MHz	1.3321(37)	1.3377(69)		1.3571(36)	1.3653(73)	1.3391(52)	1.3457(31)	1.3493(64)
χ _{bb} / MHz	2.0371(20)	2.0334(64)		2.0381(20)	2.0485(41)	2.0271(28)	2.0333(17)	2.0413(26)
$\chi_{\rm sc}/MHz$	-3.3693(96)	-3.371(26)		-3.3951(96)	-3.415(20)	-3.366(14)	-3.3791(81)	-3.391(14)
σ/kHz			2.6		8.2		6.6	6.0

	Formar	mide — H	20 1:1 0	
	a	b	MP2/6- 311++G(d,p)	et le
A / MHz a	[352	88] ^b	35288	
B / MHz	2083.6104(127) ^c	2084.6949(126)	2073	
C / MHz	1949.3157(126)	1949.7631(122)	1979	
$\Delta / u \mathring{A}^2$				CE.
χ_{aa}/MHz	1.506	8(47)		
χ_{bb} / MHz	1.23	(34)		μ_{a} - and μ_{b} -type spectra
χ_{cc} / MHz	-2.73	6(34)		¹⁴ N quadrupole HFS
σ/kHz	2	3		Tunneling Splittings (MHz)
N	,	6		
		<u>.</u>	2 	

	Forma	amide…	(H ₂ O) ₂	1:2 a	
	Downt	NR BCOR	ISNIL COL		See .
	raient	···(H ₂ O) ₂	(H ₂ O) ₂	···(H ₂ O) ₂	
A/ MHz *	4384.3559(50) ^b	4384.34925(250)	4334.6691(20)	4321.9095(33)	
B/ MHz	2630.4957(158)	2590.06990(52)	2611.20693(44)	2630.42759(305)	
C/ MHz	1651.1140(125)	1635.09880(34)	1636.47057(26)	1642.26244(72)	6 G
$\Delta_{\rm j}$ / kHz	2.08(68)	[2.08]	[2.08]	[2.08]	
Δ_{JK}/kHz	16.3(3.8)	[16.3]	[16.3]	[16.3]	
$\Delta_{\rm K}/{\rm kHz}$	[0.0] ^e	[0.0]	[0.0]	[0.0]	
δ_j / kHz	0.565(152)	[0.565]	[0.565]	[0.565]	
$\delta_{\rm K}^{\rm}$ / kHz	18.1(5.7)	[18.1]	[18.1]	[18.1]	
$\chi_{\rm m}/{\rm MHz}$	1.0739(34)	1.0608(69)		1.0467(168)	
$\chi_{bb}^{}/MHz$	2.0063(45)	2.0220(101)		2.0141(208)	
χ_{cc}/MHz	-3.0802(45)	-3.0828(101)		-3.0607(208)	
σ/kHz	3.9	4.0	2.0	5.1	
	37	20	8	13	

	Forma	nmide…	(H ₂ O) ₂	1:2 a			5 B
	2.5 8255.0 827 v.Mitz	A_A				2	€ ⁰ 0
	NH,-COH (H, ¹⁶ O _w)(H,O)	NH,-COH (D,H,O)(H,O)	NH,-COH (H,D_O)(H,O)	NH ₂ -COH (H ₂ O)(H ₂ ¹⁸ O ₂)	NHCOH (H_O)(D_H_O)	NHCOH (H_O)(H_D_O)	
A/ MHza	4257.87728(396) ^b	4267.05691(370)	4380.5341(46)	4258.42155(312)	4313.55882(347)	4230.04111(313)	
B/ MHz	2550.81170(119)	2554.07174(293)	2582.15945(359)	2558.17803(94)	2625.27494(238)	2575.60939(225)	
C/ MHz	1601.76873(42)	1609.03594(50)	1631.64517(66)	1604.74185(33)	1639.01599(51)	1611.42773(41)	
Δ_j / kHz	[2.08] ^c	[2.08]	[2.08]	[2.08]	[2.08]	[2.08]	
$\Delta_{\rm HK}/\rm kHz$	[16.3]	[16.3]	[16.3]	[16.3]	[16.3]	[16.3]	
$\Delta_{\mathbf{k}} / \mathbf{kHz}$	[0.0]	[0.0]	[0.0]	[0.0]	[0.0]	[0.0]	
δ_j / kHz	[0.565]	[0.565]	[0.565]	[0.565]	[0.565]	[0.565]	
δ _K / kHz	[18.1]	[18.1]	[18.1]	[18.1]	[18.1]	[18.1]	
χ_2 / MHz	1.0493(91)	0.9975(193)	1.0447(234)	1.0754(75)	1.0717(181)	1.0575(123)	
χ _b / MHz	2.0142(147)	2.0295(238)	2.0334(290)	2.0009(121)	2.0286(225)	2.0108(177)	
χ_c/MHz	-3.0634(147)	-3.0269(238)	-3.0782(290)	-3.0763(121)	-3.1002(225)	-3.0684(177)	
σ/kHz	6.4	5.9	7.2	5.2	5.5	5.0	
			16		16	18	

