# Gas Phase Infrared Spectra of some PAHs and 

 Diols: Experiment and TheoryA Thesis<br>Submitted for the Degree of<br>\section*{Doctor of Philosophy}<br>In the Faculty of Science<br>by<br>\section*{Prasanta Das}



Department of Inorganic and Physical Chemistry
Indian Institute of Science
Bangalore - 560012, INDIA
July 2010

## Dedicated to

My Parents

## STATEMENT

I hereby declare that the research work described in this thesis is the result of investigation carried out by me in the Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India, under the supervision of Prof. Puspendu K. Das and Prof. E. Arunan.

In keeping with the general practice of reporting scientific observations, due acknowledgements have been made wherever the work described in this thesis is based on the findings of other investigators. Any omission that might have occurred due to oversight or error is regretted.

July, 2010
Prasamta Dos
Prasanta Dis
Department of Inorganic and Physical Chemistry

## CERTIFICATE

This is to certify that the work presented in the thesis titled "Gas Phase Infrared Spectra of some PAHs and Diols: Experiment and Theory" has been carried out by Mr. Prasanta Das under our supervision and the same has not been submitted elsewhere for a degree.


Prof. Puspendu K. Das
P. K. Das

Professor
Department ol Inorganic \& Physical Chemistry Indian Institute Of Science
Bangalore - 560012 . India


Prof. E. Arunan
E. ARUNAN

Professor
Dept. of Inorganic and Physical Chemiatry Indian Institute of Science BANGALORE-560 012

## ACKNOWLEDGEMENT

It is a great pleasure to express my gratitude and words of appreciation to the people who have been the source of help, inspiration and encouragement.

I express my heartfelt gratitude to Prof. Puspendu K. Das and Prof. E. Arunan for giving me an opportunity to work in their groups. I thank them for their guidance and enormous freedom they have given me to work independently. I particularly appreciate Prof. Puspendu K. Das's efforts throughout the tenure of my stay to help grow scientific inquisitiveness and analytical thinking in me. His extreme co-operation and patience, particularly, during the preparation of manuscripts is deeply appreciated. I also thank Prof. E. Arunan for valuable discussions and help in data analysis. It has been a good learning experience to work with them.

I am thankful to Prof. K. P. J. Reddy in the Department of Aerospace Engineering for allowing me to use the FT-IR spectrometer in initial days in his laboratory and for providing the lab facility. I am thankful to Prof. S. Monogaran in the Department of Chemistry at Indian Institute of Technology, Kanpur for educating me on vibrational spectra analysis and providing me the modified version of UMAT program in the QCPE package. I thank the past and present chairman Prof. A. R. Chakravarthy, Prof. K. L. Sebastian and Prof. A. G. Samuelson of the IPC Dept. for providing the necessary facilities in the department. I thank Prof. S. Umapathy, Prof. K. L. Sebastian and the students of Chemical Dynamics Group for all the stimulating and rigorous discussions in our Saturday group meetings.

I thank all the supporting staff of the IPC office and workshop for their help whenever needed. Special thanks to Mr. Logonathan, Mr. Thomas, and Mr. Samuel for their prompt help during the hours of urgent need. I also thank Mr. Ashoka in the Department of Aerospace

Engineering for his cooperation to make detachable gas cell and cell holder for multi-pass long-path gas cell in the initials days.

I thank Mr. Kiran (SERC) and Prof. Jemmis's group for their help to carry out the calculations in SERC. I thank Dr. Amit Pathak for many helpful discussions and for teaching me about the Linux operating system and latex software. I take this opportunity to thank Mr. Morrison of Laser Spectra Services, Mr. Sandip Maiti of GE, and Mr. Surendra from Optoelectronics for their prompt services.

I thank all my senior labmates, Dr. Dulal Senapati, Dr. A. Sri Ranjini, Dr. Pankaj Mandal, Dr. Mily Bhattacharya, Dr. Sampa Ghosh, Dr. Manabendra Chandra, Dr. Mousumi Goswami, Dr. Abdul Wahab, and Dr. M. Britto Dhas from whom I have learned many things in my initial days. Special thanks to Mily, Sampa and Manabendra for their critical suggestions and remarks which added value to my work. I am indebted to all my juniors Ravindra, Harish, Soumi, Debendra, Shubhadip, Manisha, and Abhishek for their immense help and cooperation to maintain a friendly environment in the lab. The valuable academic discussions with them, apart from my own project, have greatly enriched my science and life. I appreciate their every effort to help me in my experiments, in my work presentations and in preparation of this thesis.

I thank my batchmates Dipak, Sangeeta, Aiswarya, Musthafa, Ramkumar, Debojoyti, Sovan, Mithun, Deepa, Vikrant, Viswanathan, and Akshay for the time I have spent with them in various academic and nonacademic associations. I thank all my friends in IISc, Nupur, Anirudha and Paromita (CES), Pijus, Krishna, Moinak (MCBL), Joydeep (OC), Chakravarty (BC), Rekha, Puja, Pallavi, Sanchari (MBU) for many memorable moments I spent with them.

I express my deep sense of gratitude to a set of very special people in my life, without whose guidance, encouragement and moral support it would have been impossible for me to reach IISc. They are Mr. Gouranga Sasmal (my neighbor, uncle), Dr. Chittaranjan Das (one of my relatives), Dr. Dulal Maity and Panchanan Pandit (my chemistry and physics teachers from school), Prof. S. K. Sengupta, Prof. Lal Bahadur and Prof. R. A. Singh (my university teachers).

Words are less to thank my parents whose sacrifice, support, encouragement and love have made me going. I also thank my brother, sister, sister-in-law, brother-in-law, one nephew and a nice for their love and affection.

## Thesis Synopsis

In this thesis, I report the gas phase infrared spectra of some polycyclic aromatic hydrocarbons (PAHs) namely 1, 5-, 1, 6-, and 2, 6-dimethyl naphthalenes (DMNs); 2, 4-, 2, 6-, 2, 7-, and 2,8-dimethyl quinolines (DMQs); and 1, 9-, 2, 4-, and 3, 9-dimethyl phenanthrenes (DMPs) and diols such as 1, 2-ethylene glycol (1,2-EG) and 1, 4-butanediol (1,4-BD). Assignment of the IR spectra has been done with the help of DFT calculations followed by scaled quantum mechanical force field calculations.

Chapter 1 gives a brief introduction to PAHs and diols. A brief survey of literature pertinent to their sources, their importance, experimental techniques for identification of PAHs and different conformers of diols and intramolecular interactions between the two hydroxyl groups in the diols are presented. The scope and motivation of the present investigation have been described at the end of the chapter.

In Chapter 2, I have discussed all the methods used in carrying out this work. The details of the experimental FT IR set-up and quantum-chemical calculations employed in this work have been elaborated in this chapter.

The subsequent chapters 3-5 deal with the experimental and theoretical results obtained for DMNs, DMQs, and DMPs. In chapter 3, infrared spectra of 1,5-, 1,6-, and 2,6-DMN have been described. The spectra have been recorded using a multi-pass gas cell coupled with Nexus-870 spectrometer (Thermonicolet, US). Qualitatively, spectral assignments have been made with the help of calculated doubly scaled (one scaling factor for the C-H stretching and another factor for the non $\mathrm{C}-\mathrm{H}$ stretching frequencies) harmonic frequencies at the B3LYP/631G* level of theory. The spectral features to distinguish three different isomers of DMN have
been identified. In chapter 4, IR spectra of 2,4-, 2,6-, 2,7-, and 2,8-DMQ in the gas phase have been recorded using a high resolution Vertex-70 (Bruker Optics, Germany) FT-IR spectrometer. DFT calculations have been carried out in order to get harmonic and anharmonic frequencies and their intensities at the B3LYP/6-31G* level of theory. Unambiguous assignments of IR bands could not be made with the help of anharmonic or selectively scaled harmonic frequencies. Therefore, scaled quantum mechanical (SQM) force field calculations were performed where force fields in local coordinates were scaled for getting frequencies in close agreement with experiment. Potential energy distributions (PEDs) of the normal modes in terms of the local coordinates of the molecule using a modified UMAT program in the QCPE package were also obtained in order to identify the nature of the fundamental vibration modes. In chapter 5, I have presented the gas phase IR spectra of 1,9-, 2,4-, and 3,9-DMP. The harmonic and anharmonic frequencies and their intensities were obtained at the B3LYP/631G* and B3LYP/6-311G** levels of theory. I have carried out SQM calculations for the assignment of the experimental frequencies in a similar fashion as was done for the DMQs.

In chapter 6, IR spectra of two diols namely 1,2-ethylene glycol and 1,4-butane diol are reported and discussed. DFT calculations have been carried out for the harmonic fundamental frequencies and intensities at the experimental temperatures with 10 unique chosen conformers of the diols at the B3LYP/6-311++G** level of theory. Gas phase equilibrium population analysis has been done in order to generate the theoretical spectrum with the weighted average contributions from the 10 conformers to match the experimental spectrum. The hydrogen bond enthalpy, strength and nature have been investigated in details. From this experimental and theoretical studies, it has been concluded that the intramolecular hydrogen bond is absent in $1,2-\mathrm{EG}$ at ordinary temperatures whereas it is present in 1,4-BD.

Chapter 7 is the concluding chapter where the main work done in this thesis is summarized and future direction is presented.

## Table of Contents

| Acknowledgement |  | 1 |
| :---: | :---: | :---: |
| Thesis Synopsis |  | V |
| Table of Contents |  | ix |
| List of Abbreviations |  | xiii |
| Chapter 1 | An Introduction to PAHs, Diols and Infrared Spectroscopy | 1 |
| 1.1 | Introduction | 3 |
| 1.1.1 | Definition of PAHs and Diols | 3 |
| 1.1.2 | Sources and importance of PAHs | 3 |
| 1.1.3 | Diols and intramolecular hydrogen bonding | 5 |
| 1.2 | Experimental techniques for identification of PAHs | 5 |
| 1.3 | Experimental techniques for the conformational analysis and characterization of hydrogen bonding in diols | 6 |
| 1.4 | Infrared Spectroscopy | 7 |
| 1.5 | Infrared Spectroscopy of PAHs and Diols | 10 |
| 1.6 | Scope and motivation of this thesis work | 13 |
| 1.7 | References | 15 |
| Chapter 2 | Methods: Experimental and Theoretical | 23 |
| 2.1 | Introduction | 25 |
| 2.2 | Experimental technique | 25 |
| 2.2.1 | Principle of FT-IR spectrometry: Michelson interferometer | 25 |
| 2.2.2 | Continuous-Scan Interferometry | 27 |
| 2.2.3 | Variable Path-length Long Path Gas Cell | 28 |
| 2.3 | Experimental set-up | 29 |
| 2.3.1 | Set-up for PAHs and diols | 29 |
| 2.3.2 | Standardization of multi-pass gas cell of 7.2 meter path-length coupled with Nexus-870 (Thermonicolet, US) spectrometer | 32 |
| 2.3 .3 | Standardization of the multi-pass gas cell of 8.0 meter coupled with | 34 |

Vertex-70 (Bruker Optics, Germany) spectrometer
2.4 Theoretical methods ..... 36
2.4.1 Harmonic and anharmonic frequency calculations ..... 36
2.4.2 Scaled quantum mechanical (SQM) force field calculation ..... 37
2.4.3 Error analysis ..... 39
2.5 IR band intensity calculation ..... 40
2.5.1 Intensity ..... 40
2.5.2 Vapor pressure calculation ..... 41
$2.6 \quad$ Simulated spectra ..... 41
$2.7 \quad$ References ..... 42
Chapter 3 Infrared Spectroscopic Studies of Dimethylnaphthalenes ..... 45
(DMNs) in the Gas Phase
3.1 Introduction ..... 47
$3.2 \quad$ Materials and methods ..... 47
3.2.1 Materials ..... 47
3.2.2 Experimental method ..... 48
3.2.3 Theoretical calculation ..... 48
3.2.4 Vapor pressure and absolute intensity calculation ..... 50
$3.3 \quad$ Results and discussion ..... 52
$3.4 \quad$ Conclusion ..... 65
3.5 References ..... 67
Chapter 4 Infrared Spectra of Dimethylquinolines (DMQs) in the Gas ..... 69
Phase: Experiment and Theory
4.1 Introduction ..... 71
4.2 Experimental: Materials and Methods ..... 72
4.2.1 Materials ..... 72
4.2.2 Methods ..... 72
$4.3 \quad$ Theoretical calculation ..... 73
4.3.1 Harmonic and anharmonic calculation ..... 73
4.3.2 Force field calculation ..... 73
$4.4 \quad$ Results and discussion ..... 79
4.4.1 C-H stretching Vibrations ..... 81
4.4.2 Non C-H stretching Vibrations ..... 82
4.4.3 Non-fundamental bands ..... 96
$4.5 \quad$ Conclusion ..... 98
4.6 References ..... 100
Chapter 5 An Experimental and Theoretical investigation of Infrared ..... 103
Spectra of Dimethylphenanthrenes (DMPs) in the Gas Phase
5.1 Introduction ..... 105
5.2 Experimental section ..... 106
5.2.1 Materials ..... 106
5.2.2 Methods ..... 106
$5.3 \quad$ Theoretical calculation ..... 107
$5.4 \quad$ Results and discussion ..... 112
5.4.1 Spectral region of $2800-3200 \mathrm{~cm}^{-1}$ ..... 113
5.4.2 Spectral region $1700-2800 \mathrm{~cm}^{-1}$ : Non-fundamental bands ..... 127
5.4.3 Spectral region $1200-1700 \mathrm{~cm}^{-1}$ ..... 129
5.4.4 Spectral region $500-1200 \mathrm{~cm}^{-1}$ ..... 132
$5.5 \quad$ Conclusion ..... 136
5.6 References ..... 137
Chapter 6 Is there Intramolecular Hydrogen Bonding in Diols? An FT- ..... 139 IR and DFT investigation
6.1 Introduction ..... 141
6.2 Experimental section ..... 142
6.3 Computational methods ..... 142
6.4 Results and discussion ..... 145
6.4.1 Gas phase infrared spectra of 1,2-EG and 1,4-BDO ..... 145
6.4.2 Population analysis ..... 147
6.4.3 Identification of conformers ..... 150
6.4.4 Estimation of the hydrogen bond energy ..... 155
6.4.5 Nature of hydrogen bond in diols ..... 158
6.5 Conclusion ..... 162
6.6 References ..... 163
Chapter 7 Concluding remarks and future directions ..... 165
7.1
Concluding remarks ..... 167
7.2 Future Directions: Photochemistry of PAHs and time-resolved FT-IR ..... 167
spectroscopy
Appendix: Symbolic Force constant matrix, unscaled and scaled Force ..... 171 constants in terms of nonredundant local coordinates

## List of Abbreviations

| BCP | : Bond Critical Point |
| :---: | :---: |
| BD | : Butanediol |
| BO | : Born Oppenheimer |
| BS | Beamsplitter |
| D | Detector |
| DFT | Density Functional Theory |
| DMN | Dimethyl naphthalene |
| DMP | : Dimethyl phenanthrene |
| DMQ | : Dimethyl quinoline |
| DTGS | : Deuterated Triglycine Sulfate |
| EG | Ethylene glycol |
| ESI-MS | Electrospray Ionization Mass Spectrometry |
| FT-IR | : Fourier Transform Infrared Spectroscopy |
| GC-FID | Gas chromatography with flame ionization detection |
| GC-MS | : Gas Chromatography Mass Spectrometry |
| HB | : Hydrogen bond |
| HPLC | : High performance liquid chromatography |
| IHB | : Intramolecular hydrogen bonding |
| InSb | : Indium Antimonide |
| IDP | : Interplanetary dust particles |
| LD | : Laser Detector |


| LN - MCT | : Liquid $\mathbf{N}_{2}$ cooled Mercury Cadmium Telluride |
| :---: | :---: |
| MCT | : Mercury Cadmium Telluride |
| MMP | : Mono-methyl phenanthrene |
| MN | : Methyl naphthalene |
| MQ | Methyl quinoline |
| NBO | Natural Bond Orbital |
| NMR | Nuclear Magnetic Resonance |
| OPL | Optical path lengths |
| PAH: | : Polycyclic Aromatic Hydrocarbon |
| PD | Propanediol |
| PED | : Potential energy distribution |
| QCPE | Quantum Chemistry Program Exchange |
| QDMC | Quantum Diffusion Monte Carlo |
| UHP | : Ultra High Pure |
| UIR | Unidentified Infrared |
| UV | Ultraviolet |
| SQM | : Scaled Quantum Mechanical |
| TMQ | : Tri-methyl quinoline |
| ZPVE | : Zero point vibrational energy |

Chapter-1

## An Introduction to PAHs, Diols and Infrared Spectroscopy

## Chapter 1: An Introduction to PAHs, Diols and Infrared Spectroscopy

### 1.1 Introduction

### 1.1.1 Definition of PAHs and diols

Polycyclic aromatic hydrocarbons (PAHs) are a family of aromatic compounds containing more than one benzene or heterocyclic ( $\mathrm{O}, \mathrm{N}, \mathrm{S}$ ) benzene rings whereas diols belongs to a class of compounds containing two hydroxyl groups separated by a $\left(-\mathrm{CH}_{2}-\right)_{\mathrm{n}}$ (where $\mathrm{n}=2,3,4, \ldots$ ) backbone. Methylated polycyclic aromatic compounds belong to the PAHs. A few representative structures and some physical properties of PAHs ${ }^{1 \mathrm{a}, \mathrm{b}}$ and diols ${ }^{2}$ are listed in Table 1.1.

### 1.1.2 Sources and importance of PAHs

There are several sources which are responsible for the presence of PAHs in the gas phase and in particulates in the atmosphere. These hydrocarbons are mostly formed during incomplete combustion and pyrolysis of fossil fuels or wood, and petroleum products. Terrestrial sources of PAHs are from non-anthropogenic burning of forests, woodland and moorland due to lightning strikes, and volcanic eruptions. ${ }^{3,4}$ Furthermore, some cosmic sources such as carbonaceous chondrites, which originate in the main asteroid belt, have also been proposed. ${ }^{5 \mathrm{a}-\mathrm{c}}$ Other sources of PAHs include petroleum spills, oil seepage, and organic matter in anoxic sediments. In general, there are five major emission sources of PAHs i.e., domestic, ${ }^{6,7}$ mobile, ${ }^{8 \mathrm{a}-\mathrm{d}}$ industrial, ${ }^{9 \mathrm{a}-\mathrm{d}}$ agricultural, ${ }^{10 \mathrm{a}-\mathrm{c}}$ and natural. PAHs are the most stable hydrocarbons present in atmosphere in the gas phase (containing 2-3 rings) or as particulate matters (containing more than 4 rings). PAHs having two to three rings show higher vapor pressures at room temperature compared to their higher analogs (see Table 1.1).

Table 1.1: Structure and vapor pressure of a few representative PAHs and Diols

| Name of PAHs and Diols | Structure | $\mathbf{P}(\mathrm{mmHg}) @ 25{ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
| 1. Naphthalene |  | $7.80 \times 10^{-2}$ |
| 2. Quinoline |  | $9.12 \times 10^{-2}$ |
| 3. Acenaphthene |  | $2.10 \times 10^{-3}$ |
| 4. Phenanthrene |  | $1.20 \times 10^{-4}$ |
| 5. Pyrene |  | $4.50 \times 10^{-6}$ |
| 6. Perylene |  | $4.12 \times 10^{-9}$ |
| 7. Coronen |  | $2.51 \times 10^{-12}$ |
| 8. Ethanediol | $\mathrm{HO} \mathrm{OH}$ | *6.0×10-2 |
| 9. Propan-1,2-diol | OH | $12.9 \times 10^{-2}$ |
| 10. Butane-2,3-diol |  | $26.0 \times 10^{-2}$ |

## *Vapor pressure at $20^{\circ} \mathrm{C}$.

PAHs are known to be carriers of unidentified IR band (UIR) in the interstellar medium (ISM). ${ }^{11}$ Many are carcinogenic, ${ }^{12,13}$ mutagenic, ${ }^{14,15}$ toxic, ${ }^{13,16}$ and hence cause health hazard to human being and aquatic lives. Some of them are used in medicine or to make dyes, plastics

## Chapter 1: An Introduction to PAHs, Diols and Infrared Spectroscopy

and pesticides. ${ }^{1 / \mathrm{aee}}$ Therefore, it is necessary to identify/distinguish them and find out some way of removal from the lower and upper atmospheres.

### 1.1.3 Diols and intramolecular hydrogen bonding

Diols exist in a mixture of conformers with several possibilities of intramolecular and intermolecular interactions between the two hydroxyl groups depending on the temperature and the physical state. The extent of the latter kind of interaction is dependent on the concentration of the compound, while the former is concentration independent. Intramolecular hydrogen bonding is particularly sensitive to changes in the molecular geometry.

Ethanediol or 1,2-ethylene glycol (1,2-EG) is one of the simplest molecules with two vicinal hydroxyl groups which serves as a simple model for understanding the influence of hydrogen bonding on the conformation of biological molecules such as sugars. In EG, the intramolecular hydrogen bond (IHB) conformation will form a five-member quasi-ring. The hydrogen bond angle in such a five member ring is far from an optimal $180^{\circ}$ and thus the hydrogen bond is expected to be weak. On the otherhand, butanediol isomers are compound with numerous applications in biochemical fields such as protein-stabilizing agents. Butane-1,4-diol or 1,4-butanediol (1,4-BD) represents an interesting diol with many possibilities of intramolecular interactions between the two hydroxyl groups.

