Chiral recognition in hydrogen bonded complexes

Ibon Alkorta Instituto de Química Médica (C.S.I.C.) Juan de la Cierva, 3 28006-Madrid e-mail: ibon@iqm.csic.es web: www.iqm.csic.es/are/main.htm

Pisa-2005

Chirality

Chiro ($\chi \epsilon \iota \rho o$) = Hand

mirror images non-superimposible

Parity violation principle (Yang & Lee, 1956)

Chirality in nature

What is the origin of homochirality in nature? *Science*, 86, **309** (2005) (1st July)

Chiral recognition

Three points

Two points

Homochiral: R:R or S:S Heterochiral: R:S or S:R

VS.

http://www.iqm.csic.es/are/chiral.htm

Calculation Methods

Geometry and Energy: MP2, B3LYP 6-31+G**, 6-311 +G**

Electron Density Analysis AIM

Orbitals Interactions NBO

> Chemical shifts GIAO

Optical Rotatory power

Pyrrolo[2,3-*b*]pyrrole

Minima

Minima (energy, kJ/mol)

Erel (R/R) = 0.0

X	Chirality	Erel	E _{I(CORR)}
Н	R/S	-1.8 (-1.5)	-54.5 (-56.7)
F	R/S	-2.6 (2.6)	-39.8 (-41.9)
Cl	R/S	-5.3 (-5.3)	-44.8 (-50.4)
CH ₃	R/S	-6.6 (-8.3)	-52.0 (-62.4)
CN	R/S	-9.6 (-7.7)	-48.4 (-54.8)
CCH	R/S	-4.1	-41.7
CF ₃	R/S	-8.8	-41.8
CCl ₃	R/S	-13.7	-27.5
$C(CH_3)_3$	R/S	-7.9	-38.4
Si(CH ₃) ₃	R/S	-11.8	-49.3
SiF ₃	R/S	-11.1	-51.3
SiCl ₃	R/S	-16.9	-43.8

(MP2/6-311+G**)

Minima (energy, kJ/mol)

Erel (R/R) = 0.0

Х	Chirality	Erel	E _{I(CORR)}
OH	R/R	0.00 (0.00)	-26.2 (-44.8)
OH	R/S	9.5 (5.2)	-20.7 (-42.2)
NH ₂	R/R	0.00 (0.00)	-38.6 (-61.8)
NH ₂	R/S	11.1 (11.5)	-30.6 (-53.6)

(MP2/6-311+G**)

Transition States (TS)

RS or SR (C_{2H})

T.S. vs minima (energy, kJ/mol)

		Min.	ET n.c.	ET c.
X	Quiral	E _{rel}	E _{rel}	E _{rel}
Н	R/S	-1.8	-4.2	-3.8
		(-1.5)	(-4.6)	(-4.0)
F	R/S	-2.6	-6.0	-5.6
		(-2.6)	(-5.4)	(-5.3)
C1	R/S	-5.3	-8.7	-8.5
		(-5.3)	(-6.9)	(-7.4)
CH ₃	R/S	-6.6	-8.2	-8.7
		(-8.3)	(-12.4)	(-12.3)
CN	R/S	-9.6	-13.4	-13.6
		(-7.7)	(-13.1)	(-13.9)
			0.35Å	0.4Å

(MP2/6-311+G**)

Geometry (Steiner-Limbach plot)

 $r_0 = 0.9885 \pm 9.E - 4$, $b = 0.421 \pm 0.002$, $r^2 = 0.999$, n = 96

Electron density

(3aR,6aR)-1,3a,4,6a-tetrahydroimidazo[4,5-*d*]imidazoles

A

B

Tautomer (X = H)	B3LYP/ 6-31+G**	B3LYP/ 6-311+G**	MP2/ 6-311+G**
Α	0.00	0.00	0.00
В	110.70	111.15	123.17
С	19.79	19.26	20.07

(kJ/mol)

Monomers

 C_2 symmetry

Dimers (energy, kJ/mol)

X	Chirality	Chiral discrim.	E _I
Н	RR:SS	-3.58	-49.89
CH ₃	RR:SS	-4.32	-47.21
F	RR:SS	-9.25	-56.13
Cl	RR:SS	-11.52	-55.89
CN	RR:SS	-17.49	-54.90
ССН	RR:SS	-8.28	-51.84
CF ₃	RR:SS	-17.74	-50.68

 $(X = CH_3, homochiral)$

 $(X = CH_3, heterochiral)$

Analysis of dimers

- Shorter distances in the HB hetero than homochiral.
- NBO N(lp)->NH σ * larger for the hetero.
- AIM analysis of the atomic energies.

average variation: N1: -10.5 kJ/mol N3: -11.5 kJ/mol average H atoms: 5 kJ/mol (negative favors heterochiral, positive homochiral)

AIM

atomic energy variation in the complexation

- Largest variation in the NH donor (overall stabilization)
- N acceptor is stabilized (40 kJ/mol in aver.)