		E	PHEDR	INE		
Spectroscopic		AG(a)		GG(a)		AG(b)
Parameters	AB-INITIC	EXPERIMENTAL	AB-INITIO	EXPERIMENTAL	AB-INIT	IO EXPERIMENTAL
A / MHz	2014.4	1998.63822 (35)	1565.7	1568.24526 (49)	2112.1	2115.87705 (59)
B / MHz	532.8	529.549500 (41)	597.1	592.448419 (73)	507.2	503.794257 (40)
C / MHz	504.6	500.160014 (41)	579.3	572.416089 (62)	480.0	475.173363 (51)
χ _{aa} / MHz	2.63	2.5347 (13)	2.51	2.447 (12)	2.70	2.564 (17)
χ _{bb} / MHz	-3.26	-2.7436 (17)	-2.90	-3.2045 (75)	-4.83	-4.622 (11)
χ _{cc} / MHz	0.63	0.2089 (17)	0.39	0.7575 (75)	2.14	2.058 (11)
1 and	าบ	à-	4	4:	+	st.
	О-н−№	HX.	О-Н…№	№Н…я	0-Н…М	Par.

Why Amino Acids in the Gas-Phase?

 The great torsional flexibility of amino acids results in an unusual great number of stable conformers of low energy whose relative stability is contolled by intramolecular interactions.
⇒The intrinsic conformational preferences are only revealed in isolation conditions in the gas phase.

serine up to 324 predicted

conformers

Why Amino Acids in the Gas-Phase ?

Amino Acids in their natural <u>condensed phases</u> are stabilized as by strong intermolecular interactions as zwitterions (i.e., a bipolar ionized form ($^{+}H_3N$ -CH(R)-COO) which does not occur in the polypetide chain \rightarrow The structural research of the neutral aminoacids should be conducted in <u>gas phase</u> where the they present an unsolvated neutral form HN-CH(R)-COOH which represents the best approximation of an amino acid residue in a polipedtide chain.

∎ Usi	Previo	us studies	
1.5 6	before	2000	
	Glycine 1978-	Alanine 1993	
	- Two conformers observed - Structure of conformer II	- Two conformers observed - No Structure	

Glycine---H₂O: I sotopic species

27

<u>N</u>

	Parent	¹⁵ N-glycine …H ₂ O	¹⁵ N-glycine …H ₂ ¹⁸ O
		Rotational constant	
A (MHz)	8437.979 (149)	8401.068 (109)	8374.89 (11)
B (MHz)	1613.41327 (71)	1579.66148 (61)	1500.69207 (52)
C (MHz)	1378.06131 (51)	1352.44092 (45)	1293.54511 (39)
		Planar moment	
P _c (u Å ²)	3.19871 (67)	3.20301 (51)	3.20776 (51)
	Centri	fugal distortion co	istants
D _J (kHz)	0.4296 (59)	0.3834 (55)	0.3634 (47)
O _{JK} (kHz)	-1.359 (172)	[0.0]	[0.0]
D _K (kHz)	[0.0]	[0.0]	[0.0]
d _J (kHz)	0.1019 (61)	0.0777 (56)	0.0613 (18)
d _K (kHz)	[0.0]	[0.0]	[0.0]
	¹⁴ N nuclea	r quadrupole coupl	ling tensor
an (MHz)	-3.285 (27)		
bb (MHz)	1.694 (67)		
- (1-11)	1.590 (07)	1.0	16
S (KIIZ)			

- Junta de Castilla y León