### 1.2 Experimental techniques for identification of PAHs

Many experimental techniques have been employed for the separation and identification of PAHs in a complex mixture. The GC/MS spectrometry is one of the popular techniques
which has been used for the analysis of PAHs. Gas chromatography with flame ionization detection (GC-FID) and GC-MS has been used for the qualitative and quantitative analysis of PAHs in cigarette smoke, ${ }^{18}$ diesel engine soot, ${ }^{8 c, 19}$ synthetic fuel, ${ }^{20}$ coke oven and wood combustion, ${ }^{21}$ biodiesel, ${ }^{22,23}$ coal derived liquid, ${ }^{24}$ and in sugar cane soot. ${ }^{25}$ Furthermore, highperformance liquid chromatographic (HPLC) and GC-MS have been employed for the separation and identification of PAHs. ${ }^{26}$ Identification of PAHs has been done by the Programmed-Temperature Capillary-Column Gas Chromatography technique. ${ }^{27,28}$ Bate et al. reported the analysis of particle bound PAHs with the help of a Thermal Desorption (TD) GC/MS technique. ${ }^{29}$ In 2004, Porter et al. used Electrospray Ionization Mass Spectrometry (ESI-MS) for the analysis of petroleum resins. ${ }^{30}$ Recently, mars organic analyzer michrochip capillary electrophoresis system has been used by Stockton et al. for the analysis of PAHs. ${ }^{31}$ In addition to mass spectrometric techniques, FT-IR spectroscopy has been used by Wornat et al. for the analysis of substituted PAHs present in bituminous coal. ${ }^{32}$ GC/FT-IR \& GC/FT-IR/MS techniques have also been employed for the isomeric identification of PAHs. ${ }^{33 \mathrm{a}-\mathrm{c}}$ IR spectroscopic identification and discrimination of PAHs will be presented separately below.

### 1.3 Experimental techniques for the conformational analysis and characterization of hydrogen bonding in diols

In section 1.1.3, I have discussed that diols exist in a mixture of conformers. Whether or not 1,2-EG form an IHB has large significance since this molecule has been used as a part of the training set for parametrizing molecular mechanics programs. ${ }^{34}$ It is used in pharmacologically active materials ${ }^{35}$ and in polymer synthesis. ${ }^{36}$ In the past, structure of diols
including 1,2-EG and 1,4-BD in the gas, liquid and solid phases have been studied extensively by different experimental methods such as x -ray ${ }^{37 \mathrm{a}, \mathrm{b}}$ and electron diffractions ${ }^{38 \mathrm{a}, \mathrm{b}}$ and microwave, ${ }^{39 a-d}$ NMR $^{40 \mathrm{a}-\mathrm{c}}$ and FT-IR ${ }^{41 \mathrm{a}, \mathrm{b}}$ spectroscopy. The electron and x-ray diffraction studies on 1,2 -EG indicate that the gauche conformer is considerably more stable than the trans in the gas phase ${ }^{38 \mathrm{~b}}$ because of the presence of the H -bonding in the gauche conformer. The NMR investigation of 1,2-EG by Roberts and co-workers led the authors to conclude that "the bulk of the NMR evidence indicates that intramolecular hydrogen bonding between the hydroxyl groups is unlikely to be a significant factor in determining that preference, except possibly in fairly non-polar solvents. The 'gauche effect' is clearly very important, especially in aqueous solution". ${ }^{40 \mathrm{c}}$ Recent X-ray crystallographic studies on crystalline 1,2-EG suggests that the intramolecular hydrogen bond (IHB) does not exist in this molecule. ${ }^{42}$ IR spectroscopy is one of the simple methods for the identification and characterization of hydrogen bonding. Generally, hydrogen bonding manifests in a red shift of the $\mathrm{X}-\mathrm{H}$-stretching frequency. For the hydroxyl group, increase in the IR band intensity and a red-shift of the $\mathrm{O}-\mathrm{H}$ stretching frequency are spectroscopic signatures of hydrogen bond formation. The magnitude of both the intensity and frequency shift increase with increasing hydrogen bond strength. ${ }^{43}$ Since IR spectroscopy has been widely used for studying the IHB in diols, it will be discussed separately below.

### 1.4 Infrared spectroscopy

Infrared spectroscopy is a branch of spectroscopy that deals with the interaction of molecules with infrared radiation. IR spectra result from the transitions between two quantized
vibrational energy states in a molecule. Molecular vibrations can range from the simple coupled motion of two atoms in a diatomic molecule to the much more complex motion of many atoms in a large polyatomic molecule. Molecules with N atoms have 3 N degrees of freedom of which $3 \mathrm{~N}-6$ degrees of freedom give the number of ways that the atoms in a nonlinear molecule can vibrate whereas for linear molecules the number of vibrational modes is 3N-5.

Each vibrational mode, $i$ in a molecule involves displacements of the atoms from their equilibrium positions such that all the atoms vibrate at a certain characteristic frequency, $v_{i}$. The potential energy, $\mathrm{V}(r)$ of such an oscillator is shown by the green line in Figure 1.1 as a function of the distance between the atoms, $r$ assuming harmonic motion. For any mode in which the atoms vibrate with simple harmonic motion (i. e., obeying Hook's law), the vibrational energy, $V_{i v}$, can be described by the equation

$$
V_{i v}=h v_{i}\left(v_{i}+\frac{1}{2}\right)-------(1.1)
$$

where $h$ is the Plank's constant, $v_{i}$, the fundamental frequency and $v_{i}$ is the vibrational quantum number of the $i$-th mode. The energy difference for transitions between the ground state $\left(v_{i}=0\right)$ and the first excited state $\left(v_{i}=1\right)$ for most molecular vibrations fall in the midinfrared region (between 400 to $4000 \mathrm{~cm}^{-1}$ ). The motion of the atoms during the vibration can also described in terms of the normal modes, $Q_{i}$ of vibration. The molecule is promoted to the excited state only if its dipole moment, $\mu$, changes during that normal mode vibration i.e., $\left(\partial \mu / \partial Q_{i}\right) \neq 0$.

## Chapter 1: An Introduction to PAHs, Diols and Infrared Spectroscopy

The actual variation of the potential energy as a function of the displacement of the atoms from their equilibrium position is shown in Figure 1.1 as the blue line.


Figure 1.1. The harmonic (green line) and anharmonic (Morse type, blue line) potentials of a diatomic molecule as a function of the internuclear separation.

From the curve it can be seen that equation 1.1 is valid only for low vibrational quantum number. In practice, $V_{i v}$ must be described using an anharmonic (Morse-type) potential function. ${ }^{44,45}$ This behavior is shown in Figure 1.1 as the blue line, and the potential energy is given to a first approximation by the expression

$$
V_{i v}=h v_{i}\left(v_{i}+\frac{1}{2}\right)+h v_{i} x_{i}\left(v_{i}+\frac{1}{2}\right)^{2}-------(1.2)
$$

where $x_{i}$ is the anharmonicity constant.
For polyatomic molecules, accurate representation of potential energy becomes more difficult, since more coordinates and potential parameters are required. Therefore, to describe

## Chapter 1: An Introduction to PAHs, Diols and Infrared Spectroscopy

the potential energy either conceptually or mathematically, it is convenient to use internal coordinates such as bond stretches and angle bends. A nonlinear polyatomic molecule consisting of N atoms has $3 \mathrm{~N}-6$ (3N-5 for linear molecule) independent internal coordinates. Additional internal coordinates are called "redundant coordinates." The representation of a potential energy surface is often facilitated by including redundant internal coordinates. In general, no difficulty arises in including redundant internal coordinates in a potential energy function as long as the function correctly represents the molecular symmetry.

### 1.5 Infrared Spectroscopy of PAHs and Diols

IR spectroscopy is a classical experimental technique for the determination of fundamental vibrational frequencies in a molecule and for the identification of various positional isomers of a molecule in the gas phase. Due to their low vapor pressures at room temperature (see Table 1.1), vibrational spectroscopy of PAHs namely naphthalene, phenanthrene, anthracene, 1-methylanthracene, 9-methyanthracene, 9-cyanoanthracene, 2aminoanthracene, acridine, 1,2-benzantracene, chrysene, pyrene, tetracene, pentacene, perylene, triphenylene, coronene, fluoranthene, benzo[a]fluoranthene, benzo[b]fluoranthene, benzo[z]fluoranthene, and benzo[k]fluoranthene and their cations have been carried out mostly in rare gas matrices. ${ }^{46}$ There are a few literature reports on the gas-phase IR studies of PAHs with vibrational mode assignment. Jobline et al. recorded IR spectra of gas-phase pyrene, coronene and ovalene at a high temperature with the help of a $7.0 \mathrm{~cm}^{3}$ oven made of nickelchromium alloy and fitted with IR transparent diamond windows at a spectral resolution of 1 $\mathrm{cm}^{-1}$ or lower. ${ }^{47,48}$ They compared the gas phase spectra with the solid and matrix phase
spectra and found that the matrix spectrum was much sharper. They identified the bands by comparing the gas phase spectra with previously assigned matrix spectra. In 1997, Cane et al. recorded the gas phase IR spectra of anthracene and phenanthrene, and their deuterated analogs with the help of a multi-pass gas cell of 4.8 and 5.6 meter, respectively, at a resolution of $0.2 \mathrm{~cm}^{-1}$ at $100{ }^{0} \mathrm{C} .{ }^{49 \mathrm{a}, \mathrm{b}}$ They assigned the vibrational bands using DFT and scaled selfconsistent force fields and found that both theoretical methods reproduce the sequence of the experimental frequencies well. The room temperature IR spectra of naphthalene in the gas phase have been reported by Pirali et al. recently using an 8 meter path-length gas cell at a resolution of $0.005 \mathrm{~cm}^{-1} .{ }^{50}$ At this high resolution they saw rotational structure in the spectra. The vibrational assignments were made using anharmonic DFT calculations.

Generally both harmonic and anharmonic DFT calculations have been carried out to assign the experimental IR spectra of polycyclic aromatic compounds. ${ }^{51 a-d}$ Calculated harmonic frequencies deviate by several hundreds of wavenumbers from the observed frequencies and thus one or more scaling factors have been used to multiply the calculated frequencies in order to get a close agreement with experiment. In 1996, Langhoff carried out the harmonic frequency and intensity calculation of 13 PAHs using the DFT method. He found that the harmonic frequencies, when uniformly scaled agree with the matrix isolation IR fundamentals with an average error of about $10 \mathrm{~cm}^{-1} .{ }^{51 a}$ In the same year, Martin et al. did harmonic calculation for naphthalene, azulene, phenanthrene, and anthracene using B3LYP functional and basis sets of spd and spdf quality. They have used three scaling factors for the harmonic frequencies of C-H stretching, in-plane-bending and rest of the vibrations to find agreement with the observed bands within $10-20 \mathrm{~cm}^{-1} .{ }^{51 \mathrm{~b}}$ In 1997, Bauschlicher et al. carried
out DFT calculation to determine the harmonic frequencies and intensities of perdeuterated naphthalene, phenanthrene, pyrene, and chrysene. ${ }^{51 \mathrm{c}}$ They performed the calculations with two different basis sets, 4-31G* and 6-31G* and found maximum mismatch of frequencies by about 12.4 and $36.6 \mathrm{~cm}^{-1}$, respectively, when harmonic frequencies were scaled uniformly by a factor of 0.958 . In 2007, Cane et al. did DFT calculations in order to get the cubic and the quartic semidiagonal anharmonic force fields of naphthalene and deuterated naphthalene. ${ }^{51 d}$ They found that the fundamental frequencies computed by second-order vibrational perturbation are in good agreement with the experimental frequencies with a mean deviation of $4 \mathrm{~cm}^{-1}$. However, in the case of aromatic $\mathrm{C}-\mathrm{H}$ stretching vibrations deviation is more $\sim 10 \mathrm{~cm}^{-1}$ due to the possible presence of Fermi resonances. We have found earlier that for methyl C-H stretching vibrations the differences between scaled harmonic DFT and experimental frequencies are even more than $30 \mathrm{~cm}^{-1} .{ }^{52}$ McKean et al. have pointed out that even for methyl C-H symmetric and antisymmetric stretches, different scaling factors for calculated harmonic frequencies are necessary to match the experimental frequencies. ${ }^{53}$

IR spectroscopy has also been used for the identification of different conformers and characterization of hydrogen bonding in diols as discussed in section 1.3. Conformational isomers of ethylene glycol have been investigated by IR spectroscopy in the gas (up to 125 ${ }^{\circ} \mathrm{C}$ ), liquid and solid phases in 1967 by Buckle et al. ${ }^{41 \mathrm{a}}$ Normally two closely spaced IR absorption peaks are seen in these molecules. The peaks correspond to a free $\mathrm{O}-\mathrm{H}$ and a $\mathrm{H}-$ bonded $\mathrm{O}-\mathrm{H}$ stretching frequencies. The difference in frequency between these two peaks are known as the red shift between bound and free OHs. The gas phase result of Buckle et al. shows a $33 \mathrm{~cm}^{-1}$ red-shift. The red shift is believed to be an evidence for the presence of the
gauche conformer in the gas phase which is stabilized by IHB. IR spectroscopy of 1,2-, 1,3-, $2,3-$, and $1,4-\mathrm{BD}$ have been studied by Fishman et al. in the gas and liquid phases at $\pm 2 \mathrm{~cm}^{-}$ ${ }^{141 \mathrm{~b}}$ They found a large red-shift of $110 \mathrm{~cm}^{-1}$ in $1,4-\mathrm{BD}$. Their results also show that the enthalpies of IHB formation in these isomers depend strongly on their conformation. In 2003, Jesus et al. did conformational analysis of BD isomers by means of DFT calculations and matrix isolation IR spectroscopic studies. ${ }^{54}$ They have also characterized the HB strength. The conformations of 1,4-BD have been investigated using a combination of MP2 calculation, natural bond orbital (NBO) and AIM analysis, and matrix-isolation infrared spectroscopy by the same group in 2008. ${ }^{55}$ They found that the intramolecular hydrogen bonded conformers contributes $46 \%$ in the equilibrium conformation at room temperature. In 2009, Ma et al. carried out IR spectroscopic study and DFT calculation on 1,2-EG, 1,2-PD, 2,3-BD and 1,2BD in solution. ${ }^{56}$ In solution they found that the red shift was of the order of $40 \mathrm{~cm}^{-1}$ in the vicinal diols and that is due to IHB.

For the past 20 years, extensive quantum-chemical calculations have been carried out for the conformational analysis and characterization of the hydrogen bond between two vicinal hydroxyl groups in EG. ${ }^{57-65}$ Electron density topological analysis has shown a bond critical point (BCP) and atomic bond path to be absent which implies that no IHB is present in 1,2 EG. ${ }^{66,67}$ Furthermore, quantum diffusion Monte Carlo (QDMC) simulations corroborated the absence of IHB in 1,2-EG. ${ }^{68}$

### 1.6 Scope and motivation of this thesis work

From the above introduction it is clear that PAHs are important in atmospheric chemistry and astrophysics and, thus, it is important to identify and distinguish them in the gas phase at
low concentrations by using a suitable spectroscopic technique. Also suitable vibrational analysis method is required for the unambiguous assignment of the observed infrared bands which may eventually lead to the identification of UIR bands from the interstellar space and identification PAHs in the earth atmopsher. Therefore, my motivation of this work is twofold: (i) to record the gas phase IR absorption spectra of some atmospherically and astronomically important PAHs namely 1, 5-, 1, 6-, and 2, 6-dimethyl naphthalenes (DMNs); 2, 4-, 2, 6-, 2, 7, and 2,8-dimethyl quinolines (DMQs); and 1, 9-, 2, 4-, and 3, 9-dimethyl phenanthrenes (DMPs) and (ii) unambiguously assign the vibrational bands in the observed spectra. However, the second part of the work is tricky since various theoretical methods of calculation of vibrational spectra are available. I have used scaled harmonic and anharmonic frequencies as well as scaled force fields to fit the experimental spectra. The error limits of each of these assignment methods have also been analyzed.

In another related objective, I have investigated the IR spectra of diols namely 1,2-EG and $1,4-\mathrm{BD}$ in the gas phase and performed DFT calculation in order to look for intramolecular hydrogen bonding in them. These are biologically and industrially important molecules and exist in a mixture of conformers as discussed in section 1.1.3. The most abundant conformer of diols is the gauche conformer which is thought to be stabilized by IHB. The existence of IHB in $1,2-\mathrm{EG}$ is still controversial although many papers have been written on it. My hope in this work is to throw some light on this problem.

### 1.7 References

[1] (a) Sonnefeld, W. J.; Zoller, W. H.; May, W. E. Anal. Chem.1983, 55, 275 (b) Blermann, H. W.; Leod, H. M.; Atkinson, R.; Winer, A. M.; Pitts, J. N. Environ. Sci. Technol. 1985, 19, 244.
[2] http://www.thegoodscentscompany.com/data/rw1161171.html
[3] Wild, S. R.; Jones, K. C. Environ. Pollut. 1995, 88, 91.
[4] Baumard, P.; Budzinski, H.; Garrigues, P.; Dizer, H.; Hansen, P. D. Marine Environ. Res. 1999, 47, 17.
[5] (a) Allamandola, L. J.; Sandford, S. A.; Wopenka, B. Science 1987, 237, 56 (b) Sagan, C.; Khare, B. N.; Thompson, W. R.; Mc Donald, G. D.; Wing, M. R.; Bada, J. L.; Vo-Dinh, T.; Arakawa, E. T. Astrophys. J. 1993, 414, 399 (c) Clemett, S. J.; Maechling, C. R.; Zare, R. N.; Swan, P. D.; Walker, R. M. Science 1993, 262, 721.
[6] Smith, K. R. Biofuels, Air Pollution and Health-a Global Review. Plenum Press, New York, 1987.
[7] World Health organization (WHO), 2002. World Health Report 2002: Reducing Risks, Promoting Life.
[8] (a) Rogge, W. F.; Hildemann, L. M.; Mazurek, M. A.; Cass, G. R.; Simoneit, B. R. T. Environ. Sci. Technol. 1993, 27, 636 (b) Miguel, A. H.; Kirchstetter, T. W.; Harley, R. B.; Hering, R. A. Environ. Sci. Technol. 1998, 32, 450 (c) Marr, L. C.; Kirchstetter, T. W.; Harley, R. A.; Miguel, A. H.; Hering, S. V.; Hammond, S. K. Environ. Sci. Technol. 1999, 33, 3091 (d) Ravindra, K.; Wauters, E.; Taygi, S. K.; Mor, S.; Grieken, V. R. Environ. Monitor. Asses. 2006, 115, 405.
[9] (a) Yang, H. H.; Lee, W. J.; Chen, S. J.; Lai, S. O. J. Hazard. Materials 1998, 60, 159 (b) Pisupati, S. V.; Wasco, R. S.; Scaroni, A. W. J. Hazard. Materials 2000, 74, 91 (c) Yang, H. H.; Jung, R. C.; Wang, Y. F.; Hsieh, L. T. Atmos. Environ 2005, 39, 3305 (d) Ciaparra, D.; Aries, E.; Booth, M.; Anderson, D. R.; Almeida, S. M. A.; Harrad, S. Atmos. Environ. 2009, 43, 2070.
[10] (a) Jenkins, B. M.; Jones, A. D.; Turn, S. Q.; Williams, R. B. Environ. Sci. Technol. 1996, 30, 2462 (b) Fang, M.; Zheng, M.; Wang, F.; To, K. L.; Jaafar, A. B.; Tong, S. L. Atmos. Environ. 1999, 33, 783 (c) Godoi, A. F. L.; Ravindra, K.; Godoi, R. H. M.; Andrade, S. J.; Santiago-Silva, M.; Van Vaeck, L.; Van Grieken, R. J. Chromatog. A 2004, 1027, 49.
[11] Allamandola, L. J.; Tielens, A. G. M.; Barker, J. R. Astrophys. J. Supplemen. Ser. 1989, 71, 733.
[12] Hirao, K.; Shinohara, Y.; Tsuda, H.; Fukushima, S.; Takahashi, M.; Ito N. Cancer Res. 1976, 36, 329.
[13] Murata, Y.; Denda, A.; Murayama, H.; Konishi, Y. Fund. Appl. Toxicol. 1993, 21, 44.
[14] Kaden, D. A.; Hites, R. A.; Thilly, W. G. Cancer Res. 1979, 39, 4152.
[15] Royer, R. E.; Mitchell, C. E.; Hanson, R. L.; Dutcher, J. S.; Bechtold, W. E. Environ. Res. 1983, 31, 460.
[16] Birkholz, D. A.; Coutts, R. T.; Hrudey, S. E.; Danell, R. W. Lockhart, W. L. Water Res. 1990, 24, 67.
[17] (a) Plakogiannis, F. M. J. Med. Chem. 1971, 14, 430 (b) Temple, C.; Rose, J. D.; Montgomery, J. A. J. Med. Chem. 1974, 17, 615 (c) Thomas, J.; Berkoff C. E.; Flagg W. B.; Gallo J. J.; Haff, R. F.; Pinto C. A. J. Med. Chem. 1975, 18, 245 (d) Shamsuddin, Z. A.;

Rahimtula, A. D. Drug. Metab. Dispos. 1986, 14, 724 (e) Kilanowicz, A.; Sapota, A.; Czerski, B. Toxicol. Lett. 2002, 134, 227.
[18] Schmeltz, I.; Tosk, J.; Hoffmann, D. Anal. Chem. 1976, 48, 645.
[19] Ming-Li Yu; Hites, Ronald, A. Anal. Chem. 1981, 53, 951.
[20] Later, D. W.; Lee, M. L.; Bartle, K. D.; Kong, R. C.; Vassilaros, D. L. Anal. Chem. 1981, 53, 1612.
[21] Khalilli, N. R.; Schefft, P. A.; Holsen, T. M. Atmos. Environ. 1995, 29, 533.
[22] Correa, S. M.; Arbilla, G. Atmos. Environ. 2006, 40, 6821.
[23] Abrantes, R.; Assunçao, J. V.; Pesquero, C. R.; Bruns, R. E.; Nobrega, R. P. Atmos. Environ. 2009, 43, 648.
[24] Dmitrikov, V. P.; Fedorov, Yu. V. Chromatogr. 1984, 18, 28.
[25] Zamperlini, G. C. M.; Silva, M. R. S.; Vilegas, W. Chromatrogr. 1997, 46, 655.
[26] Wise, S. A.; Chesler, S. N.; Hertz, H. S.; Hipert, L. R.; May, W. E. Anal. Chem. 1977, 49, 2306.
[27] Lee, M. L.; Vassilaros, D. L. Anal. Chem. 1979, 51, 768.
[28] Novotny, M.; Kump, R.; Merli, F.; Todd, L. J. Anal. Chem. 1980, 52, 401.
[29] Bates, M.; Bruno, P.; Caputi, M.; Caselli, M.; Gennaro, G.; Tutino, M. Atmos. Environ. 2008, 42, 6144.
[30] Porter, D. J.; Mayer, P. M.; Fingas, M. Enegy \& Fuels 2004, 18, 987.
[31] Stockton, A. M.; Chiesl, T. N.; Scherer, J. R.;. Mathies, R. A. Anal. Chem. 2009, 81, 790.
[32] Wornat, M. J.; Sarofim, A. F.; Longwell, J. P. Energy \& Fuel 1987, 1, 431.