Polymers (energy, kJ/mol)

Number of monomers	chirality	EI	Echiral
3	RR:RR:RR	-103.42	0.00
3	RR:SS:RR	-110.68	-7.27
3	RR:RR:SS	-107.14	-3.72
4	RR:SS:RR:SS	-168.80	-11.17
4	RR:SS:SS:RR	-164.89	-7.26
4	RR:RR:SS:SS	-161.48	-3.86
4	RR:RR:RR:RR	-157.62	0.00
5	RR:RR:RR:RR:RR	-212.19	0.00
5	RR:SS:RR:SS:RR	-227.05	-14.86
5	RR:RR:SS:RR:RR	-219.71	-7.52
5	SS:RR:RR:RR:SS	-219.90	-7.71
6	RR:RR:RR:RR:RR:RR	-266.09	0.00
6	RR:SS:RR:SS:RR:SS	-285.08	-18.99
6	RR:RR:RR:SS:SS:SS	-270.40	-4.30
6	RR:SS:RR:RR:SS:RR	-281.52	-15.42
6	RR:SS:SS:SS:SS:RR	-273.77	-7.68
6	RR:RR:SS:SS:RR:RR	-274.14	-8.04
7	RR:RR:RR:RR:RR:RR:RR	-320.58	0.00
7	RR:SS:RR:SS:RR:SS:RR	-342.94	-22.36

Polymers (energy, kJ/mol)

Number of monomers	chirality	Er	Echiral
3	RR:RR:RR	-103.42	0.00
3	RR:RR:SS	-107.14	-3.72
3	RR:SS:RR	-110.68	-7.27
4	RR:RR:RR:RR	-157.62	0.00
4	RR:SS:SS:RR	-164.89	-7.26
4	RR:RR:SS:SS	-161.48	-3.86
4	RR:SS:RR:SS	-168.80	-11.17

 $E_I = 5.11 - 27.15^*$ (No. HB) - 3.73 (No. heterochiral interactions) $n = 21, r^2 = 1.0000, SD = 0.22$

Polymers (geometry)

X = H(RR:RR:RR:RR:RR:RR)

X= H (*RR:SS:RR:SS:RR:SS:RR*)

Polymers (optical rotatory power)

Number of monomers	Chirality	Optical rotatory power	N. of <i>SS:SS–</i> <i>RR:RR</i> interactions	N. of SS - RR monomers
1	SS	20.99	0	1
2	SS:SS	-116.91	1	2
2	RR:SS	0.00*	0	0
3	SS:SS:SS	-210.36	2	3
3	SS:SS:RR	-115.32	1	1
3	SS:RR:SS	9.20	0	1
4	RR:SS:SS:RR	-125.46	1	0
4	SS:SS:SS:SS	-333.55	3	4
4	RR:SS:RR:SS	0.00*	0	0
4	RR:RR:SS:SS	0.00*	0	0

ORP = $-(126.2\pm3.3)$ * (No. homochiral inter.) + (11.4 ± 2.3) (No. mon. SS - RR) n = 17, r² = 0.998

Racemization: carbon inversion

0.00

166.8

71.8

Gompper, Angew Chem Int Edit 1987, 26, 1039; 1983, 22, 543

Racemization: Proton Tranfer

0.00 M1

218.62 TS1

110.70 M2

0.00 W-M1 108.71 W-TS1 83.81 W-M2

64.04

2W-M2

204.49 W-TS2

97.34 2W-TS1

0.00 2W-M1

Conclusion

VS.

Prof. José Elguero

Hydrogen bonded clusters Oscar Picazo

<u>Optical rotatory power</u> Dr. Krzysztof Zborowski Marina Sánchez

<u>Chiral metal clusters</u> Prof. Markku Sundberg Prof. Isabel Rozas