Chapter 1: An Introduction to PAHs, Diols and Infrared Spectroscopy
[33] (a) Gurka, D. F.; Hiatt, M.; Titus, R. Anal. Chem. 1984, 56, 1102 (b) Gurka, D. F.; Pyle, S. M. Environ. Sci. Technol. 1988, 22, 963 (c) Gurka, D. F.; Farnham, I.; Potter, B. B.; Pyle, S.; Titus, R.; Duncan, W. Anal. Chem. 1989, 61, 1584.
[34] Jonsdottir, S. O.; Klein, R. A. Fluid Phase Equilib. 1997, 132, 117.
[35] Patel, R. N.; Banerjee, A.; Pendri, Y. R.; Liang, J.; Mueller, R. Tetrahedron: Asymmetry 2006, 17, 175.
[36] Wang, X.; Wang, L.; Tang, H. Li. X.; Chang, F. -C. J. Appl. Polym. Sci. 2000, 77, 184.
[37] (a) Szarek, W. A.; Hay, G. W.; Sood, R. K.; Trouton, K.; Fortier, S. Can. J. Chem. 1998, 66, 1600 (b) Bako, I.; Grosz, T.; Palinkas, G.; Bellissent, M. C. J. Chem. Phys. 2003, 118, 3215.
[38] (a) Tratteberg, M.; Hedberg, K. J. Am. Chem. Soc. 1994, 116, 1382 (b) Kazerouni, M. R.; Hedberg, L.; Hedberg, K. J. Am. Chem. Soc. 1997, 119, 8324.
[39] (a) Marstokk, K. -M.; Mollendal, H. J. Mol. Struct. (THEOCHEM) 1974, 22, 301 (b) Christen, D.; Coudert, L. H.; Suenram, R. D.; Lovas, F. J. J. Mol. Spectros. 1995, 172, 57 (c) Christen, D.; Coudert, L. H.; Larsson, J. A.; Cremer, D. J. Mol. Spectros.2001, 185, 205 (d) Muller, H. S. P.; Christen, D. J. Mol. Spectros.2004, 228, 298.
[40] (a) Nakao, Y.; Sugeta, H.; Kyogoku, Y. Spectrochim. Acta. 1986, 42A, 251 (b) Gallwey, F. B.; Hawkes, J. E.; Haycock, P.; Lewis, D. J. Chem. Soc., Perkin Trans 1990, 2, 1979 (c) Petterson, K. A.; Stein, R. S.; Drake, M. D.; Roberts, J. D. Magn. Reson. Chem. 2005, 43, 225. [41] (a) Buckley, P.; Giguere, P. A. Canad. J. Chem. 1967, 45, 397 (b) Fishman, E.; Chen, T. L. Spectrochim. Acta 1969, 25A, 1231.
[42] Chopra, D.; Row, T. N. G.; Arunan, E.; Klein, R. A. J. Mol. Struct. 2010, 964, 126.
[43] Steiner, T. Angew. Chem., Int. Ed. 2002, 41, 48.
[44] Morse, P. M. Phys. Rev. 1929, 34, 57.
[45] Kaplan, I. G. Handbook of Molecular Physics and Quantum Chemistry, Wiley, 2003, p207.
[46] (a) Szczepanski, J.; Roser, D.; Personette, W.; Eyring, M.; Pellow, R.; Vala, M. J. Phys. Chem. 1992, 96, 7876 (b) Szczepanski, J.; Chapo, C.; Vala, M. Chem. Phys. Lett. 1993, 205, 434 (c) Vala, M.; Szczepanski, J.; Pauzat, F.; Parisel, O.; Talbi, D.; Ellinger, Y. J. Phys. Chem. 1994, 98, 9187 (d) Hudgins, D. M.; Sandford, S. A.; Allamandola, L. J. J. Phys. Chem. 1994, 98, 4243 (e) Hudgins, D. M.; Allamandola, L. J.; J. Phys. Chem. 1995, 99, 8987 (f) Hudgins, D. M.; Allamandola, L. J. J. Phys. Chem. 1995, 99, 3033 (g) Bauschlicher, C. W.; Langhoff, S. R.; Sandford, S. A. J. Phys. Chem. A 1997, 101, 2414 (h) Hudgins, D. M.; Allamandola, L. J. J. Phys. Chem. A 1997, 101, 3472 (i) Hudgins, D. M.; Sandford, S. A. J. Phys. Chem. A 1998, 102, 329 (j) Hudgins, D. M.; Sandford; S. A. J. Phys. Chem. A 1998, 102, 344 (k) Hudgins, D. M.; Sandford, S. A. J. Phys. Chem. A 1998, 102, 353 (l) Hudgins, D.M; Bauschlicher, Jr., C. W.; Allamandola, L. J.; Fetzer, J. C. J. Phys. Chem. A 2000, 104, 3655.
[47] Joblin, C.; d’Hendecourt, L.; Leger, A.; Defourneau, D. Astron. Astrophys. 1994, 281, 923.
[48] Joblin, C.; Boissel, P.; d'Hendecourt, L.; Leger, A.; Defourneau, D. Astron. Astrophys. 1995, 299, 835.
[49] (a) Cane, E.; Miani, A.; Palmieri, P.; Tarroni, R.; Trombetti, A. J. Chem. Phys. 1997, 106, 9004 (b) Cane, E.; Miani, A.; Palmieri, P.; Tarroni, R.; Trombetti, A. Spectrochim. Acta. A 1997, 53, 1839.
[50] Pirali, O.; Vervloet, M.; Mulas, G.; Malloci, G.; Joblin, C. Phys. Chem. Chem. Phys. 2009, 11, 3443.
[51] (a) Langhoff, S. R. J. Phys. Chem. 1996, 100, 2819 (b) Martin, J. M. L.; El-Yazal, J.; Francois, J. P. J. Phys. Chem. 1996, 100, 15358 (c) Bauschlicher, Jr., C. W.; Langhoff, S. R.; Sandford, S. A.; Hudgins, D. M. J. Phys. Chem. A 1997, 101, 2414 (d) Cane, E.; Miani, A.; Trombetti, A. J. Phys. Chem. A 2007, 111, 8218.
[52] Das, P.; Arunan, E.; Das, P. K. Vibr. Spectrosc. 2008, 47, 1.
[53] (a) McKean, D. C. J. Phys. Chem. A 2003, 107, 6538 (b) McKean, D. C.; Craig, N. C.; Law, M. M. J. Phys. Chem. A 2008, 112, 6760.
[54] Jesus, A. J. L.; Rosado, M. T. S.; Leitao, M. L. P.; Redinha, J. S. J. Phys. Chem. A 2003, 107, 3891.
[55] Jesus, A. J. L.; Rosado, M. T. S.; Reva, I.; Fausto, R.; Eusebio, M. E.; Redinha, J. S. J. Phys. Chem. A 2008, 112, 4669.
[56] Ma, X.; Wang, J. J. Phys. Chem. A 2009, 113, 6079.
[57] Nagy, P. I.; Dunn III, W. J.; Alagona, G.; Ghio, C. J. Am. Chem. Soc. 1991, 113, 6719.
[58] Cramer, C. J.; Truhlar, D. J. Am. Chem. Soc. 1994, 116, 3892.
[59] Oie, T.; Topol, I. A.; Burt, S. K. J. Phys. Chem. 1994, 98, 1121.
[60] Csonka, G. I.; Csizmadia, I. G. Chem. Phys. Lett. 1995, 243, 419.
[61] Klein. R. A. J. Comput. Chem. 2002, 24, 1120.
[62] Trindle, C.; Crum. P.; Douglass, K. J. Phys. Chem. A 2003, 107, 6236.
[63] Mandado, M.; Grana, A. M.; Mosquera, R. A. Phys. Chem. Chem. Phys. 2004, 6, 4391.
[64] Klein, R. A. Chem. Phys. Lett. 2006, 429, 633.

Chapter 1: An Introduction to PAHs, Diols and Infrared Spectroscopy
[65] Jesus, A. J. L.; Rosado, M. T. S.; Reva, I.; Fausto, R.; Eusebio, M. E.; Redinha, J. S. J. Phys. Chem. A 2006, 110, 9934.
[66] Klein, R. A. J. Comp. Chem. 2002, 23, 585.
[67] Klein, R. A. J. Am. Chem. Soc. 2002, 124, 13931.
[68] Crittenden, D. L.; Thompson, K. C.; Jordan, M. J. T. J. Phys. Chem. A 2005, 109, 2971.

Chapter-2

## Methods: Experimental and Theoretical

### 2.1 Introduction

This chapter describes the experimental set-ups and computational methods which were used for the IR spectroscopic studies of PAHs, methyl-PAHs and diols. The FT-IR spectroscopic technique has been used to record IR absorption spectra of PAHs and diols in the gas phase. DFT calculations with valence polarized basis sets have been carried out to obtain the harmonic and anharmonic frequencies and their intensities calculations. In addition to this, I have carried out scaled quantum mechanical (SQM) force field calculations for the unambiguous assignments of the observed bands. The observed spectra can be used for the identification of gaseous PAHs and methylated derivatives of PAHs which are present in the atmosphere at low concentrations. On the other hand, the gas phase IR spectra of diols can be used for the characterization of the nature of hydrogen bonding in diols. In both the cases a variable path-length long-path gas cell was coupled with a FT-IR spectrometer to record the IR spectra at low concentration.

### 2.2 Experimental technique

### 2.2.1 Principle of FT-IR spectrometry: Michelson interferometer

The design of interferometers used for IR spectroscopy is based on a two-beam interferometer which was originally designed by Michelson in $1891 .{ }^{1,2}$ The Michelson interferometer is a device that can divide a beam of radiation into two paths and then recombine the two beams after a path difference has been introduced. A condition thereby created under which interference between the beams can occur. The variation of intensity of the beam emerging from the interferometer is measured as a function of the path difference obtained.

The simplest form of Michelson interferometer, interferogram and spectrum (for monochromatic light source) is shown in Figure 2.1. Here a constructive interference will occur only when the distance between the movable mirror and the fixed mirror, $\delta$ also called retardation, is an integral multiple of $\lambda$, whereas a destructive interference will take place when $\delta$ is an integral multiple of $\lambda / 2$.


Figure 2.1. Optical diagram of a Michelson interferometer with the He-Ne laser running co-axial, Interferogram and Spectrum for a single frequency light source. The Interferometer consists of four major components: a fixed mirror, a moving mirror, BS: beamsplitter, D: Detector. LD: HeNe laser detector.

To obtain an interferogram, $\mathrm{I}(\delta)$, the detector signal is digitized and recorded as a function of retardation. The interferogram intensity of polychromatic source is mathematically described as:

$$
I(\delta)=\int_{-\infty}^{+\infty} B(v) \cos (2 \pi v \delta) d v-----------(2.1)
$$

where $B(v)$ is the spectral intensity at wave number $v$ (in $\mathrm{cm}^{-1}$ ).

Fourier transformation (FT) of $I(\delta)$ gives the single-beam IR spectrum expressed as:

$$
B(v)=\int_{-\infty}^{+\infty} I(\delta) \cos (2 \pi v \delta) d \delta------------(2.2)
$$

The movable mirror moves continuously in case of continuous scan mode.

### 2.2.2 Continuous-Scan Interferometry

The continuous-scan is preferably used for the routine static or relatively slow kinetic measurements that require time resolution not faster than 20 ms . In the continuous-scan FT-IR spectrometer, the moving mirror moves continuously at a constant velocity, $V\left(\mathrm{~cm} \mathrm{~s}^{-1}\right)$, and the optical path difference at time $\mathrm{t}(\mathrm{s})$ is given by $\delta=2 V t(\mathrm{~cm})$.


Figure 2.2. Schematic of data collection in continuous-scan interferometer.

The interferogram data points are digitized at the zero crossings of the He-Ne laser signal as shown in Figure 2.2. The use of laser signal ensures that $\mathrm{I}(\delta)$ is measured at precisely equal intervals of mirror positions and provides an internal wavelength calibration for every scan.

Because of continuous movement of the mirror, the interferogram $\mathrm{I}(\delta)$ changes as a function of time. The Fourier frequency ( $f_{F}$ in Hz ) of IR light at wave number $v$ is given by:

$$
f_{F}=2 V v----------(2.3)
$$

where $V$ is the mirror velocity in $\mathrm{cm} \mathrm{s}^{-1}$. The slow velocities are chosen for thermal detectors; such as deuterated triglycine sulfate (DTGS). The fast velocities are chosen for fast quantum detectors, such as a mercury cadmium telluride (MCT) or indium antimonide (InSb) detector, for routine or kinetic measurements.

### 2.2.3 Variable Path-length Long Path Gas Cell

In chapter 1, it has been discussed that PAHs and methyl-PAHs have insufficient vapor pressures at room temperature. ${ }^{3}$ So, it is difficult to obtain sufficient amount of these compounds in the gas phase for the IR spectroscopic study with a normal gas cell having an optical path length $\sim 10 \mathrm{~cm}$. Kurtz used a stainless steel cell to get the IR spectrum of coronene at elevated temperatures. ${ }^{4}$ Later Joblin and coworkers recorded the IR spectra of neutral PAHs in the gas phase using an oven of $7.0 \mathrm{~cm}^{3}$ which made from nickel-chromium alloy and fitted with IR transparent diamond windows. ${ }^{5,6}$ I have used multi-pass gas cell of 7.2 and 8.0 meters. Figure 2.3 shows the variable path-length long-path gas cell ${ }^{7}$ which made according to the "white cell" principle. ${ }^{8}$ The cell contains three internal gold-coated mirrors. Out of these, two are immovable and one is movable. Two potassium chloride ( KCl )/zinc selenide $(\mathrm{ZnSe})$ windows of 2.5/1.9 cm diameter, respectively, have been used for the entrance and exit of IR radiation into the cell. In addition, there are two plane transfer mirrors. These mirrors guide the
$\overline{\text { IR light into the cell and then to the detector. The cell can be evacuated by a mechanical pump }}$ and the sample holder is connected through a valve to the cell.


Figure 2.3. Schematic diagram of typical "white cell" and field mirror.

The beam comes through one window (left) and reflects back and forth between the field mirror (left) on the input side and the objective mirror (right) on the other end of the gas cell. After each 4 passes, the beam migrates across the top of the field mirror on the input side until it misses that mirror and exits through the exit window. The field mirror on the left shows the migration of 48 and 40 passes of the IR beam in the gas cell of 7.2 and 8.0 meter, respectively. The IR beam comes in at the position marked 0 and exits at the position marked 40 for the 7.2 meter gas cell (see Figure 2.3). The field mirror has the corners cut out to allow the IR beam to enter and exit the gas cell. These multi-pass gas cells were coupled with a FT-IR spectrometer through homemade aluminum or commercially available cell holders as shown in the subsequent sections.

### 2.3 Experimental set-up

### 2.3.1 Set-up for PAHs and diols

The schematic experimental set-up for the gas phase FT-IR spectroscopic studies of PAHs and diols are shown in Figure 2.4. In this figure, I have shown how a multi-pass cell of
7.2 meter has been coupled with the FT-IR spectrometer, the sample-tube, the vacuum pump, and the pressure gauge. The commercially available variable long path-length cell (Model 7.2V, REFLEX Analytical Corporation, USA) were coupled with the FT-IR spectrometer (Nexus870, Thermonicolet / Vertex-70, Bruker Optics) by a homemade aluminum cell holder.


Figure 2.4. Schematic representation of the FT-IR spectrometer coupled with a multi-pass longpath gas cell of 7.2 meter.

The variable path-length cell body is a cylinder of borosilicate glass of length 15 cm , with an inside diameter of 6 cm . It has an optical path adjustable from 0.6 to 7.2 meter in increments of 0.6 meter. This cell is connected to two valves; one side is connected to the sample tube made of pyrex glass and the other side is connected to the vacuum pump. The sample tube was then connected to a four-ways valve system with the help of a homemade

Chapter 2: Methods - Experimental and Theoretical
brass coupler and a viton O-ring, which, in turn, is attached with the secondary gas cylinder, the primary Ar gas cylinder and the pressure gauge system (PRM-300MX, IRA). The cell is evacuated by a rotary pump (RV-8, Boc Edward). The cell body and the sample tube were wrapped with a heating tape (Thermolyne Heating Tape, Aldrich) and the temperature was maintained with the help of a temperature controller (DIGITHERM-2000MCX, IRA) fitted with a feedback heat sensor. The multi-pass gas cell along with the sample tube has been kept inside a wooden box covered with a heat-insulating silicon sheet. It maintains the uniformity of temperature of the gas cell along with the sample tube, and also protects the spectrometer from high temperature.


Figure 2.5. A small bulb for liquid samples is connected to the gas cell and the four-ways valve arrangement.

In case of liquid samples, the sample tube was replaced by a small glass bulb of volume 2 ml which is isolated by a valve as shown in Figure 2.5. This set-up has been used to record the IR spectra of compounds which are having vapor pressures up to $10^{-4} \mathrm{mmHg}$ at room temperature.
2.3.2 Standardization of multi-pass gas cell of 7.2 meter path-length coupled with Nexus-870 (Thermonicolet, US) spectrometer

The variable multi-pass gas cell was first standardized with naphthalene. For the standardization, solid naphthalene ( $\sim 10 \mathrm{mg}$ ) was taken in the sample tube which was kept isolated from the cell and the four-ways valve arrangement. The gas cell, along with the sample tube, was then evacuated up to $\sim 0 \mathrm{mmHg}$. The vacuum single-beam spectrum was then recorded with a spectral resolution of $4 \mathrm{~cm}^{-1}$ and averaging over 64 scans, which is the reference spectrum.


Figure 2.6. Gas phase IR absorption spectra of naphthalene as a function of path length.

After recording the reference spectrum, ultrahigh pure Ar (carrier) gas was allowed to pass through the sample tube to carry naphthalene inside the gas cell. The total pressure of Ar and naphthalene was maintained at 20 mmHg . The spectra of naphthalene were recorded at optical path lengths (OPL) of 1.2, 1.8, 2.4, 3.0 3.6, 4.2, 4.8, 5.4, 6.0, 6.6, and 7.2 meter at room temperature ( $25{ }^{\circ} \mathrm{C}$ ) after normalization with respect to the reference spectrum. The observed

Chapter 2: Methods - Experimental and Theoretical
spectra are presented in Figure 2.6. The observed band areas (in $\mathrm{cm}^{-1}$ ) for the strong bands at 3065 and $782 \mathrm{~cm}^{-1}$, were measured by OMNIC software provided by Thermonicolet. ${ }^{9}$ The optical path lengths and band areas with respect to the strong band are listed in Table 2.1.

Table 2.1: Optical path-length (OPL, in m) and integrated band area (in $\mathrm{cm}^{-1}$ )

| OPL (m) | Band area <br> at $\mathbf{3 0 6 5} \mathbf{~ c m}^{\mathbf{- 1}}$ | Band area <br> at $\mathbf{7 8 2} \mathbf{~ c m}^{\mathbf{- 1}}$ |
| :---: | :---: | :---: |
| 1.2 | 0.681 | 0.928 |
| 1.8 | 1.343 | 1.263 |
| 2.4 | 1.402 | 1.753 |
| 3.0 | 2.117 | 2.35 |
| 3.6 | 2.375 | 2.683 |
| 4.2 | 2.834 | 3.002 |
| 4.8 | 3.244 | 3.548 |
| 5.4 | 3.773 | 3.950 |
| 6.0 | 3.898 | 4.235 |
| 6.6 | 4.422 | 4.893 |
| 7.2 | 4.924 | 5.406 |



Figure 2.7. Observed band area (in $\mathrm{cm}^{-1}$ ) vs optical path length (in $\mathbf{m}$ ) for naphthalene.

The optical path length (in m ) vs band area (in $\mathrm{cm}^{-1}$ ) is plotted in Figure 2.7. From this figure it was found that the observed band area follows a linear relationship with the optical pathlength. It helps us to set the optical path-length for different compounds having different vapor pressure at a particular temperature.
2.3.3 Standardization of the multi-pass gas cell of 8.0 meter coupled with Vertex-70 (Bruker Optics, Germany) spectrometer

Another experimental set-up has been employed to record the IR spectra of compounds having a vapor pressure of $\sim 10^{-5} \mathrm{mmHg}$ at room temperature, where we have used a 8.0 meter path-length white cell (136G/3TQ, Bruker Optics) equipped with a heating jacket.


Figure 2.8. Photograph of the FT-IR spectrometer (Vertex-70) coupled with a multi-pass longpath gas cell of 8.0 meter.

The cell was coupled with the FT-IR spectrometer (Vertex-70, Bruker Optics) as shown in Figure 2.8. The gas cell is made of borosilicate glass tube of ( $23 \mathrm{~cm} \times 11 \mathrm{~cm}$ ) and equipped with ZnSe windows. The cell was placed vertically inside the sample chamber of the spectrometer and aligned with the help of an external He -Ne laser before use. The rotary pump and Ar-line were connected to the cell through ball valves. Phenanthrene (90\%, Fluka) was used as a standard compound for the optimization of our set-up and purified by vacuum distillation method before use. Compound was thermally vaporized at $100{ }^{\circ} \mathrm{C}$ and the reported spectrum was reproduced (see Figure 2.9).


Figure 2.9. Our and NIST reported gas phase IR spectra of phenanthrene.

The total pressure of Ar gas containing phenanthrene in the cell was maintained at 30 mmHg . The mid-IR spectra ( $4000-400 \mathrm{~cm}^{-1}$ ) were collected using a liquid nitrogen cooled MCT detector and KBr beam splitter combination. The spectrometer was continuously purged with

Chapter 2: Methods - Experimental and Theoretical
$\overline{\mathrm{N}_{2}}$ gas (UHP grade). The spectra were recorded at $0.5 \mathrm{~cm}^{-1}$ resolution with averaging over 2048 scans. Total time required for this number of scans is about one hour. DMPs have low infrared absorbance $\left(\mathrm{OD}_{\max }=0.03\right)$ and small amounts of $\mathrm{H}_{2} \mathrm{O}$ vapor present inside the cell give rise to infrared absorption bands that overlap with those of DMPs. We have collected the spectra of Ar at the same pressure without DMP separately and subtracted the same from the sample spectra in order to get $\mathrm{H}_{2} \mathrm{O}$ band free spectra of the DMPs. Therefore, the suitable $\mathrm{H}_{2} \mathrm{O}$ spectrum was recorded and subtracted from the sample spectra in order to get clear spectra of phenanthrene. This set-up has been used for the gas phase IR spectroscopic study of dimethylphenanthrenes (DMPs).

### 2.4 Theoretical methods

### 2.4.1 Harmonic and anharmonic frequency calculations

The potential energy for a polyatomic molecule can be expanded in a Taylor series, ${ }^{10}$

$$
\begin{equation*}
V=\frac{1}{2} \sum_{i} \omega_{i} q_{i}^{2}+\frac{1}{6} \sum_{i j k} \phi_{i j k} q_{i} q_{j} q_{k}+\frac{1}{24} \sum \phi_{i j k l} q_{i} q_{j} q_{k} q_{l}+ \tag{2.4}
\end{equation*}
$$

where $\omega_{i} \mathrm{~s}$ are the harmonic frequencies (in $\mathrm{cm}^{-1}$ ), $q_{i}$ s the normal coordinates, and $\phi_{i j k}$ and $\phi_{i j k l}$ the third and fourth order force constants of the molecules, respectively. Further $\phi_{i j k}$ and $\phi_{i j k l}$ are given by

$$
\begin{equation*}
\phi_{i j k}=\frac{\partial^{3} E^{e l}}{\partial q_{i} \partial q_{j} \partial q_{k}} \text { and } \phi_{i j k l}=\frac{\partial^{4} E^{e l}}{\partial q_{i} \partial q_{j} \partial_{k} \partial_{l}}- \tag{2.5}
\end{equation*}
$$

where $E^{e l}$ is the electronic plus the nuclear repulsion energy term in the BO approximation. The total vibrational energy including anharmonicity is then

$$
\begin{equation*}
E=\sum_{i} \omega_{i}\left(v_{i}+\frac{d_{i}}{2}\right)+\sum_{i \leq j} x_{i j}\left(v_{i}+\frac{d_{i}}{2}\right)\left(v_{j}+\frac{d_{j}}{2}\right)+\sum_{i \leq j} l_{i} l_{j} g_{i j}----( \tag{2.6}
\end{equation*}
$$

where $\omega_{i}$ and $d_{i}$ are, repectively, the harmonic frequencies and the degeneracy of the $i$-th mode; $v_{i}$, the vibrational and $l_{i}$, the nuclear vibrational angular-momentum quantum numbers, and $x_{i j}$ and $g_{i j}$ the anharmonic constants, which are related to the third and fourth order force fields as shown in details in Ref. ${ }^{11}$

In this thesis, the optimized geometry, harmonic and anharmonic frequency calculations were carried out at the DFT/B3LYP level of theory and polarized-basis sets such as 6-31G*, 6$311 G^{* *}$ and $6-311++\mathrm{G}^{* *}$ were used depending on the size of the molecules and time taken to finish a single point calculation. All the calculations have been carried out using G98, G03 and G09 computational codes in an IBM RS/6000, IBM Cluster P720 (IBL-64) and Tesla Cluster (EM64L) computers, respectively.

### 2.4.2 Scaled quantum mechanical (SQM) force field calculation

The characterization of the observed infrared spectra requires correct identification of the fundamental and non-fundamental vibrational modes. The electronic structure calculations derive harmonic frequencies by diagonalizing the matrix of the second derivative of energy with respect to the nuclear coordinates. But for accuracy we need anharmonic force constants which include the cubic and quartic force constants. Another way to resolve this problem is to consider only the harmonic frequencies and make corrections for errors by means of some scaling procedure. ${ }^{12,13}$

Most accepted scaling procedure is Pulay's scaled quantum mechanical (SQM) method where force constants were scaled rather frequencies. Therefore, I have carried out scaled force field calculation in order to get calculated frequencies closer to experimental frequencies and potential energy distributions (PEDs) of the normal modes in terms of the local
coordinates of the molecule using a modified UMAT program ${ }^{14}$ in the QCPE package. ${ }^{15}$ The QCPE consists of four FORTRAN programs which have been designed to solve Wilson's GF matrix for a complete vibrational analysis. This method requires the definition of a basis set which is employed to construct the normal coordinates. The UMAT program allows for the definition of unsymmetrized or symmetrized basis sets, referred to as internal and symmetry coordinates, respectively. These are related to Cartesian coordinates via the B and U Matrices through the following relationships:

$$
\begin{aligned}
& R=B X------------(2.7) \\
& S=U R=U B X=B^{\text {Sym }} X------(2.8)
\end{aligned}
$$

where $R, S$ and $X$ represent the column vectors of the internal, symmetry and Cartesian coordinates, respectively. The inverse Kinetic Energy Matrices, $G$ and $G^{S y m}$ defined by the B or $B^{\text {Sym }}$ as

$$
\begin{align*}
& G=B M^{-1} B^{t}---------------(2.9)  \tag{2.9}\\
& G^{\text {Sym }}=\left(B^{\text {Sym }}\right) M^{-1}\left(B^{\text {Sym }}\right)^{t}=U B M^{-1} B^{t} U^{t}-----(2.10) \tag{2.10}
\end{align*}
$$

where the superscript " $t$ " indicates "transpose" and the $M^{-1}$ is a diagonal matrix which contains the inverses of the masses of the atoms. ${ }^{16}$ Using the $G$ or $G^{\text {Sym }}$ matrix, in conjunction with the appropriate Potential Energy ( $F$ or $F^{S y m}$ ) matrix, the vibrational secular equation has been formulated in either an unsymmetrized or a symmetrized fashion:

$$
\begin{gather*}
G F L=L \Lambda----------- \text { (2.11) }  \tag{2.11}\\
G^{\text {Sym }} F^{\text {Sym }} L^{\text {Sym }}=L^{\text {Sym }} \Lambda---------(2.12) \tag{2.12}
\end{gather*}
$$

Where $\Lambda$ is the frequency matrix $\left(\lambda_{\mathrm{i}}=4 \pi^{2} v_{\mathrm{i}}^{2}\right)$ and L is the eigenvector matrix describing the normal modes. Usually $F$ is varied and $\Lambda$ is calculated until it matches with the experimental frequencies. We modify $\Lambda$ with small correction $\Delta \Lambda$ given by $\Delta \Lambda=\left(\Lambda_{\text {expt. }}-\Lambda\right)($ iter -1$) / \mathrm{N}_{\text {iter }}$ where $N_{\text {iter }}$ is the total number of iterations. In our fitting I have used $N_{\text {iter }}=100$. The details can be found in Ref. ${ }^{17}$

In order to do this analysis, the following steps were followed: First, the internal coordinates were defined for PAHs. Then a set of nonredundant local coordinates were constructed as recommended by Pulay. ${ }^{12,13}$ Force constants in Cartesian coordinates obtained from Gaussian outputs were transformed in terms of nonredundant local coordinates. ${ }^{18}$ Finally scaled force constants were obtained by fitting calculated frequencies to the observed frequencies by means of a least square fitting procedure using an algorithm developed by Chakraborty et al. ${ }^{14}$ We have done this analysis with the experimental band origin frequencies. The fitting algorithm requires all the experimental frequencies; however, experimentally it was not possible to resolve all the fundamentals in the PAHs studied here. The fitting algorithm requires all the experimental frequencies to obtain a good fit. Therefore, we guessed some of the fundamental frequencies that are not seen in the recorded spectra. The guessed frequencies are chosen to be close to the scaled harmonic frequencies ( $\mathrm{C}-\mathrm{H}$ stretching and non $\mathrm{C}-\mathrm{H}$ stretching frequencies were multiplied by factors, 0.9588 and 0.9733 , respectively) which give minimum RMS errors. Then the PEDs were obtained using fitted force constants using FTRY-ATOM-RMSA-INTY program in the QCPE package.

### 2.4.3 Error analysis

An error analysis was done in terms of mean deviation, $\delta\left(\mathrm{in} \mathrm{cm}^{-1}\right)$, between the observed and calculated (harmonic, anharmonic and force field fitted) frequencies using

$$
\delta=\frac{\sum_{i=1}^{n}\left|v_{i}^{\text {cal. }}-v_{i}^{\exp t .}\right|}{n}------(2.13)
$$

where $v^{\text {cal. }} \& v^{\text {expt. }}$ are calculated and observed frequencies, respectively, and n is the total number of fundamentals assigned in the recorded spectra.

### 2.5 IR band intensity calculation

### 2.5.1 Intensity

The quantity of interest in the intensity calculation is the integrated absorption coefficient $A$ (in $\mathrm{km} \mathrm{mol}^{-1}$ ) which can be determined theoretically using the following equation ${ }^{19}$

$$
\begin{equation*}
A_{i}=42.254\left|\frac{\partial \mu}{\partial Q_{i}}\right|^{2}- \tag{2.14}
\end{equation*}
$$

where $\partial \mu / \partial Q_{i}$ are the dipole moment derivatives in $\mathrm{D}\left(\AA \mathrm{amu}^{1 / 2}\right)$ evaluated via analytical derivatives computed at the DFT/B3LYP level of theory.

On the other hand, absolute intensity (in $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$ ) can be obtained experimentally by using the following expression given by Galabov et al. ${ }^{20}$

$$
A_{i}=\frac{2.303 \int \log \left(I_{o} / I\right)_{i} d v_{i}}{P_{i} l}------(2.15)
$$

where $l($ in cm$)$ is the optical path length and $P_{i} \mathrm{~s}$ are the vapor pressures. In our experiment, it is not possible to get the vapor pressure of PAHs or dimethyl-PAHs by conventional pressure gauge system since they are seeded on Ar gas. Therefore, we estimated the vapor pressures
$\overline{\left(P_{i}\right) \text { under all the bands with the help of the observed band areas and their corresponding }}$ calculated intensities by using the same equation (see the next section). The average pressure obtained from all the bands were then calculated using $\mathrm{P}=\sum_{i=1}^{n} \frac{P_{i}}{n}$, where n is the total number of observed bands and was used to calculate the observed band intensities (in $\mathrm{cm}^{-2}$ $\mathrm{atm}^{-1}$ ). In order to get the experimental intensities in $\mathrm{km} \mathrm{mol}^{-1}$, the values in $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$ were multiplied by factor of $82.056(\mathrm{~T} / \mathrm{K}) .{ }^{21}$

### 2.5.2 Vapor pressure calculation

In section 2.5.1, it has been discussed that the vapor pressure is a necessary parameter for the absolute intensity calculation. The vapor pressures at experimental temperatures under all the observed bands were calculated with the help of the following equation which is obtained by rearranging 2.15

$$
P_{i}(\mathrm{~atm})=2.303 \times 82.056 \times T(\mathrm{~K}) \times 10^{-5} \tau_{i} / A_{i} l-----(2.16)
$$

where $\tau_{i}=\int \log I_{0} / I d v$ are the integrated band areas $\left(\mathrm{cm}^{-1}\right)$ obtained experimentally and $A_{i}$ are the infrared band intensities (in $\mathrm{km} \mathrm{mol}^{-1}$ ) obtained from DFT calculations. The average value over all the partial pressures is considered as vapor pressure of the PAHs.

### 2.6 Simulated spectra

From the Gaussian output results we could predict the spectra of PAHs and diols. Simulated spectra were produced with the calculated frequencies and their intensities using FORTRAN code, where each frequency-intensity pair was modeled as a Gaussian function, $f(v)$, centered at the calculated frequency: ${ }^{22}$

$$
f(v)=\tau \exp \left\{-\left(v-v_{o}\right)^{2} / 2 \sigma^{2}\right\}---------- \text { (2.17) }
$$

Here, $\tau$ is the intensities in $\mathrm{km} \mathrm{mol}^{-1}, v$ is the energy in units of $\mathrm{cm}^{-1}$, and $\sigma$ is the FWHM.

### 2.7 References

[1] Michelson, A. A. Philos. Mag.1981, 31, 245.
[2] Hand book of Vibrational spectroscopy by Smith, G. D.; Palmer, R. A. 2002, 1, 625.
[3] Sonnefeld, W. J.; Zoller, W.H.; May, W. E. Anal. Chem.1983, 55, 275.
[4] Kurtz, J. Astron. Astrophys. 1992, 255, L1.
[5] Joblin, C.; d’Hendecourt, L.; Léger, A. ; Défourneau, D. Astron. Astrophys. 1944, 281, 923.
[6] Joblin, C.; Boissel, P.; Léger, A.; d’Hendecourt, L.; Défourneau, D. Astron. Astrophys. 1995, 299, 835.
[7] http://www.ftir.com/html/long_path_gas_cell.html
[8] Herriott, D. R.; Schulte, H. J. Appl. Optics. 1965, 4, 883.
[9] ONIC Software in " 870 User’s Guide, Nexus, Thermonicolet".
[10] Miani, A.; Cane, E.; Palmieri, P.; Trombetti, A.; Handy, N. C. J. Chem. Phys. 2000, 112, 248.
[11] Papousek, D.; Aliev, M. R. Molecular Vibrational/Rotational Spectra (Academia, Parague, 1982).
[12] Pulay, P.; Fogarasi, G.; Pongor, G.; Boggs, J. E.; Vargha, A. J. Am. Chem. Soc. 1983, 105, 7037.
[13] Sellers, H.; Pulay, P.; Boggs, J. E. J. Am. Chem. Soc. 1985, 107, 6487.
[14] Chakraborty, D.; Ambashta, R.; Monogaran, S. J. Phys. Chem. 1996, 100, 13963.
[15] UMAT, Mclntosh D.F.; Peterson, M. R. General Vibrational Analysis System, QCPE 576. Indiana University, Bloomington, IN 47405.
[16] Wilson, Jr., E. B; Decius, J. C.; Cross, P. C. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, Dover Publications, Inc., New York, 1980.
[17] Manogaran, S.; Chakraborty, D. J. Mol. Struc. (THEOCHEM) 1998, 432, 139.
[18] Raghubanshi, D.; Maheshwary, S.; Manogaran, S. J. Mol. Struc. (THEOCHEM) 2001, 574, 245.
[19] Stoppa, P.; Charmet, P. A.; Tasinato, N.; Giorgianni, S.; Gambi, A. J. Phys. Chem. A 2009, 113, 1497.
[20] Galabov, B. S.; Dudev, T. Vibrational Intensities. In: J. R. Durig (Ed.), Vibrational Spectra and Structure, Vol-22, Elsevier, Amsterdam, 1996.
[21] Pugh, L. A.; Rao, K. N. Infrared Intensities from Infrared Spectra. In: K. Narahari Rao (Ed.), Molecular spectroscopy: Modern Research, Volume II, 1976.
[22] Levine, I. N. Molecular Spectroscopy, John Willey \& Sons, 1975.

## Chapter-3

## Infrared Spectroscopic Studies of Dimethylnaphthalenes (DMNs) in the Gas Phase

### 3.1 Introduction

In chapter 1, I have discussed that the naphthalene and alkylated naphthalenes are semi volatile polycyclic aromatic hydrocarbons (PAHs) present in the atmosphere in the gas and particle phases. ${ }^{1}$ Diesel fuel contains alkyl-PAHs including methyl naphthalenes (MNs) and dimethylnaphthalenes (DMNs). ${ }^{2,3}$ In urban areas emission from diesel-fueled vehicles puts these compounds in the atmosphere., ${ }^{4,5}$ The alkylated PAHs have also been identified in individual interplanetary dust particles (IDPs). ${ }^{6}$ The toxicity, carcinogenicity and mutagenicity of DMNs are different, and thus, it is important to identify and distinguish them at low concentrations. ${ }^{7-9}$

In this chapter, $I$ report the infrared spectra at $0.5 \mathrm{~cm}^{-1}$ resolution of three dimethylnaphthalenes (DMNs), namely 1,5-DMN, 1,6-DMN, and 2,6-DMN in the gas phase at an elevated temperature recorded with the help of a variable path-length cell. I have carried out DFT calculations to assign the experimentally observed spectral lines. The calculations have been performed at B3LYP level of theory with $6-31 \mathrm{G}^{*}$ as basis set to determine the harmonic frequencies and intensities of the DMNs. The motivation to do this work is to identify and distinguish DMNs by IR spectroscopy.

### 3.2 Materials and Methods

### 3.2.1 Materials

DMNs used in this investigation are 1,6-dimethylnaphthalene (98.0\%, Fluka), 1,5dimethylnaphthalene ( $98.0 \%$, Aldrich Chem. Co.), and 2, 6-dimethylnaphthalene ( $99.8 \%$, Oekanal) which were obtained commercially. Some physical properties of DMNs are listed in Table 3.1.

## Table 3.1: Physical properties of DMNs

| Name of DMNs | m.p/b.p $\left({ }^{\mathbf{0}} \mathbf{C}\right)$ | P(in $\mathbf{~ m m H g}$ at $\left.\mathbf{2 5 ~}^{\mathbf{0}} \mathbf{C}\right)^{\text {est }}$ |
| :--- | :--- | :--- |
| $1,5-\mathrm{DMN}$ (Solid) | 82.0 | $1.17 \times 10^{-2}$ |
| $1,6-\mathrm{DMN}$ (Liquid) | $-17.0 / 263.0$ | $1.41 \times 10^{-2}$ |
| $2,6-\mathrm{DMN}$ (Solid) | 109.4 | $1.66 \times 10^{-2}$ |

## ${ }^{\text {est }}$ Estimated vapor pressure taken from Ref. ${ }^{10}$

### 3.2.2 Experimental method

The experimental set-up, which has been used in this study, was discussed in section 2.3.1 of chapter 2 . Since the compounds have low vapor pressure at RT (see Table 3.1), ultra high purity ( $99.999 \%$ ) argon was used as a carrier gas to get the samples inside the cell. In this study, the optical path length was fixed at 6 meter. The sample DMN vapor mixed with Ar was introduced into the long path-length cell. Including the sample holder, the cell was heated and maintained at $90{ }^{\circ} \mathrm{C}$. The DMNs were subjected to a repeated freeze/pump thaw procedure before use. The total pressure of argon gas containing DMNs in the cell was maintained at $\sim 25$ mmHg . Mid-infrared spectra $(4000-400) \mathrm{cm}^{-1}$ of DMNs were collected using a Deuterated Triglycine Sulphate (DTGS) detector $/ \mathrm{KBr}$ beam splitter combination at $0.5 \mathrm{~cm}^{-1}$ resolution with averaging over 2048 scans.

### 3.2.3 Theoretical calculation

Theoretical calculations were carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of $1,6-\mathrm{DMN}, 1,5-\mathrm{DMN}$, and $2,6-\mathrm{DMN}$. The geometry optimization was carried out with standard polarization basis set $6-31 \mathrm{G}^{*}$ at the B3LYP (Becke 1993; Lee, Yang, \& Parr 1988) level of theory using Gaussian 98 codes $^{11}$ in an
$\overline{\text { IBM RS/6000 computers. The frequencies and intensities were determined at the fully }}$ optimized $\mathrm{C}_{1}$ geometry (Figure 3.1). It was reported by Langhoff et al. ${ }^{12}$ that many of the methyl PAHs is found to be of lower symmetry $\left(\mathrm{C}_{1}\right)$ due to slight rotation of the methyl group, although the true point group of the molecule is $\mathrm{C}_{\mathrm{s}}$. In B3LYP calculations on DMNs, I found at least one imaginary frequency at the $\mathrm{C}_{\mathrm{s}}$ optimized structure which is not realistic and thus $\mathrm{C}_{1}$ symmetry was chosen for calculation. The calculated frequencies were scaled by a factor of 0.9588 for the $\mathrm{C}-\mathrm{H}$ stretch and 0.9733 for other vibrational modes to compare with experiment. ${ }^{13}$

Figure 3.1. Optimized structure of (A) 1,5-DMN, (B) 1,6-DMN, and (C) 2,6-DMN at B3LYP/6-31G* level.

(A) $\mathbf{1 , 5 - D M N}$

(B) $\mathbf{1 , 6 - D M N}$


Chapter 3: Infrared spectra of DMNs

### 3.2.4 Vapor pressure and absolute intensity calculation

Observed band intensities were calculated with the help of measured band area and DFT calculated intensities as described in section 2.5 of chapter 2 . The vapor pressure is a necessary parameter for the intensity calculation. For DMNs, the vapor pressures at $90{ }^{\circ} \mathrm{C}$ under all observed band were calculated with the help of equation 2.16 and result has been presented in Table 3.2. Estimated partial pressure found to be $3.294 \times 10^{-5} \mathrm{~atm}$ for $1,5-\mathrm{DMN} ; 5.590 \times 10^{-5}$ atm for $1,6-\mathrm{DMN}$; and $2.743 \times 10^{-5} \mathrm{~atm}$ for $2,6-\mathrm{DMN}$ at $90{ }^{\circ} \mathrm{C}$.

Table 3.2: Calculated intensity ( $\mathrm{A}, \mathrm{km} \mathrm{mol}{ }^{-1}$ ), observed band area $\left(\tau, \mathrm{cm}^{-1}\right.$ ) and estimated vapor pressure ( $\mathrm{P}, \mathrm{atm}$ ) for individual observed bands at $90^{\circ} \mathrm{C}$ of DMNs.

| No | 1,5-DMN |  |  | 1,6-DMN |  |  | 2,6-DMN |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | $\tau$ | $\mathrm{P} \times 10^{-5}$ | A | $\tau$ | $\mathrm{P} \times 10^{-5}$ | A | $\tau$ | $\mathrm{P} \times 10^{-5}$ |
| 1 | 0.34 |  | -- | 0.51 |  | -- | 1.16 |  | -- |
| 2 | 0.00 |  | -- | 0.47 |  | -- | 0.00 |  | -- |
| 3 | 0.00 |  | -- | 0.11 |  | -- | 0.04 |  | -- |
| 4 | 2.27 |  | -- | 0.69 |  | -- | 0.39 |  | -- |
| 5 | 0.00 |  | -- | 0.61 |  | -- | 0.00 |  | -- |
| 6 | 0.44 |  | -- | 1.71 |  | -- | 0.88 |  | -- |
| 7 | 3.76 |  | -- | 0.22 |  | -- | 0.00 |  | -- |
| 8 | 0.00 |  | -- | 0.05 |  | -- | 2.91 |  | -- |
| 9 | 0.00 |  | -- | 3.04 |  | -- | 0.00 |  | -- |
| 10 | 0.00 |  | -- | 0.13 |  | -- | 0.00 |  | -- |
| 11 | 0.00 |  | -- | 0.89 |  | -- | 2.31 |  | -- |
| 12 | 1.23 |  | -- | 2.61 |  | -- | 5.94 |  | -- |
| 13 | 0.00 |  | -- | 2.15 |  | -- | 0.00 |  | -- |
| 14 | 5.30 |  | -- | 0.39 |  | -- | 0.00 |  | -- |
| 15 | 0.89 |  | -- | 1.03 |  | -- | 1.21 |  | -- |
| 16 | 0.00 |  | -- | 0.66 |  | -- | 3.40 |  | -- |
| 17 | 0.00 |  | -- | 1.03 |  | -- | 1.35 |  | -- |
| 18 | 0.00 |  | -- | 0.64 |  | -- | 0.00 |  | -- |
| 19 | 2.48 |  | -- | 5.93 | 0.49 | 9.446 | 0.00 |  | -- |
| 20 | 66.58 | 1.77 | 3.039 | 14.14 | 0.66 | 5.336 | 0.00 |  | -- |
| 21 | 0.00 |  | -- | 31.45 | 1.39 | 5.052 | 31.33 | 0.80 | 2.919 |
| 22 | 0.00 |  | -- | 0.68 |  | -- | 0.00 |  | -- |
| 23 | 1.39 | 0.17 | 11.100 | 6.73 |  | -- | 22.41 | 0.55 | 2.806 |
| 24 | 0.36 |  | -- | 2.80 | 0.44 | 5.277 | 0.00 |  | -- |
| 25 | 0.00 |  | -- | 0.41 |  | -- | 0.98 |  | -- |
| 26 | 1.11 | 0.18 | 18.538 | 0.17 |  | -- | 0.94 | 0.06 | 3.571 |
| 27 | 0.00 |  | -- | 0.91 |  | -- | 0.00 |  | - |

Chapter 3: Infrared spectra of DMNs
Table 3.2: (Continued) calculated intensity ( $\mathrm{A}, \mathrm{km} \mathrm{mol}^{-1}$ ), observed band area (in $\mathrm{cm}^{-1}$ ) and estimated vapor pressure ( $\mathrm{P}, \mathrm{atm}$ ) for individual observed bands at $90^{\circ} \mathrm{C}$ of DMNs.


### 3.3 Results and Discussion

The gas phase IR spectra of the three DMNs are shown in Figure 3.2 and the experimental and theoretical infrared frequencies and intensities are listed in Tables 3.3 - 3.5. Absolute intensities are listed first while relative intensities are shown in parentheses. The relative intensities are given with respect to the strongest band seen in the range $780-815 \mathrm{~cm}^{-1}$. The bands observed at $783.3,812.8$ and $808.5 \mathrm{~cm}^{-1}$ in 1,5-, 1,6-, and 2,6-DMN, respectively, correlate with the calculated fundamentals at $786.5,812.4$, and $811.6 \mathrm{~cm}^{-1}$ and are assigned to a aromatic C-H out-of-plane bending mode of the DMNs. To compare the experimental, calculated and reported ${ }^{14}$ spectra, I have displayed all DMN spectra separately in Figures 3.3 3.5. No IR spectrum for $1,6-\mathrm{DMN}$ has been reported and, therefore, only observed and calculated spectra have been displayed in Figure 3.4.


Figure 3.2. IR absorption spectra for (a) 1,5-DMN; (b) 1,6-DMN; and (c) 2,6-DMN at $0.5 \mathbf{c m}^{-1}$ resolution.

Apart from the intense aromatic C-H out-of-plane bending mode mentioned above, many other low frequency aromatic C-H out-of-plane bending modes with lower intensities have been
$\overline{\text { recorded and assigned in the spectra. Bands observed at } 807.5 \text { and } 872.2 \mathrm{~cm}^{-1} \text { in } 1,5-\mathrm{DMN} \text {; } ; ~}$ 746.2, 784.1, and $870.2 \mathrm{~cm}^{-1}$ in 1,6-DMN; and 873.6 and $914.2 \mathrm{~cm}^{-1}$ in 2,6-DMN are assigned to aromatic C-H out-of-plane bending vibrations by comparing with the respective calculated bands at 869.6 and $945.8 \mathrm{~cm}^{-1}$ in $1,5-\mathrm{DMN} ; 747.3,784.5$, and $893.1 \mathrm{~cm}^{-1}$ in $1,6-\mathrm{DMN}$; and 874.7 and $940.4 \mathrm{~cm}^{-1}$ in $2,6-\mathrm{DMN}$. The next low intensity band appears at $1034.7 \mathrm{~cm}^{-1}$ in $1,5-$ DMN, $1038.1 \mathrm{~cm}^{-1}$ in $1,6-\mathrm{DMN}$, and at $1037.9 \mathrm{~cm}^{-1}$ in $2,6-\mathrm{DMN}$.


Figure 3.3. Comparison of experimental, theoretical and NIST reported ${ }^{14}$ IR reported spectra of 1,5-DMN. In the calculated spectrum, the FWHM is assumed to be $\mathbf{1 5} \mathbf{c m}^{-1}$. Prominent peaks are labeled in the observed spectrum. Weak bands such as Me(C-H) asym. str. at $2956.9 \mathbf{~ c m}^{-1}$, etc. are not labeled in the observed spectrum.

This band has been assigned to a methyl C-H out-of-plane bending mode appearing at $1047.2 / 1048.5 \mathrm{~cm}^{-1}$ in 1,5-DMN, 1048.2/1048.4 $\mathrm{cm}^{-1}$ in 1,6-DMN, and 1047.6/1048.3 $\mathrm{cm}^{-1}$ in 2,6-DMN in calculation. A methyl C-H in-plane bending vibration of low intensity is seen in 1,6-DMN at $981.9 \mathrm{~cm}^{-1}$. In 2,6-DMN the same band appears at $961.4 \mathrm{~cm}^{-1}$. The methyl C-H in-plane bending vibration is not observed in $1,5-\mathrm{DMN}$. A weak band at $1062.6 \mathrm{~cm}^{-1}$ corresponding to the aromatic ring deformation mode is seen only in $1,5-\mathrm{DMN}$ which match with the calculated band at $1069.7 \mathrm{~cm}^{-1}$. The aromatic C-H in-plane bending as well as ring deformation occurs at a slightly higher frequency. For 1,5-DMN it is observed at $1217.3 \mathrm{~cm}^{-1}$, for $1,6-\mathrm{DMN}$ at $1217.5 \mathrm{~cm}^{-1}$ and for $2,6-\mathrm{DMN}$ at $1216.4 \mathrm{~cm}^{-1}$. The calculated positions are 1258.6, 1220.4 , and $1267.7 \mathrm{~cm}^{-1}$, respectively.


Figure 3.4. Comparison of experimental and calculated IR spectra of 1,6-DMN. In the calculated spectrum the FWHM is assumed to be $15 \mathbf{c m}^{-1}$. Prominent peaks are labeled in the observed spectrum. Weak bands such as $\mathrm{Me}(\mathrm{C}-\mathrm{H})_{\text {asym. str. }}$ at $2953.8 \mathrm{~cm}^{-1}$, Aromatic C-H stretch at 3078.0 $\mathrm{cm}^{-1}$, etc. are not labeled in the observed spectrum.

For the first and last compounds a band at $1264.0 \mathrm{~cm}^{-1}$ and a band at $1273.0 \mathrm{~cm}^{-1}$, respectively, have been observed which do not correspond to any harmonic bands in the respective calculated spectrum. They have been tentatively assigned to either a combination or a difference band. For example, the $1264.0 \mathrm{~cm}^{-1}$ band in $1,5-\mathrm{DMN}$ may be a difference band arising from the two strong fundamentals $(2882.4-1606.1) \mathrm{cm}^{-1}$ while the $1273.0 \mathrm{~cm}^{-1}$ band in 2,6-DMN may be a difference band from (2880.0-1612.9) $\mathrm{cm}^{-1}$.


Figure 3.5. Comparison of experimental, theoretical and NIST reported ${ }^{14}$ IR spectra of 2,6-DMN. In the calculated spectrum the FWHM is assumed to be $15 \mathbf{c m}^{-1}$. Prominent peaks are labeled in the observed spectrum. Very weak band such as $\mathrm{Me}(\mathrm{C}-\mathrm{H})_{\text {asym. str. }}$ at $2955.2 \mathbf{~ c m}^{-1}$, etc. are not labeled in the observed spectrum.

Another weak aromatic C-H in-plane bending occurs at $1413.9 \mathrm{~cm}^{-1}$ in $1,5-\mathrm{DMN}, 1426.5 \mathrm{~cm}^{-1}$ in 1,6-DMN, and $1365.0 \mathrm{~cm}^{-1}$ in 2,6-DMN which correspond to the calculated bands at 1416.2, 1437.9, and $1386.1 \mathrm{~cm}^{-1}$, respectively. In addition, in $1,6-\mathrm{DMN}$ and $2,6-\mathrm{DMN}$ a low intensity band, respectively, at 1076.0 and $1093.1 \mathrm{~cm}^{-1}$ have been assigned to aromatic $\mathrm{C}-\mathrm{H}$ in-plane bending vibration. The next identifiable band in the spectra occurs at $1448.9 \mathrm{~cm}^{-1}$ in $1,5-\mathrm{DMN}$, $1450.0 \mathrm{~cm}^{-1}$ in $1,6-\mathrm{DMN}$, and at $1450.1 \mathrm{~cm}^{-1}$ in $2,6-\mathrm{DMN}$. This band corresponds to the calculated bands in the respective compounds at 1474.0/1474.1, 1473.5/1474.1, and $1472.6 / 1472.7 \mathrm{~cm}^{-1}$ belonging to the methyl C-H out-of-plane twisting. The next set of weak bands appears at 1510.9 and $1606.1 \mathrm{~cm}^{-1}$ in $1,5-\mathrm{DMN} ; 1513.6,1605.8$, and $1638.6 \mathrm{~cm}^{-1}$ in $1,6-$ DMN; and at 1510.9 and $1612.9 \mathrm{~cm}^{-1}$ in $2,6-\mathrm{DMN}$. These bands have been identified as the aromatic C-C stretching vibrations from the calculations.

The next groups of 3-4 bands in the spectra of the DMNs do not correspond to any band positions in the calculated spectra and, thus, have been generally identified as combination or difference bands. In $1,5-\mathrm{DMN}$, the observed band at $1745.3 \mathrm{~cm}^{-1}$ matches with a difference band of (2956.9-1217.3) $\mathrm{cm}^{-1}$ consisting of two fundamentals and that at $1848.6 \mathrm{~cm}^{-1}$ is due to a combination of two bands $(1062.6+807.5) \mathrm{cm}^{-1}$. Similarly, a combination band at 1922.2 $\mathrm{cm}^{-1}$ of fundamental frequencies $(1062.6+872.2) \mathrm{cm}^{-1}$ has been identified. The observed band at $2744.6 \mathrm{~cm}^{-1}$ in $1,5-\mathrm{DMN}$ may be assigned as a difference band originating from the combination of fundamental frequencies $(2931.8-1217.3+1034.7) \mathrm{cm}^{-1}$. The bands observed at $1741.0,1858.9,1922.4$, and $2746.6 \mathrm{~cm}^{-1}$ in $1,6-\mathrm{DMN}$ do not correspond to any calculated band. The band observed at $1741.0 \mathrm{~cm}^{-1}$ could be a difference band of two fundamental frequencies $(2953.8-1217.5) \mathrm{cm}^{-1}$ whereas the weak $1858.9 \mathrm{~cm}^{-1}$ band may originate from a coupled vibration of aromatic $\mathrm{C}-\mathrm{H}$ in plane bending vibration at $1076.0 \mathrm{~cm}^{-1}$ and aromatic $\mathrm{C}-\mathrm{H}$

Chapter 3: Infrared spectra of DMNs
out-of-plane bending vibration at $812.8 \mathrm{~cm}^{-1}$, while the band observed at $1922.4 \mathrm{~cm}^{-1}$ is a combination band of frequencies $(1076.0+870.2) \mathrm{cm}^{-1}$.

Table 3.3: Calculated and experimental infrared frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} \mathrm{mol}^{-1}$ ) for 1,5-DMN.

| No | Theoretical |  | Experimental |  | NIST Data ${ }^{\text {b }}$ |  | Mode of Vibrations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Freq. ${ }^{\text {a }}$ | Int. (Rel. Int.) | Freq. | Int. (Rel. Int.) | Freq.(R | l. Int.) ${ }^{\text {c }}$ |  |
| 1 | 93.89 | 0.34 (0.005) |  |  |  |  |  |
| 2 | 162.66 | 0.00 (0.000) |  |  |  |  |  |
| 3 | 182.99 | 0.00 (0.000) |  |  |  |  |  |
| 4 | 190.28 | 2.27 (0.034) |  |  |  |  |  |
| 5 | 202.17 | 0.00 (0.000) |  |  |  |  |  |
| 6 | 253.25 | 0.44 (0.006) |  |  |  |  |  |
| 7 | 263.59 | 3.76 (0.056) |  |  |  |  |  |
| 8 | 323.01 | 0.00 (0.000) |  |  |  |  |  |
| 9 | 453.84 | 0.00 (0.000) |  |  |  |  |  |
| 10 | 455.30 | 0.00 (0.000) |  |  |  |  |  |
| 11 | 469.75 | 0.00 (0.000) |  |  |  |  |  |
| 12 | 479.88 | 1.23 (0.018) |  |  |  |  |  |
| 13 | 504.95 | 0.00 (0.000) |  |  |  |  |  |
| 14 | 521.55 | 5.30(0.079) |  |  |  |  |  |
| 15 | 567.17 | 0.89 (0.013) |  |  |  |  |  |
| 16 | 626.00 | 0.00 (0.000) |  |  |  |  |  |
| 17 | 628.42 | 0.00 (0.000) |  |  |  |  |  |
| 18 | 730.99 | 0.00 (0.000) |  |  |  |  |  |
| 19 | 777.75 | 2.48 (0.037) |  |  |  |  |  |
| 20 | 786.50 | 66.58 (1.000) | 783.3 | 61.42(1.000) | 781.9 | (1.000) | $\alpha_{\text {Ar(C-H) }}$ |
| 21 | 802.06 | 0.00 (0.000) |  |  |  |  |  |
| 22 | 842.89 | 0.00 (0.000) |  |  |  |  |  |
| 23 | 869.65 | 1.39 (0.020) | 807.5 | 5.89(0.096) |  |  | $\alpha_{\text {Ar(C-H) }}$ |
| 24 | 877.85 | 0.36 (0.005) |  |  |  |  |  |
| 25 | 889.48 | 0.00 (0.000) |  |  |  |  |  |
| 26 | 945.88 | 1.11 (0.016) | 872.2 | 6.24(0.101) | 873.9 | (0.042) | $\alpha_{\text {Ar(C-H) }}$ |
| 27 | 947.32 | 0.00 (0.000) |  |  |  |  |  |
| 28 | 985.96 | 0.00 (0.000) |  |  |  |  |  |
| 29 | 1015.13 | 2.20(0.033) |  |  |  |  |  |
| 30 | 1047.22 | 0.00(0.000) |  |  |  |  |  |
| 31 | 1048.50 | 4.12(0.061) | 1034.7 | 2.42(0.039) |  |  | $\beta_{\text {Me(C-H) }}$ |
| 32 | 1069.71 | 6.49(0.097) | 1062.6 | 4.16(0.067) | 1064.1 | (0.075) | $\gamma_{\text {Ar-ring }}$ |
| 33 | 1100.39 | 0.00(0.000) |  |  |  |  |  |
| 34 | 1135.14 | 0.00(0.000) |  |  |  |  |  |
| 35 | 1174.00 | 1.19(0.017) |  |  |  |  |  |
| 36 | 1174.16 | 0.00(0.000) |  |  |  |  |  |
| 37 | 1218.38 | $2.76(0.041)$ |  |  |  |  |  |
| 38 | 1233.35 | 0.00(0.000) |  |  |  |  |  |
| 39 | 1258.63 | 2.43(0.036) | 1217.3 | 2.08(0.033) |  |  | $\delta_{\text {Ar(C-H) }}+\gamma_{\text {Ar-ring }}$ |
|  |  |  | 1264.0 | 1.73(0.028) |  |  |  |
| 40 | 1348.38 | 0.92(0.013) |  |  |  |  |  |

Table 3.3: (Continued) calculated and experimental infrared frequencies (cm ${ }^{-1}$ ) and intensities in $\mathrm{km} \mathrm{mol}^{-1}$ for 1,5-DMN.

| No | Theoretical |  | Experimental |  | NIST Data ${ }^{\text {b }}$ |  | Mode of Vibrations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Freq. ${ }^{\text {a }}$ | Int. (Rel. Int.) | Freq. | Int. (Rel. Int.) | Freq.(R | l. Int.) ${ }^{\text {c }}$ |  |
| 41 | 1362.95 | 0.00(0.000) |  |  |  |  |  |
| 42 | 1403.11 | 0.00(0.000) |  |  |  |  |  |
| 43 | 1404.75 | 0.48(0.007) |  |  |  |  |  |
| 44 | 1416.24 | 17.25(0.259) | 1413.9 | 6.24(0.101) | 1410.2 | (0.173) | $\delta_{\text {Ar(C-H) }}$ |
| 45 | 1416.69 | 0.00(0.000) |  |  |  |  |  |
| 46 | 1472.51 | 0.00(0.000) |  |  |  |  |  |
| 47 | 1474.06 | 6.13(0.092) | 1448.9 | 5.55(0.090) | 1451.0 | (0.068) | $\tau_{\text {Me(C-H) }}$ |
| 48 | 1474.19 | 6.60(0.099) |  |  |  |  |  |
| 49 | 1486.78 | 18.53 (0.278) |  |  |  |  |  |
| 50 | 1494.33 | 0.00(0.000) |  |  |  |  |  |
| 51 | 1524.04 | 8.57(0.128) | 1510.9 | 3.12(0.050) | 1510.7 | (0.116) | $v_{\text {Ar(C-C) }}$ |
| 52 | 1598.43 | 0.00(0.000) |  |  |  |  |  |
| 53 | 1615.03 | 12.97(0.194) | 1606.1 | 12.83(0.209) | 1600.5 | (0.146) | $v_{\text {Ar(C-C) }}$ |
| 54 | 1629.94 | 0.00(0.000) |  |  |  |  |  |
|  |  |  |  |  | 1681.8 | (0.040) |  |
|  |  |  | 1745.3 | 6.59(0.107) | 1774.1 | (0.034) |  |
|  |  |  | 1848.6 | 2.42(0.039) | 1848.8 | (0.044) |  |
|  |  |  | 1922.2 | 2.77(0.045) | 1920.0 | (0.608) |  |
|  |  |  | 2744.6 | 1.38(0.022) |  |  |  |
| 55 | 2913.59 | 58.53(0.879) |  |  |  |  |  |
| 56 | 2913.92 | 1.66 (0.024) | 2882.4 | 9.02(0.146) | 2882.6 | (0.043) | $\chi_{\text {Me(C-H) Sym }}$ |
| 57 | 2961.12 | 12.25(0.183) |  |  |  |  |  |
| 58 | 2961.25 | 29.00(0.435) | 2931.8 | 6.59(0.107) | 2938.6 | (0.055) | $\chi_{\text {Me(C-H) Asym }}$ |
| 59 | 2995.98 | 18.16(0.272) |  |  |  |  |  |
| 60 | 2997.18 | 19.24(0.288) | 2956.9 | 3.12 (0.050) | 2957.9 | (0.012) | $\chi_{\text {Me(C-H) Asym }}$ |
| 61 | 3045.84 | 25.83(0.387) |  |  |  |  |  |
| 62 | 3046.36 | 0.00(0.000) | 2979.4 | 11.10(0.180) | 2977.2 | (0.085) | $\Pi_{\operatorname{Ar}(\mathrm{C}-\mathrm{H})}$ |
| 63 | 3062.31 | 0.16(0.002) |  |  |  |  |  |
| 64 | 3062.45 | 49.13(0.737) | 3043.2 | 15.26(0.248) | 3041.3 | (0.175) | $\Pi_{\text {Ar(C-H) }}$ |
| 65 | 3083.33 | 41.41(0.621) |  |  |  |  |  |
| 66 | 3083.79 | 0.03(0.000) | 3081.0 | 10.06(0.163) | 3079.9 | (0.252) | $\Pi_{\operatorname{Ar}(\mathrm{C}-\mathrm{H})}$ |

${ }^{\text {a }}$ The B3LYP/6-31G* frequencies are scaled by 0.9588 for C-H stretching and 0.9733 for other
modes. ${ }^{13}$
${ }^{\text {b adapted from Ref. }}{ }^{14}$
${ }^{c}$ In case of the NIST reported spectra, only relative intensities are given in parentheses.
$\alpha_{\operatorname{Ar}(\mathrm{C}-\mathrm{H})}=$ Aromatic C-H out-of-plane, $\beta_{\mathrm{Me}(\mathrm{C}-\mathrm{H})}=$ Methyl C-H out-of-plane bending, $\gamma_{\mathrm{Ar}-\mathrm{ring}}=$ Aromatic ring deformation, $\delta_{\operatorname{Ar}(\mathrm{C}-\mathrm{H})}=$ Aromatic C-H in-plne bending, $\tau_{\mathrm{Me}(\mathrm{C}-\mathrm{H})}=$ Methyl C-H out-

Chapter 3: Infrared spectra of DMNs
of-plane twist, $v_{\operatorname{Ar}(\mathrm{C}-\mathrm{C})}=$ Aromatic (C-C) stretching, $\chi_{\mathrm{Me}(\mathrm{C}-\mathrm{H}) \mathrm{Sym}}=$ Methyl $\mathrm{C}-\mathrm{H}$ symmetric stretching, $\chi_{\mathrm{Me}(\mathrm{C}-\mathrm{H}) \mathrm{Asym}}=$ Methyl C-H asymmetric stretching, $\Pi_{\mathrm{Ar}(\mathrm{C}-\mathrm{H})}=$ Aromatic C-H stretching.

Table 3.4: Calculated and experimental infrared frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} \mathrm{mol}^{-1}$ ) for 1,6-DMN.

| No | Theoretical |  | Experimental |  | Mode of Vibrations |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Freq. ${ }^{\text {a }}$ | Int. (Rel.Int.) | Freq. | Int. (Rel.Int.) |  |
| 1 | 88.72 | 0.51(0.016) |  |  |  |
| 2 | 107.00 | 0.47(0.014) |  |  |  |
| 3 | 148.54 | 0.11(0.003) |  |  |  |
| 4 | 189.46 | 0.69(0.022) |  |  |  |
| 5 | 233.38 | 0.61(0.019) |  |  |  |
| 6 | 247.55 | 1.71(0.054) |  |  |  |
| 7 | 285.04 | 0.22(0.007) |  |  |  |
| 8 | 328.34 | $0.05(0.001)$ |  |  |  |
| 9 | 426.34 | 3.04(0.096) |  |  |  |
| 10 | 452.48 | 0.13(0.004) |  |  |  |
| 11 | 463.72 | 0.89(0.028) |  |  |  |
| 12 | 494.88 | 2.61(0.083) |  |  |  |
| 13 | 509.77 | $2.15(0.068)$ |  |  |  |
| 14 | 561.05 | 0.39(0.012) |  |  |  |
| 15 | 584.63 | 1.03(0.032) |  |  |  |
| 16 | 642.55 | 0.66(0.021) |  |  |  |
| 17 | 703.38 | 1.03(0.033) |  |  |  |
| 18 | 710.37 | 0.64(0.020) |  |  |  |
| 19 | 747.33 | 5.93(0.188) | 746.2 | 10.02(0.352) | $\alpha_{\text {Ar(C-H) }}$ |
| 20 | 784.54 | 14.14(0.449) | 784.1 | 13.49(0.474) | $\alpha_{\text {Ar(C-H) }}$ |
| 21 | 812.42 | 31.45(1.000) | 812.8 | 28.42(1.000) | $\alpha_{\text {Ar(C-H) }}$ |
| 22 | 823.60 | 0.68(0.021) |  |  |  |
| 23 | 867.99 | 6.73(0.214) |  |  |  |
| 24 | 893.11 | $2.80(0.089)$ | 870.2 | 8.99(0.316) | $\alpha_{\text {Ar(C-H) }}$ |
| 25 | 921.59 | 0.41(0.013) |  |  |  |
| 26 | 939.58 | 0.17(0.005) |  |  |  |
| 27 | 946.68 | 0.91(0.028) |  |  |  |
| 28 | 976.12 | 2.71 (0.086) |  |  |  |
| 29 | 1009.17 | 5.66(0.179) | 981.9 | 1.84(0.064) | $\sigma_{\text {Me(C-H) }}$ |
| 30 | 1048.29 | 5.39(0.171) |  |  |  |
| 31 | 1048.44 | $1.09(0.034)$ | 1038.1 | 2.65(0.093) | $\beta_{\text {Me(C-H) }}$ |
| 32 | 1051.11 | 0.85(0.027) |  |  |  |
| 33 | 1080.50 | 2.64(0.084) | 1076.0 | $2.45(0.086)$ | $\delta_{\text {Ar(C-H) }}$ |
| 34 | 1162.61 | 0.56(0.018) |  |  |  |
| 35 | 1167.46 | 1.00 (0.032) |  |  |  |
| 36 | 1176.66 | $2.59(0.082)$ | 1167.3 | $2.65(0.093)$ | $\delta_{\text {Arl(C-H) }}+\gamma_{\text {Ar-ring }}$ |
| 37 | 1220.44 | 1.71(0.054) | 1217.5 | $2.86(0.101)$ | $\delta_{\operatorname{Ar}(\mathrm{C}-\mathrm{H})}+\gamma_{\text {Ar-ring }}$ |
| 38 | 1248.59 | 0.30(0.009) |  |  |  |
| 39 | 1268.85 | 3.18(0.101) | 1269.7 | $2.86(0.101)$ | $\delta_{\text {Arl(-H) }}+\gamma_{\mathrm{Ar}-\mathrm{ring}}$ |
| 40 | 1357.95 | $1.45(0.046)$ |  |  |  |

Chapter 3: Infrared spectra of DMNs
Table 3.4: (Continued) calculated and experimental infrared frequencies (in $\mathbf{c m}^{-1}$ ) and intensities (in $\mathrm{km} \mathrm{mol}^{-1}$ ) for 1,6-DMN.

| No | Theoretical |  | Experimental |  | Mode of Vibrations |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Freq. ${ }^{\text {a }}$ | Int. (Rel.Int.) | Freq. | Int. (Rel.Int.) |  |
| 41 | 1373.18 | 2.03(0.064) |  |  |  |
| 42 | 1378.15 | 2.14(0.068) |  |  |  |
| 43 | 1404.22 | 0.77(0.024) | 1380.4 | 10.63(0.374) | $\sigma_{\text {Me(C-H) }}$ |
| 44 | 1405.16 | 0.47(0.015) |  |  |  |
| 45 | 1437.97 | 9.57(0.304) | 1426.5 | 5.93(0.208) | $\delta_{\text {Ar(C-H) }}$ |
| 46 | 1467.29 | 2.90(0.092) |  |  |  |
| 47 | 1473.55 | 4.16(0.132) |  |  |  |
| 48 | 1474.13 | 7.79(0.247) | 1450.0 | 3.68(0.129) | $\tau_{\text {Me(C-H) }}$ |
| 49 | 1485.63 | 4.28(0.136) |  |  |  |
| 50 | 1494.07 | 4.32(0.137) |  |  |  |
| 51 | 1520.97 | 9.85(0.313) | 1513.6 | $7.56(0.266)$ | $v_{\text {Ar(C-C) }}$ |
| 52 | 1590.91 | $1.35(0.043)$ |  |  |  |
| 53 | 1618.56 | 11.07(0.352) | 1605.8 | 5.72(0.201) | $v_{\text {Ar(C-C) }}$ |
| 54 | 1642.67 | 8.73(0.277) | 1638.6 | 4.08(0.143) | $v_{\text {Ar(C-C) }}$ |
|  |  |  | 1741.0 | 9.2(0.323) |  |
|  |  |  | 1858.9 | 1.63(0.057) |  |
|  |  |  | 1922.4 | 3.88(0.136) |  |
|  |  |  | 2746.6 | 2.04(0.072) |  |
| 55 | 2913.63 | 35.41(1.126) |  |  |  |
| 56 | 2914.28 | 35.11(1.116) | 2874.8 | 11.24(0.395) | $\chi_{\text {Me(C-H) Sym }}$ |
| 57 | 2960.69 | 9.81(0.312) |  |  |  |
| 58 | 2961.83 | 23.10(0.734) | 2933.3 | 11.24(0.395) | $\chi_{\text {Me(C-H) Asym }}$ |
| 59 | 2997.16 | 16.61(0.528) |  |  |  |
| 60 | 2997.86 | 18.91(0.601) | 2953.8 | 2.24(0.079) | $\chi_{\text {Me(C-H) Asym }}$ |
| 61 | 3040.66 | 16.86(0.536) | 2980.5 | 11.45(0.402) | $\Pi_{\text {Ar(C-H) }}$ |
| 62 | 3044.43 | 14.64(0.465) |  |  |  |
| 63 | 3045.16 | 0.76(0.024) | 3031.8 | 7.77(0.273) | $\Pi_{\mathrm{Ar}(\mathrm{C}-\mathrm{H})}$ |
| 64 | 3052.60 | 30.16(0.958) |  |  |  |
| 65 | 3070.49 | 37.47(1.191) | 3056.8 | 4.49 (0.158) | $\Pi_{\text {Ar(C-H) }}$ |
| 66 | 3077.56 | 15.71(0.499) | 3078.0 | 3.68(0.129) | $\Pi_{\mathrm{Ar}(\mathrm{C}-\mathrm{H})}$ |

${ }^{\text {a }}$ The B3LYP/6-31G* frequencies are scaled by 0.9588 for C-H stretching and 0.9733 for other
modes. ${ }^{13}$
$\alpha_{\operatorname{Ar}(\mathrm{C}-\mathrm{H})}=$ Aromatic C-H out-of-plane bending, $\sigma_{\mathrm{Me}(\mathrm{C}-\mathrm{H})}=$ Methyl C-H in-plane bending, $\beta_{\mathrm{Me}(\mathrm{C}-}$
${ }_{\mathrm{H})}=$ Methyl C-H out-of-plane bending, $\gamma_{\mathrm{Ar}-\mathrm{ring}}=$ Aromatic ring deformation, $\delta_{\mathrm{Ar}(\mathrm{C}-\mathrm{H})}=$ Aromatic C-H in-plane bending, $\tau_{\mathrm{Me}(\mathrm{C}-\mathrm{H})=}$ Methyl C-H out-of-plane twist, $v_{\mathrm{Ar}(\mathrm{C}-\mathrm{C})}=$ Aromatic (C-C) stretching, $\chi_{\text {Me(C-H)Sym }}=$ Methyl C-H symmetric stretching, $\chi_{\text {me(C-H)Asym }}=$ Methyl $\mathrm{C}-\mathrm{H}$ asymmetric stretching, $\Pi_{\operatorname{Ar}(\mathrm{C}-\mathrm{H})}=$ Aromatic C-H stretching.

## Chapter 3: Infrared spectra of DMNs

Table 3.5: Calculated and experimental infrared frequencies (in $\mathbf{c m}^{-1}$ ) and intensities (in $\mathrm{km} \mathrm{mol}^{-1}$ ) for 2,6-DMN.

| No | Theoretical |  | Experimental |  | NIST Data ${ }^{\text {b }}$ |  | Mode of Vibrations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Freq. ${ }^{\text {a }}$ | Int. (Rel. Int.) | Freq. | Int. (Rel. Int.) | Freq.(R | Int. ${ }^{\text {c }}$ |  |
| 1 | 76.86 | 1.16(0.037) |  |  |  |  |  |
| 2 | 87.45 | 0.00(0.000) |  |  |  |  |  |
| 3 | 95.69 | 0.04(0.001) |  |  |  |  |  |
| 4 | 180.07 | 0.39(0.012) |  |  |  |  |  |
| 5 | 201.25 | 0.00(0.000) |  |  |  |  |  |
| 6 | 215.90 | 0.88(0.028) |  |  |  |  |  |
| 7 | 313.50 | 0.00(0.000) |  |  |  |  |  |
| 8 | 333.87 | 2.91(0.093) |  |  |  |  |  |
| 9 | 395.74 | 0.00(0.000) |  |  |  |  |  |
| 10 | 402.16 | 0.00(0.000) |  |  |  |  |  |
| 11 | 429.88 | 2.31(0.074) |  |  |  |  |  |
| 12 | 482.68 | 5.94(0.189) |  |  |  |  |  |
| 13 | 521.53 | 0.00(0.000) |  |  |  |  |  |
| 14 | 525.00 | 0.00(0.000) |  |  |  |  |  |
| 15 | 574.59 | $1.21(0.038)$ |  |  |  |  |  |
| 16 | 632.80 | 3.40 (0.108) |  |  |  |  |  |
| 17 | 668.29 | 1.35(0.043) |  |  |  |  |  |
| 18 | 747.20 | 0.00(0.000) |  |  |  |  |  |
| 19 | 757.53 | 0.00(0.000) |  |  |  |  |  |
| 20 | 789.89 | 0.00(0.000) |  |  |  |  |  |
| 21 | 811.61 | 31.33(1.000) | 808.5 | 33.33(1.000) | 807.3 | (1.00) | $\alpha_{\text {Ar(C-H) }}$ |
| 22 | 820.21 | 0.00(0.000) |  |  |  |  |  |
| 23 | 874.72 | 22.41(0.715) | 873.6 | 22.91(0.687) | 870.7 | (0.61) | $\alpha_{\text {Ar }}$ (C-H) |
| 24 | 884.62 | 0.00(0.000) |  |  |  |  |  |
| 25 | 911.05 | 0.98(0.031) |  |  |  |  |  |
| 26 | 940.49 | 0.94(0.030) | 914.2 | 2.50 (0.075) |  |  | $\alpha_{\text {Ar(C-H) }}$ |
| 27 | 941.29 | 0.00(0.000) |  |  |  |  |  |
| 28 | 957.44 | 0.00(0.000) |  |  |  |  |  |
| 29 | 1004.40 | 0.00(0.000) |  |  |  |  |  |
| 30 | 1012.35 | 13.82(0.441) | 961.4 | 1.66(0.049) |  |  | $\sigma_{\text {Me(C-H) }}$ |
| 31 | 1047.62 | 8.56(0.273) | 1037.9 | 8.33(0.249) |  |  | $\beta_{\text {Me(C-H) }}$ |
| 32 | 1048.39 | 0.01(0.000) |  |  |  |  |  |
| 33 | 1132.27 | 1.83(0.058) | 1093.1 | 4.16(0.124) |  |  | $\delta_{\text {Ar(C-H) }}$ |
| 34 | 1151.69 | 0.00(0.000) |  |  |  |  |  |
| 35 | 1170.53 | $3.95(0.126)$ |  |  |  |  |  |
| 36 | 1179.34 | 0.00(0.000) |  |  |  |  |  |
| 37 | 1220.40 | 1.02(0.032) |  |  |  |  |  |
| 38 | 1258.61 | 0.00(0.000) |  |  |  |  |  |
| 39 | 1267.74 | 5.22(0.166) | $\begin{aligned} & 1216.4 \\ & 1273.0 \end{aligned}$ | $\begin{array}{r} 13.33(0.399) \\ 5.00(0.150) \end{array}$ |  |  | $\delta_{\text {ArIC-H) }}+\gamma_{\text {Ar-ring }}$ |
| 40 | 1348.64 | 1.69(0.054) |  |  |  |  |  |
| 41 | 1383.14 | 0.00(0.000) |  |  |  |  |  |
| 42 | 1386.19 | 5.58(0.178) | 1365.0 | 15.00(0.450) |  |  | $\delta_{\text {Ar(C-H) }}$ |
| 43 | 1405.15 | $1.38(0.044)$ |  |  |  |  |  |

Chapter 3: Infrared spectra of DMNs
Table 3.5: (Continued) calculated and experimental infrared frequencies (in $\mathbf{c m}^{-1}$ ) and intensities (in $\mathrm{km} \mathrm{mol}^{-1}$ ) for 2,6-DMN.

| No | Theoretical |  | Experimental |  | NIST Data ${ }^{\text {b }}$ |  | Mode of Vibrations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Freq. ${ }^{\text {a }}$ | Int. (Rel. Int.) | Freq. | Int. (Rel. Int.) | Freq.(R | 1. Int.) ${ }^{\text {c }}$ |  |
| 44 | 1405.60 | 0.01(0.000) |  |  |  |  |  |
| 45 | 1412.03 | 0.00(0.000) |  |  |  |  |  |
| 46 | 1472.61 | 7.38(0.235) |  |  |  |  |  |
| 47 | 1472.76 | 3.47(0.110) | 1450.1 | 7.50 (0.225) | 1449.9 | (0.113) | $\tau_{\mathrm{Me}(\mathrm{C}-\mathrm{H})}$ |
| 48 | 1476.34 | 11.15(0.356) |  |  |  |  |  |
| 49 | 1485.87 | $0.00(0.000)$ |  |  |  |  |  |
| 50 | 1495.08 | 0.00(0.000) |  |  |  |  |  |
| 51 | 1518.62 | 11.66(0.372) | 1510.9 | 5.83(0.175) | 1504.7 | (0.194) | $v_{\text {Ar(C-C) }}$ |
| 52 | 1582.20 | $0.00(0.000)$ |  |  |  |  |  |
| 53 | 1627.21 | 25.93(0.827) | 1612.9 | $20.00(0.600)$ | 1611.3 | (0.714) | $v_{\text {Ar(C-C) }}$ |
| 54 | 1648.64 | 0.00(0.000) |  |  |  |  |  |
|  |  |  | 1741.8 | 21.25(0.637) | 1745.3 | (0.125) |  |
|  |  |  | 1908.1 | $1.66(0.049)$ | 1906.0 | (0.109) |  |
|  |  |  | 2744.5 | $2.08(0.062)$ |  |  |  |
| 55 | 2913.68 | 81.85(2.612) |  |  |  |  |  |
| 56 | 2914.04 | 4.79(0.153) | 2880.0 | 7.08(0.212) | 2879.4 | (0.312) | $\chi_{\text {Me(C-H) Sym }}$ |
| 57 | 2961.26 | 17.05(0.544) |  |  |  |  |  |
| 58 | 2961.40 | 27.68(0.883) | 2933.9 | 18.33(0.549) | 2931.2 | (0.727) | $\chi_{\text {Me(C-H) Asym }}$ |
| 59 | 2995.19 | 16.32(0.521) |  |  |  |  |  |
| 60 | 2996.49 | 16.48(0.526) | 2955.2 | $0.42(0.012)$ |  |  | $\chi_{\text {Me(C-H) Asym }}$ |
| 61 | 3037.89 | 21.39(0.682) | 2976.5 | 6.25(0.187) | 2978.8 | (0.059) | $\Pi_{\text {Ar(C-H) }}$ |
| 62 | 3038.20 | 0.00(0.000) |  |  |  |  |  |
| 63 | 3040.93 | 33.06(1.055) | 3028.9 | 8.75(0.262) | 3027.8 | (0.185) | $\Pi_{\mathrm{Ar}(\mathrm{C}-\mathrm{H})}$ |
| 64 | 3041.16 | 0.00(0.000) |  |  |  |  |  |
| 65 | 3058.03 | 62.53(1.996) | 3054.5 | 15.83(0.474) | 3053.7 | (0.589) | $\Pi_{\mathrm{Ar}(\mathrm{C}-\mathrm{H})}$ |
| 66 | 3058.98 | 0.00(0.000) |  |  |  |  |  |

${ }^{\text {a }}$ The B3LYP/6-31G* frequencies are scaled by 0.9588 for C-H stretching and 0.9733 for other modes. ${ }^{13}$

## ${ }^{\text {b }}$ adapted from Ref. ${ }^{14}$

${ }^{c}$ In case of the NIST reported spectrum, only relative intensities are given in parentheses. $\alpha_{\operatorname{Ar}(\mathrm{C}-}$ $\mathrm{H}_{)}=$Aromatic C-H out-of-plane bending, $\sigma_{\mathrm{Me}(\mathrm{C}-\mathrm{H})}=$ Methyl C-H In-plane bending, $\beta_{\mathrm{Me}(\mathrm{C}-\mathrm{H})}=$ Methyl C-H out-of-plane bending, $\gamma_{\text {Ar-ring }}=$ Aromatic ring deformation, $\delta_{\text {Ar(C-H) }}=$ Aromatic $\mathrm{C}-\mathrm{H}$ in-plane bending, $\tau_{\mathrm{Me}(\mathrm{C}-\mathrm{H})}=$ Methyl C-H out-of-plane twist, $\mathrm{v}_{\mathrm{Ar}(\mathrm{C}-\mathrm{C})}=$ Aromatic $(\mathrm{C}-\mathrm{C})$ stretching, $\chi_{\mathrm{Me}(\mathrm{C}-\mathrm{H})}$ Sym $=$ Methyl C-H symmetric stretching, $\chi_{\mathrm{Me}(\mathrm{C}-\mathrm{H})}$ Asym $=$ Methyl C-H asymmetric stretching, $\Pi_{\mathrm{Ar}(\mathrm{C}-\mathrm{H})}=$ Aromatic C-H stretching.

The observed band at $2746.6 \mathrm{~cm}^{-1}$ may be assigned to a difference band of fundamental frequencies $(2933.3-1217.5+1038.1) \mathrm{cm}^{-1}$. In $2,6-\mathrm{DMN}$, the observed bands at 1741.8 , 1908.1 and $2744.5 \mathrm{~cm}^{-1}$ do not match with any band in the calculated spectrum. The band at $1741.8 \mathrm{~cm}^{-1}$ is likely to be a difference band of the fundamental frequencies (2955.2-1216.4) $\mathrm{cm}^{-1}$. In general, the difference and combination bands are less intense than the fundamental bands. ${ }^{15}$ The band observed at $1908.1 \mathrm{~cm}^{-1}$ may be a combination band of frequencies (1093.1 $+808.5) \mathrm{cm}^{-1}$. There is a medium intensity band observed at $2744.5 \mathrm{~cm}^{-1}$ which is a difference band of three frequencies $(2933.9-1216.4+1037.9) \mathrm{cm}^{-1}$.

The next sets of bands observed in the DMNs are at high frequencies $\left(2870-3090 \mathrm{~cm}^{-1}\right)$, forms a broad envelope with several peaks and are of moderate intensities. The first three bands in this group are at $2882.4,2931.8$, and $2956.9 \mathrm{~cm}^{-1}$ in $1,5-\mathrm{DMN} ; 2874.8,2933.3$, and $2953.8 \mathrm{~cm}^{-1}$ in $1,6-\mathrm{DMN}$; and $2880.0,2933.9$, and $2955.2 \mathrm{~cm}^{-1}$ in $2,6-\mathrm{DMN}$; which from comparison with calculations have been identified as the methyl $\mathrm{C}-\mathrm{H}$ symmetric and asymmetric stretching fundamentals. However, the calculated bands at these frequencies are doubly degenerate for each mode due to the presence of two methyl groups in the molecules. At our experimental resolution, these degeneracies cannot be lifted. The next 3-4 bands are also of moderate intensities and appear at 2979.4, 3043.2, and $3081.0 \mathrm{~cm}^{-1}$ in $1,5-\mathrm{DMN}$; $2980.5,3031.8,3056.8$, and $3078.0 \mathrm{~cm}^{-1}$ in 1,6-DMN; and 2976.5, 3028.9 , and $3054.5 \mathrm{~cm}^{-1}$ in 2,6-DMN. These bands correspond to 3 pairs of doublets in calculation as shown in Tables 3.3 -3.5 and are assigned to aromatic C-H stretching modes. In 1,6-DMN the last doublet appears as the doublet in the observed spectrum and is clearly resolved.

Error analysis has done by means of mean deviation as discussed in section 2.4.3. Table 3.6 lists the mean deviations between two types of scaled harmonic frequencies and observed
fundamentals for DMNs. From this table it is clear that (i) the extent of anharmonicity of aromatic and methyl $\mathrm{C}-\mathrm{H}$ stretching modes is more compared to non $\mathrm{C}-\mathrm{H}$ stretching modes and (ii) altogether, the deviation is more than $20 \mathrm{~cm}^{-1}$ irrespective of different types of vibrations of DMNs. It clearly indicates that the two scaling factors (one for the aromatic C-H stretches and another for all other modes) calculated by Bauschlicher et al. ${ }^{13}$ for the nonsubstituted PAHs is less suitable for the scaling of the harmonic frequencies of substituted PAHs like methyl-PAHs at the B3LYP/6-31G* level of theory.

Table 3.6: Mean deviation, $\delta$ (in $\mathrm{cm}^{-1}$ ) between scaled harmonic and experimental frequencies (in $\mathbf{c m}^{-1}$ ) for different modes of vibration in DMNs.

| Mode of vibration | 1,5-DMN | 1,6-DMN | 2,6-DMN |
| :--- | :---: | :--- | :--- |
| Non C-H str | 25.2 | 12.4 | 23.2 |
| Aromatic and | 31.6 | 28.4 | 29.9 |
| methyl C-H str |  |  |  |

By comparing the DMN and MN spectra, it has been found that there is only one strong band in the reported spectrum of $1-\mathrm{MN}$ due to the aromatic $\mathrm{C}-\mathrm{H}$ stretching vibration above $3000.0 \mathrm{~cm}^{-1}$ while there are two or more moderate intensity bands in the observed spectrum of the DMNs in that region. In Table 3.7, I have listed four characteristic bands of the DMNs which may help in their identification in an unknown mixture. The aromatic C-H out-of-plane bending vibration is the strongest in intensity among all the bands in DMNs and is easy to identify around $800.0 \mathrm{~cm}^{-1}$. The DMNs are distinguishable from the position of this band which appears with a clear separation in different DMNs. Methyl C-H symmetric and asymmetric stretching set of three bands is the next set of bands which are distinct in all the
$\overline{\text { DMNs. They appear clearly resolved at the high frequency end of the IR spectrum around }}$ $2900.0 \mathrm{~cm}^{-1}$ with moderate intensities and can be easily marked.

Table 3.7: Comparison of observed aromatic(C-H) out-of-plane bending and methyl C-H symmetric $^{\mathrm{a}}$ and asymmetric stretching ${ }^{\mathrm{b}}$ vibrations in DMNs.

| Mode of vibration | 1,5-DMN |  |  | 1,6-DMN |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2,6-DMN |  |  |  |  |  |  |
| Aromatic C-H | 783.2 | $(1.000)$ | 812.8 | $(1.000)$ | 808.5 | $(1.000)$ |
| out-of-plane |  |  |  |  |  |  |
| Methyl C-H | $2882.4^{\mathrm{a}}$ | $(0.146)$ | $2874.8^{\mathrm{a}}$ | $(0.395)$ | $2880.0^{\mathrm{a}}$ | $(0.212)$ |
| stretching | $2931.8^{\mathrm{b}}$ | $(0.107)$ | $2933.3^{\mathrm{b}}$ | $(0.395)$ | $2933.9^{\mathrm{b}}$ | $(0.549)$ |
|  | $2956.9^{\mathrm{b}}$ | $(0.050)$ | $2953.8^{\mathrm{b}}$ | $(0.079)$ | $2955.2^{\mathrm{b}}$ | $(0.012)$ |

The band positions are given in $\mathrm{cm}^{-1}$ and the relative intensities in parentheses.

### 3.4 Conclusion

In this chapter, I have reported the gas phase IR spectra of $1,5-\mathrm{DMN}, 1,6-\mathrm{DMN}$, and 2,6 DMN and assigned their vibrational modes using harmonic DFT calculation. In general experimental spectra are in good agreement with calculated spectra. However, deviations between calculated and observed frequencies are more than $20 \mathrm{~cm}^{-1}$ which is less reliable for the quantitative analysis of experimental spectra. From the experimentally observed spectra it is possible to distinguish the DMNs based on the intensity and position of the aromatic C-H out-of-plane bending and methyl C-H symmetric and asymmetric stretching vibrations which are well resolved in frequency among various DMNs. These spectra at $0.5 \mathrm{~cm}^{-1}$ resolution have many more features over the previously reported low resolution spectra of the DMNs. Further

Chapter 3: Infrared spectra of DMNs
studies with isotope substitution along with anharmonic analysis of the data are necessary to fully assign the vibrations of these differently substituted DMNs.

### 3.5 References

[1] Wania, F.; Mackay, D. Environ. Sci. Technol. 1996, 30, 390A.
[2] Williams, P. T.; Bartle, K. D.; Andrews, G. E. Fuel 1986, 65, 1150.
[3] Bundt, J.; Herbel, W.; Steinhart, H.; Franke, S.; Francke, W. High Resolut. Chromatogr. 1991, 14, 91.
[4] Nelson, P. F. Fuel 1989, 68, 283.
[5] Zielinska, B.; Sagebiel, J. C.; Harshfield, G.; Gertler, A. W.; Pierson, W. R. Atmos. Environ. 1996, 30, 2269.
[6] Clemett, S. J.; Maechling, C. R.; Zare, R. N.; Swan, P. D.; Walker, R. M. Science 1993, 262, 721.
[7]. Horton, A. W; Denman, D. T.; Trosset, R. P. Cancer Res. 1957, 17, 758.
[8] Rossi, S. S.; Neff, J. M. Mar. Pollut. Bull. 1978, 9, 220.
[9] Shamsuddin, Z. A.; Rahimtula, A. D. Drug Metab. Dipos. 1988, 14, 724.
[10] Christidis, P. D.; Harris, B. C.; McDonald, T. J.; Reese, E.; Autenrieth, R. L. Chemosphere 2003, 52, 869.
[11] Æleen Frisch, M.J. Frisch, GAUSSIAN 98 User’s Reference, Gaussian, Inc., Pittsburgh, PA, 1999.
[12] Langhoff, S. R.; Bauschlicher, C. W.; Hudgins, D. M.; Sandford, S. A.; Allamandola, L. J. J. Phys. Chem. A 1998, 102, 1632.
[13] Bauschlicher, C. W.; Langhoff, S. R. Spectrchim. Acta Part A 1997, 53, 1225.
[14] http://webbook.nist.gov/chemistry.
[15] Herzberg, G. Infrared and Raman Spectra of Polyatomic Molecules, D. Van Nastrand Company, Inc., New York, 1946.

## Chapter-4

## Infrared Spectra of Dimethylquinolines (DMQs) in the Gas Phase: Experiment and Theory

### 4.1 Introduction

Methylated quinolines belong to a class of polycyclic aromatic hydrocarbons (PAHs) present in ambient air, in lake and marine sediments, in coal-tar, and in coker gas oil. ${ }^{1-4}$ Synthetic fuel contains methylated quinolines, including methyl quinolines (MQs) and dimethylquinolines (DMQs). ${ }^{5}$ MQs and DMQs have been found in ground water adjacent to an underground coal gasification site and in low-Btu coal gasifier tar. ${ }^{6-7}$ They have also been identified in petroleum and petroleum substitutes. ${ }^{8-11}$ In section 1.1.2 of chapter 1, I have discussed that many of these compounds have been reported to be mutagenic, toxic, and carcinogenic, they also act as tumor initiating agent. ${ }^{12-14}$

A few experimental techniques have been employed for the identification and detection of PAHs including alkylquinolines in the gas phase (see section 1.2, chapter 1). The infrared spectra of MQs are available in the NIST - IR spectral library. ${ }^{15}$ Ozel et al. have carried out DFT calculation for the assignment of the vibrational bands of MQs. ${ }^{16}$ Infrared spectra of 2,8DMQ and trimethylquinolines (TMQs) have been recorded in $\mathrm{CS}_{2}$ solution. ${ }^{17}$

In this chapter, I present the IR absorption spectra of DMQs in the gas phase which were recorded at low pressures using a heated multi-pass long-path gas cell. I have carried out DFT calculations to calculate harmonic and anharmonic frequencies and their intensities. Then SQM force field vibrational analysis have done to get fitted frequencies closer to the experimental frequencies and potential energy distributions (PEDs) of normal modes in terms of nonredundant local coordinates using a modified version of the UMAT program in the QCPE package.

### 4.2 Experimental: Materials and Methods

### 4.2.1 Materials

DMQs used in this investigation were obtained commercially and used as received. They are 2,4-dimethylquinoline ( $98.0 \%$, Chiron AS), 2,6-dimethylquinoline ( $98.0 \%$, Aldrich Inc), 2,7-dimethyquinoline ( $99.0 \%$, Aldrich Inc) and 2,8-dimethylquinoline (99.9\%, Chiron AS). Some physical properties of the DMQs are listed in Table 4.1. Ultra high purity (99.999\%) argon was used in these experiments as a carrier gas.

Table 4.1: Physical properties of DMQs

| Name | State at $\mathbf{2 5 ~}^{\mathbf{0} \mathbf{C}}$ | m.p/b.p (in ${ }^{\mathbf{0}} \mathbf{C}$ ) | P(in mmHg) ${ }^{\mathbf{a}}$ at $\mathbf{2 5 ~}^{\mathbf{0} \mathbf{C}}$ |
| :---: | :--- | :--- | :--- |
| 2,4-DMQ | Liquid (98.0\%) | b.p $=265$ | $1.64 \times 10^{-2}$ |
| 2,6-DMQ | Solid-powder (98.0\%) | m.p $=58$ | $1.42 \times 10^{-2}$ |
| 2,7-DMQ | Solid -powder (99.0\%) | m.p $=61$ | $1.82 \times 10^{-2}$ |
| 2,8-DMQ | Liquid (99.9\%) | b.p $=255$ | $2.63 \times 10^{-2}$ |

${ }^{\text {a }}$ Since experimental vapor pressures are not available, calculated values are given ${ }^{18}$ in column 4.

### 4.2.2 Methods

Infrared spectra of polycyclic aromatic compound (PAHs) have been reported mostly in $\mathrm{Ar} / \mathrm{He}$ matrix because of their low vapor pressures at room temperature. I have used a multipass long-path gas cell to record the gas phase IR spectra of DMQs. The details of the experimental set-up have been discussed in section 2.2.4.1 of chapter 2. The FT-IR spectrometer, Vertex-70 (Bruker Optic), equipped with the liquid $\mathrm{N}_{2}$ cooled $\mathrm{HgCdTe}(\mathrm{LN}-$ MCT) detector $/ \mathrm{KBr}$ beam splitter was used in this study. The optical path-length of gas cell was fixed at 6 meter. Temperature of the cell and sample tube was maintained at $80{ }^{\circ} \mathrm{C}$ with
the help of a temperature controller fitted with a feedback heat sensor. The total pressure of argon gas in the cell containing DMQs was maintained at $\sim 30 \mathrm{mmHg}$. The spectral band areas $\int \log \left(\mathrm{I}_{0} / \mathrm{I}\right) \mathrm{d} v\left(\right.$ in $\left.\mathrm{cm}^{-1}\right)$ were calculated with the help of OPUS software provided by Bruker Optics.

The observed IR band intensities were calculated with the help of equation 2.15. Vapor pressure was calculated in similar fashion as was done for DMNs in chapter 3. The estimated vapor pressure found to be $1.47 \times 10^{-5}, 1.23 \times 10^{-5}, 2.01 \times 10^{-5}$, and $2.52 \times 10^{-5}$ atm at $80^{\circ} \mathrm{C}$ for $2,4-, 2,6-, 2,7-$, and $2,8-\mathrm{DMQ}$, respectively. The detail of the intensity calculation was discussed in section 2.5 of chapter 2.

### 4.3 Theoretical calculation

### 4.3.1 Harmonic and anharmonic calculation

DFT calculations were carried out to determine the harmonic and anharmonic frequencies of the vibrational modes and their intensities for the DMQs. The geometry optimization was carried out with standard polarization basis set 6-31G* at the B3LYP (Becke 1993; Lee, Yang, \& Parr 1988) level of theory using Gaussian $03 \operatorname{codes}^{19}$ in an IBM Cluster P720 (IBL-64) computers. The frequencies and intensities were determined at the fully optimized $\mathrm{C}_{\mathrm{s}}$ geometry of the DMQs (see Figure 4.1).

### 4.3.2 Force field calculation

In section 2.4 .2 of chapter 2, I have discussed that SQM vibrational analysis is the alternative way to resolve the discrepancy between observed fundamentals and calculated harmonic frequencies by means of some scaling procedure. Therefore, I have carried out SQM

# Chapter 4: Infrared spectra of DMQs 

force field calculation which was described in section 2.4.2 of chapter 2. Cartesian Force constants matrix obtained from DFT calculations were transformed to the nonredundant local coordinate matrix of the DMQs using modified version of UMAT program in the QCPE package. ${ }^{20}$ All the 63 nonredundant internal coordinates of the DMQs are shown in Table 4.2. The symbolic force constant matrix, unscaled and scaled force constants in term of nonredundant local coordinates can be found in supporting information of Ref. ${ }^{21}$ For completeness, the same has been shown for one representative molecule 2,4-DMQ in the Appendix at the end of the thesis.

An error analysis have been done in terms of mean deviation, $\delta\left(\mathrm{in}_{\mathrm{cm}}{ }^{-1}\right)$, between the observed and calculated (harmonic, anharmonic and fitted) frequencies using equation 2.13. The mean deviations between the calculated (harmonic, anharmonic and force field fitted) and observed frequencies for three different types of vibrations in DMQs are listed in Table 4.3. From this table it is clear that the aromatic and methyl C-H stretching frequencies deviate more than non-C-H stretching vibrations vis-a-vis the calculated harmonic and anharmonic frequencies. It also indicates that the extent of anharmonicity is not the same for the different modes of vibrations. Overall, the force field fitted frequencies are closest to the observed frequencies. This gives us more confidence in unambiguous and correct assignments of the observed bands although for non C-H vibrations, the differences between the calculated anharmonic frequencies and observed frequencies are less significant.

Figure 4.1. Optimized B3LYP/6-31G* structure and internal coordinates of (a) 2,4-DMQ,
(b) 2,6-DMQ, (c) 2,7-DMQ, and (d) 2,8-DMQ.


Figure 4.1. (Continued)


Twist coordinates, $\tau$ 's numbering are the same as defined for $R$ (the C-C bond coordinates). $\alpha_{1}{ }^{\prime}$ is one of the $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angle coordinate of the $\mathrm{CH}_{3}$ groups. The other $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angle coordinates, $\alpha_{2}{ }_{2}$, $\alpha_{3}^{\prime}$, etc. are defined similarly. $\beta_{1}$ is one of the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle coordinate of $\mathrm{CH}_{3}$ groups. The other H-C-H angle coordinates, $\beta_{2}, \beta_{3}$, etc. are defined similarly.

Table 4.2: Nonredundant local coordinates of the DMQs studied in this thesis.

| Compound | Nonredundant local coordinates |
| :---: | :---: |
| 2,4-DMQ <br> See Fig 4.1 (a) for the internalcoordinates | $\mathrm{S}_{1-3,6-11}=\mathrm{R}(\mathrm{Ar}, \mathrm{C}-\mathrm{C}$ stretch $)\left(\mathrm{R}_{\mathrm{i}}\right) ; \mathrm{S}_{4,5}=\mathrm{R}(\mathrm{Ar}, \mathrm{C}-\mathrm{N}$ stretch $)\left(\mathrm{R}_{\mathrm{i}}{ }_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{12,14}=\mathrm{R}\left(\mathrm{Ar}^{\left.-\mathrm{CH}_{3}, \mathrm{C}-\mathrm{C} \text { stretch }\right)\left(\mathrm{R}^{\prime \prime}{ }_{\mathrm{i}}\right)}\right.$ <br> $\mathrm{S}_{13,15-18}=\mathrm{r}(\mathrm{Ar}, \mathrm{C}-\mathrm{H}$ stretch $)\left(\mathrm{r}_{\mathrm{i}}\right) ; \mathrm{S}_{19-24}=\mathrm{r}(\mathrm{CH} 3, \mathrm{C}-\mathrm{H}$ stretch $)\left(\mathrm{r}_{\mathrm{i}}{ }_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{25,27}=\left(\phi_{1}-\phi_{2}\right) ;\left(\phi_{5}-\phi_{6}\right)\left(\mathrm{C}-\mathrm{CH}_{3}\right.$ def. $)\left(\beta_{\mathrm{i}}^{\prime}\right)$ <br> $\mathrm{S}_{26,28-31}=\left(\phi_{3}-\phi_{4}\right) ;\left(\phi_{7}-\phi_{8}\right) \ldots(\mathrm{Ar}, \mathrm{C}-\mathrm{H}$ def. $)\left(\beta_{\mathrm{i}}\right)$ <br> $S_{32,35}=6^{-1 / 2}\left(\alpha_{1}-\alpha_{2}+\alpha_{3}-\alpha_{4}+\alpha_{5}-\alpha_{6}\right)$ (ring def.) $\left(\delta_{1}, \delta_{4}\right)$ <br> $\mathrm{S}_{33,36}=12^{-1 / 2}\left(2 \alpha_{1}-\alpha_{2}-\alpha_{3}+2 \alpha_{4}-\alpha_{5}-\alpha_{6}\right)\left(\right.$ ring def.) $\left(\delta_{2}, \delta_{5}\right)$ <br> $\mathrm{S}_{34,37}=1 / 2\left(\alpha_{2}-\alpha_{3}+\alpha_{5}-\alpha_{6}\right)$ (ring def.) $\left(\delta_{3}, \delta_{6}\right)$ <br> $\mathrm{S}_{38,43}=6^{-1 / 2}\left(\alpha_{1}^{\prime}+\alpha_{2}^{\prime}+\alpha_{3}^{\prime}-\beta_{1}-\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ sym. def.) $\left(\delta_{\mathrm{a}}\right)$ <br> $\mathrm{S}_{39,44}=6^{-1 / 2}\left(2 \alpha^{\prime}{ }_{1}-\alpha^{\prime}{ }_{2}-\alpha^{\prime}{ }_{3}\right)\left(\mathrm{CH}_{3}\right.$ antisym. def.) $\left(\delta_{\mathrm{s}}\right)$ <br> $\mathrm{S}_{40,45}=2^{-1 / 2}\left(\alpha^{\prime}{ }_{2}-\alpha^{\prime}{ }_{3}\right)\left(\mathrm{CH}_{3}\right.$ antisym. def.) $\left(\delta_{\mathrm{s}}\right)$ <br> $\mathrm{S}_{41,46}=6^{-1 / 2}\left(2 \beta_{1}-\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ rock $) \rho\left(\mathrm{CH}_{3}\right)$ <br> $\mathrm{S}_{42,47}=2^{-1 / 2}\left(\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ rock $) \rho\left(\mathrm{CH}_{3}\right)$ <br> $\mathrm{S}_{48,50}=\gamma\left(\mathrm{Ar}-\mathrm{CH}_{3}, \mathrm{C}-\mathrm{C}\right.$ wag $) \gamma_{\mathrm{i}}$ <br> $\mathrm{S}_{49,51-54}=\gamma(\mathrm{Ar}, \mathrm{C}-\mathrm{H} w a g) \gamma_{\mathrm{i}}^{\prime}$ <br> $\mathrm{S}_{55,58}=6^{-1 / 2}\left(\tau_{1}-\tau_{2}+\tau_{3}-\tau_{4}+\tau_{5}-\tau_{6}\right)$ (ring torsion) $\left(\tau_{1}, \tau_{4}\right)$ <br> $\mathrm{S}_{56,59}=1 / 2\left(\tau_{1}-\tau_{3}+\tau_{4}-\tau_{6}\right)$ (ring torsion) $\left(\tau_{2}, \tau_{5}\right)$ <br> $\mathrm{S}_{57,60}=12^{-1 / 2}\left(-\tau_{1}+2 \tau_{2}-\tau_{3}-\tau_{4}+2 \tau_{5}-\tau_{6}\right)($ ring torsion $)\left(\tau_{3}, \tau_{6}\right)$ <br> $\mathrm{S}_{61}=2^{-1 / 2}\left(\tau_{2-1-3-10}-\tau_{7-1-3-4}\right)\left(\tau_{\text {ring }}\right)$ <br> $\mathrm{S}_{62,63}=\tau_{5-16} ; \tau_{2-20}\left(\mathrm{C}-\mathrm{CH}_{3}\right.$ twist $)\left(\tau^{\prime \prime}{ }_{\mathrm{i}}\right)$ |
| 2,6-DMQ <br> See Fig 4.1 (b) for the internalcoordinates | ```\(\mathrm{S}_{1-3,6-11}=\mathrm{R}(\mathrm{Ar}, \mathrm{C}-\mathrm{C}\) stretch \()\left(\mathrm{R}_{\mathrm{i}}\right) ; \mathrm{S}_{4,5}=\mathrm{R}(\mathrm{Ar}, \mathrm{C}-\mathrm{N}\) stretch \()\left(\mathrm{R}_{\mathrm{i}}^{\prime}\right)\) \(\mathrm{S}_{14,16}=\mathrm{R}\left(\mathrm{Ar}-\mathrm{CH}_{3}, \mathrm{C}-\mathrm{C}\right.\) stretch \()\left(\mathrm{R}^{\prime \prime}{ }_{\mathrm{i}}\right)\) \(\mathrm{S}_{12,13,15,17,18}=\mathrm{r}(\mathrm{Ar}, \mathrm{C}-\mathrm{H}\) stretch \()\left(\mathrm{r}_{\mathrm{i}}\right) ; \mathrm{S}_{19-24}=\mathrm{r}\left(\mathrm{CH}_{3}, \mathrm{C}-\mathrm{H}\right.\) stretch \()\left(\mathrm{r}^{\prime}{ }_{\mathrm{i}}\right)\) \(\mathrm{S}_{25,26,28,30,31}=\left(\phi_{1}-\phi_{2}\right) \ldots ;\left(\phi_{7}-\phi_{8}\right) ;\left(\phi_{11}-\phi_{12}\right) \ldots(\mathrm{C}-\mathrm{H}\) def. \()\left(\beta_{\mathrm{i}}\right)\) \(\mathrm{S}_{27,29}=\left(\phi_{5}-\phi_{6}\right) ;\left(\phi_{9}-\phi_{10}\right)\left(\mathrm{C}-\mathrm{CH}_{3}\right.\) def. \()\left(\beta_{\mathrm{i}}^{\prime}\right)\) \(S_{32,35}=6^{-1 / 2}\left(\alpha_{1}-\alpha_{2}+\alpha_{3}-\alpha_{4}+\alpha_{5}-\alpha_{6}\right)\) (ring def.) \(\left(\delta_{1}, \delta_{4}\right)\) \(S_{33,36}=12^{-1 / 2}\left(2 \alpha_{1}-\alpha_{2}-\alpha_{3}+2 \alpha_{4}-\alpha_{5}-\alpha_{6}\right)\) (ring def.) \(\left(\delta_{2}, \delta_{5}\right)\) \(\mathrm{S}_{34,37}=1 / 2\left(\alpha_{2}-\alpha_{3}+\alpha_{5}-\alpha_{6}\right)\) (ring def.) \(\left(\delta_{3}, \delta_{6}\right)\) \(\mathrm{S}_{38,43}=6^{-1 / 2}\left(\alpha_{1}^{\prime}+\alpha^{\prime}{ }_{2}+\alpha^{\prime}{ }_{3}-\beta_{1}-\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.\) sym. def. \()\left(\delta_{\mathrm{a}}\right)\) \(\mathrm{S}_{39,44}=6^{-1 / 2}\left(2 \alpha^{\prime}{ }_{1}-\alpha^{\prime}{ }_{2}-\alpha^{\prime}{ }_{3}\right)\left(\mathrm{CH}_{3}\right.\) antisym. def.) \(\left(\delta_{\mathrm{s}}\right)\) \(\mathrm{S}_{40,45}=2^{-1 / 2}\left(\alpha_{2}^{\prime}-\alpha^{\prime}{ }_{3}\right)\left(\mathrm{CH}_{3}\right.\) antisym. def.) \(\left(\delta_{\mathrm{s}}\right)\) \(\mathrm{S}_{41,46}=6^{-1 / 2}\left(2 \beta_{1}-\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.\) rock \() \rho\left(\mathrm{CH}_{3}\right)\) \(\mathrm{S}_{42,47}=2^{-1 / 2}\left(\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.\) rock \() \rho\left(\mathrm{CH}_{3}\right)\) \(\mathrm{S}_{48,49,51,53,54}=\gamma\) (Ar, C-H wag) \(\gamma_{\mathrm{i}}\) \(\mathrm{S}_{50,52}=\gamma\left(\mathrm{Ar}-\mathrm{CH}_{3}, \mathrm{C}-\mathrm{C}\right.\) wag \() \gamma_{\mathrm{i}}^{\prime}\) \(\mathrm{S}_{55,58}=6^{-1 / 2}\left(\tau_{1}-\tau_{2}+\tau_{3}-\tau_{4}+\tau_{5}-\tau_{6}\right)\) (ring torsion) \(\left(\tau_{1}, \tau_{4}\right)\) \(\mathrm{S}_{56,59}=1 / 2\left(\tau_{1}-\tau_{3}+\tau_{4}-\tau_{6}\right)\) (ring torsion) \(\left(\tau_{2}, \tau_{5}\right)\) \(\mathrm{S}_{57,60}=12^{-1 / 2}\left(-\tau_{1}+2 \tau_{2}-\tau_{3}-\tau_{4}+2 \tau_{5}-\tau_{6}\right)\) (ring torsion) \(\left(\tau_{3}, \tau_{6}\right)\) \(\mathrm{S}_{61}=2^{-1 / 2}\left(\tau_{2-1-3-10}-\tau_{7-1-3-4}\right)\left(\tau_{\text {ring }}\right)\) \(\mathrm{S}_{62,63}=\tau_{5-16} ; \tau_{8-20}\left(\mathrm{C}-\mathrm{CH}_{3}\right.\) twist \()\left(\tau^{\prime \prime}{ }_{\mathrm{i}}\right)\)``` |

Table 4.2: (Continued) nonredundant local coordinates of the DMQs studied in this thesis.

| Compound | Nonredundant local coordinates |
| :---: | :---: |
| 2,7-DMQ <br> See Fig 4.1 (c) for the internalcoordinates | $\mathrm{S}_{1-3,6-11}=\mathrm{R}(\mathrm{Ar}, \mathrm{C}-\mathrm{C}$ stretch $)\left(\mathrm{R}_{\mathrm{i}}\right) ; \mathrm{S}_{4,5}=\mathrm{R}(\mathrm{Ar}, \mathrm{C}-\mathrm{N}$ stretch $)\left(\mathrm{R}_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{14,17}=\mathrm{R}\left(\mathrm{Ar}-\mathrm{CH}_{3}, \mathrm{C}-\mathrm{C}\right.$ stretch $)\left(\mathrm{R}^{\prime \prime}{ }_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{12,13,15,16,18}=\mathrm{r}(\mathrm{Ar}, \mathrm{C}-\mathrm{H}$ stretch $)\left(\mathrm{r}_{\mathrm{i}}\right) ; \mathrm{S}_{19-24}=\mathrm{r}\left(\mathrm{CH}_{3}, \mathrm{C}-\mathrm{H}\right.$ stretch $)\left(\mathrm{r}_{\mathrm{i}}{ }_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{25,26,28,29,31}=\left(\phi_{1}-\phi_{2}\right) \ldots ;\left(\phi_{7}-\phi_{8}\right) \ldots . .\left(\phi_{13}-\phi_{14}\right)(\mathrm{C}-\mathrm{H}$ def. $)\left(\beta_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{27,30}=\left(\phi_{5}-\phi_{6}\right) ;\left(\phi_{11}-\phi_{12}\right)\left(\mathrm{C}-\mathrm{CH}_{3}\right.$ def. $)\left(\beta_{\mathrm{i}}^{\prime}\right)$ <br> $\mathrm{S}_{32,35}=6^{-1 / 2}\left(\alpha_{1}-\alpha_{2}+\alpha_{3}-\alpha_{4}+\alpha_{5}-\alpha_{6}\right)$ (ring def.) $\left(\delta_{1}, \delta_{4}\right)$ <br> $\mathrm{S}_{33,36}=12^{-1 / 2}\left(2 \alpha_{1}-\alpha_{2}-\alpha_{3}+2 \alpha_{4}-\alpha_{5}-\alpha_{6}\right)$ (ring def.) $\left(\delta_{2}, \delta_{5}\right)$ <br> $\mathrm{S}_{34,37}=1 / 2\left(\alpha_{2}-\alpha_{3}+\alpha_{5}-\alpha_{6}\right)\left(\right.$ ring def.) $\left(\delta_{3}, \delta_{6}\right)$ <br> $\mathrm{S}_{38,43}=6^{-1 / 2}\left(\alpha_{1}^{\prime}+\alpha_{2}^{\prime}+\alpha_{3}^{\prime}-\beta_{1}-\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ sym. def.) $\left(\delta_{\mathrm{a}}\right)$ <br> $\mathrm{S}_{39,44}=6^{-1 / 2}\left(2 \alpha_{1}-\alpha_{2}-\alpha_{3}\right)\left(\mathrm{CH}_{3}\right.$ antisym. def.) $\left(\delta_{\mathrm{s}}\right)$ <br> $\mathrm{S}_{40,45}=2^{-1 / 2}\left(\alpha^{\prime}{ }_{2}-\alpha^{\prime}{ }_{3}\right)\left(\mathrm{CH}_{3}\right.$ antisym. def.) $\left(\delta_{\mathrm{s}}\right)$ <br> $\mathrm{S}_{41,46}=6^{-1 / 2}\left(2 \beta_{1}-\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ rock $) \rho\left(\mathrm{CH}_{3}\right)$ <br> $\mathrm{S}_{42,47}=2^{-1 / 2}\left(\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ rock $) \rho\left(\mathrm{CH}_{3}\right)$ <br> $\mathrm{S}_{48,49,51,52,54}=\gamma$ (Ar, C-H wag) $\gamma_{\mathrm{i}}$ <br> $\mathrm{S}_{50,53}=\gamma\left(\mathrm{Ar}-\mathrm{CH}_{3}\right.$, C-C wag) $\gamma_{\mathrm{i}}^{\prime}$ <br> $\mathrm{S}_{55,58}=6^{-1 / 2}\left(\tau_{1}-\tau_{2}+\tau_{3}-\tau_{4}+\tau_{5}-\tau_{6}\right)$ (ring torsion) $\left(\tau_{1}, \tau_{4}\right)$ <br> $\mathrm{S}_{56,59}=1 / 2\left(\tau_{1}-\tau_{3}+\tau_{4}-\tau_{6}\right)($ ring torsion $)\left(\tau_{2}, \tau_{5}\right)$ <br> $\mathrm{S}_{57,60}=12^{-1 / 2}\left(-\tau_{1}+2 \tau_{2}-\tau_{3}-\tau_{4}+2 \tau_{5}-\tau_{6}\right)$ (ring torsion) $\left(\tau_{3}, \tau_{6}\right)$ <br> $\mathrm{S}_{61}=2^{-1 / 2}\left(\tau_{2-1-3-10}-\tau_{7-1-3-4}\right)\left(\tau_{\text {ring }}\right)$ <br> $\mathrm{S}_{62,63}=\tau_{5-16} ; \tau_{9-20}\left(\mathrm{C}-\mathrm{CH}_{3}\right.$ twist $)\left(\tau^{\prime \prime}{ }_{\mathrm{i}}\right)$ |
| 2,8-DMQ <br> See Fig 4.1 (d) for the internalcoordinates | $\mathrm{S}_{1-3,6-11}=\mathrm{R}(\mathrm{Ar}, \mathrm{C}-\mathrm{C}$ stretch $)\left(\mathrm{R}_{\mathrm{i}}\right) ; \mathrm{S}_{4,5}=\mathrm{R}(\mathrm{Ar}, \mathrm{C}-\mathrm{N}$ stretch $)\left(\mathrm{R}_{\mathrm{i}}^{\prime}\right)$ <br> $\mathrm{S}_{14,18}=\mathrm{R}\left(\mathrm{Ar}-\mathrm{CH}_{3}, \mathrm{C}-\mathrm{C}\right.$ stretch $)\left(\mathrm{R}_{\mathrm{i}}{ }_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{12,13,15-17}=\mathrm{r}(\mathrm{Ar}, \mathrm{C}-\mathrm{H}$ stretch $)\left(\mathrm{r}_{\mathrm{i}}\right) ; \mathrm{S}_{19-24}=\mathrm{r}\left(\mathrm{CH}_{3}, \mathrm{C}-\mathrm{H}\right.$ stretch $)\left(\mathrm{r}^{\prime}{ }_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{25,26,28-30}=\left(\phi_{1}-\phi_{2}\right) \ldots ;\left(\phi_{7}-\phi_{8}\right) \ldots(\mathrm{C}-\mathrm{H}$ def. $)\left(\beta_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{27,31}=\left(\phi_{5}-\phi_{6}\right) ;\left(\phi_{13}-\phi_{14}\right)\left(\mathrm{C}-\mathrm{CH}_{3}\right.$ def. $)\left(\beta_{\mathrm{i}}^{\prime}\right)$ <br> $S_{32,35}=6^{-1 / 2}\left(\alpha_{1}-\alpha_{2}+\alpha_{3}-\alpha_{4}+\alpha_{5}-\alpha_{6}\right)($ ring def. $)\left(\delta_{1}, \delta_{4}\right)$ <br> $\mathrm{S}_{33,36}=12^{-1 / 2}\left(2 \alpha_{1}-\alpha_{2}-\alpha_{3}+2 \alpha_{4}-\alpha_{5}-\alpha_{6}\right)$ (ring def.) $\left(\delta_{2}, \delta_{5}\right)$ <br> $\mathrm{S}_{34,37}=1 / 2\left(\alpha_{2}-\alpha_{3}+\alpha_{5}-\alpha_{6}\right)$ (ring def.) $\left(\delta_{3}, \delta_{6}\right)$ <br> $\mathrm{S}_{38,43}=6^{-1 / 2}\left(\alpha^{\prime}{ }_{1}+\alpha^{\prime}{ }_{2}+\alpha^{\prime}{ }_{3}-\beta_{1}-\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ sym. def.) $\left(\delta_{\mathrm{a}}\right)$ <br> $\mathrm{S}_{39,44}=6^{-1 / 2}\left(2 \alpha_{1}^{\prime}-\alpha_{2}^{\prime}-\alpha^{\prime}{ }_{3}\right)\left(\mathrm{CH}_{3}\right.$ antisym. def.) $\left(\delta_{\mathrm{s}}\right)$ <br> $\mathrm{S}_{40,45}=2^{-1 / 2}\left(\alpha_{2}^{\prime}-\alpha^{\prime}{ }_{3}\right)\left(\mathrm{CH}_{3}\right.$ antisym. def.) $\left(\delta_{\mathrm{s}}\right)$ <br> $\mathrm{S}_{41,46}=6^{-1 / 2}\left(2 \beta_{1}-\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ rock $) \rho\left(\mathrm{CH}_{3}\right)$ <br> $\mathrm{S}_{42,47}=2^{-1 / 2}\left(\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ rock $) \rho\left(\mathrm{CH}_{3}\right)$ <br> $\mathrm{S}_{48,49,51-53}=\gamma$ (Ar, C-H wag) $\gamma_{\mathrm{i}}$ <br> $\mathrm{S}_{50,54}=\gamma\left(\mathrm{Ar}-\mathrm{CH}_{3}, \mathrm{C}-\mathrm{C}\right.$ wag $) \gamma_{\mathrm{i}}^{\prime}$ <br> $\mathrm{S}_{55,58}=6^{-1 / 2}\left(\tau_{1}-\tau_{2}+\tau_{3}-\tau_{4}+\tau_{5}-\tau_{6}\right)$ (ring torsion) $\left(\tau_{1}, \tau_{4}\right)$ <br> $\mathrm{S}_{56,59}=1 / 2\left(\tau_{1}-\tau_{3}+\tau_{4}-\tau_{6}\right)($ ring torsion $)\left(\tau_{2}, \tau_{5}\right)$ <br> $\mathrm{S}_{57,60}=12^{-1 / 2}\left(-\tau_{1}+2 \tau_{2}-\tau_{3}-\tau_{4}+2 \tau_{5}-\tau_{6}\right)($ ring torsion $)\left(\tau_{3}, \tau_{6}\right)$ <br> $\mathrm{S}_{61}=2^{-1 / 2}\left(\tau_{2-1-3-10}-\tau_{7-1-3-4}\right)\left(\tau_{\text {ring }}\right)$ <br> $\mathrm{S}_{62,63}=\tau_{5-16} ; \tau_{10-20}\left(\mathrm{C}-\mathrm{CH}_{3}\right.$ twist) $\left(\tau^{\prime \prime}{ }_{\mathrm{i}}\right)$ |

Table 4.3: Mean deviation, $\delta$ (in $\mathbf{c m}^{-1}$ ) between the calculated (harmonic, anharmonic and force field fitted) and observed frequencies for different modes of vibration in the DMQs.

| /Mode of <br> vibration | Harmonic |  |  |  |  | Anharmonic |  |  |  |  | Force Field Fitted |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
|  | (a) | (b) | (c) | (d) | (a) | (b) | (c) | (d) | (a) | (b) | (c) | (d) |  |  |
|  | 166.9 | 139.4 | 165.6 | 167.9 | 26.2 | 7.6 | 40.8 | 25.4 | 0.16 | 0.15 | 0.36 | 0.36 |  |  |
| Methyl <br> C-H str | 176.9 | 176.2 | 176.6 | 186.8 | 41.1 | 49.1 | 48.7 | 57.4 | 3.1 | 1.7 | 2.5 | 8.3 |  |  |
| Non-C-H <br> str | 31.7 | 31.0 | 32.6 | 31.1 | 14.6 | 12.9 | 11.1 | 9.8 | 1.7 | 1.8 | 2.6 | 1.5 |  |  |

(a), (b), (c), and (d) represents the 2,4-, 2,6-, 2,7-, and 2,8-DMQ, respectivel.

### 4.4 Results and discussion

The gas phase IR spectra of the DMQs are shown in Figure 4.2. The experimental and theoretical infrared frequencies, intensities and potential energy distributions (PEDs) of vibrational modes of the DMQs are listed in Tables 4.4-4.7. Observed non-fundamental and corresponding calculated non-fundamental anharmonic bands are listed in Table 4.8. To compare the experimental and calculated spectra, we have displayed spectra of all the four DMQs separately in Figure 4.3. For the calculated spectra, force field fitted frequencies were used and FWHM of each band was assumed to be $15 \mathrm{~cm}^{-1}$ (see section 2.5 in chapter 2). Each DMQ molecules has 23 atoms; and thus 63 normal modes which belong to the irreducible representation $41 \mathrm{~A}^{\prime}+22 \mathrm{~A}^{\prime \prime}$ under the $\mathrm{C}_{\mathrm{s}}$ point group. The observed spectra have been divided in three distinct regions: (A) aromatic and methyl $\mathrm{C}-\mathrm{H}$ stretching region, (B) non $\mathrm{C}-\mathrm{H}$ stretching region including aromatic $\mathrm{C}-\mathrm{C} / \mathrm{C}-\mathrm{N}$, aromatic-methyl $\mathrm{C}-\mathrm{C}$ stretch, $\mathrm{C}-\mathrm{H}$ in-plane and
out-of-plane, methyl C-H symmetric and asymmetric deformations, etc. and (C) nonfundamental vibration region: combination and overtone bands. Initially, fundamental bands are tentatively assigned using calculated anharmonic frequencies. The assignment is then confirmed by fitted frequencies obtained by scaled force field calculations since some of the observed frequencies, particularly aromatic and methyl C-H stretching frequencies differ by as much as $50 \mathrm{~cm}^{-1}$ from the calculated anharmonic frequencies. The fitting by the force field method is extremely good and RMS errors (in $\mathrm{cm}^{-1}$ ) with 100 iterations remain within a few wavenumbers, $3 \mathrm{~cm}^{-1}$. Details of the assignment have been discussed in the subsequent sections.


Figure 4.2. Experimental gas phase IR absorption spectra of (a) 2,4-DMQ, (b) 2,6-DMQ, (c) 2,7$D M Q$, and (d) 2,8-DMQ at $0.5 \mathrm{~cm}^{-1}$ resolution.

### 4.4.1 C-H stretching Vibrations:

The aromatic C-H stretching region in the experimental spectra is always more complex than that predicted by DFT due to the occurrence of Fermi resonances and the presence overtone and combination modes. ${ }^{22}$ However, we could assign the bands observed in this region with the help of PEDs. Groups of two to three bands in the spectral range of (2980 3070) $\mathrm{cm}^{-1}$ are assigned to aromatic C-H stretching vibrations. Bands observed at 3075.8, 3039.2, and $2984.9 \mathrm{~cm}^{-1}$ in 2,4-DMQ; 3066.1 and $3032.9 \mathrm{~cm}^{-1}$ in 2,6-DMQ; 3059.3, 3028.2, and $2987.7 \mathrm{~cm}^{-1}$ in 2,7-DMQ and $3056.8,3027.3$, and $2978.9 \mathrm{~cm}^{-1}$ in 2,8-DMQ correspond to the calculated anharmonic fundamental bands at $3079.4,3052.2$, and $3046.9 \mathrm{~cm}^{-1}$ in 2,4-DMQ; 3057.3 and $3026.4 \mathrm{~cm}^{-1}$ in 2,6-DMQ; 3064.1, 3053.5 , and $3020.0 \mathrm{~cm}^{-1}$ in 2,7-DMQ; 3069.3, 3049.4 , and $3020.6 \mathrm{~cm}^{-1}$ in $2,8-\mathrm{DMQ}$, respectively. On the other hand, their respective fitted frequencies are $3076.3,3039.2$, and $2984.9 \mathrm{~cm}^{-1}$ in 2,4-DMQ; 3066.0 and $3032.7 \mathrm{~cm}^{-1}$ in $2,6-$ DMQ; 3059.3, 3028.2 , and $2988.8 \mathrm{~cm}^{-1}$ in 2,7-DMQ; 3056.8, 3027.3 , and $2980.0 \mathrm{~cm}^{-1}$ in 2,8DMQ. The force field fitted frequencies match very well with the observed bands which add evidence to our assignment.

The next three bands observed in the spectral range of $2860-2970 \mathrm{~cm}^{-1}$ are assigned to antisymmetric and symmetric C-H stretching vibrations of methyl groups. The interpretation of the methyl C-H stretching regions of the vibrational spectra of methylated compounds is normally hindered by a Fermi resonance which occurs between the methyl C-H symmetric stretch and an overtone involving two quanta of a methyl deformation mode. ${ }^{23}$ For large aromatic hydrocarbons such as the DMQs, it is difficult to ascertain the presence or absence of such resonances in the methyl $\mathrm{C}-\mathrm{H}$ stretching region, however, the closeness of our fitted frequencies to the observed ones provides the basis of our assignment. Bands observed at

Chapter 4: Infrared spectra of DMQs
2961.0 and 2933.5 $\mathrm{cm}^{-1}$ in 2,4-DMQ; 2959.9 and $2933.3 \mathrm{~cm}^{-1}$ in 2,6-DMQ; 2958.6 and 2934.4 $\mathrm{cm}^{-1}$ in 2,7-DMQ; 2966.3 and $2934.7 \mathrm{~cm}^{-1}$ in 2,8-DMQ are assigned to asymmetric stretching vibrations of the methyl C-H by comparing with the force field fitted frequencies at 2959.7 and $2930.4 \mathrm{~cm}^{-1}$ in 2,4-DMQ; 2959.3 and $2931.9 \mathrm{~cm}^{-1}$ in 2,6-DMQ; 2957.7 and $2932.6 \mathrm{~cm}^{-1}$ in 2,7-DMQ; 2963.5 and $2925.5 \mathrm{~cm}^{-1}$ in 2,8-DMQ, respectively. Their corresponding anharmonic frequencies at 3007.3 and $2955.8 \mathrm{~cm}^{-1}$ in 2,4-DMQ; 3013.1 and $2944.0 \mathrm{~cm}^{-1}$ in $2,6-\mathrm{DMQ}$; 3007.2 and $2945.1 \mathrm{~cm}^{-1}$ in 2,7-DMQ; 3007.3 and $2958.1 \mathrm{~cm}^{-1}$ in 2,8-DMQ which deviate by $\sim$ $30 \mathrm{~cm}^{-1}$. The symmetric methyl C-H stretching band of moderate intensity appears at 2873.8 $\mathrm{cm}^{-1}$ in 2,4-DMQ, $2876.0 \mathrm{~cm}^{-1}$ in 2,6-DMQ, $2875.8 \mathrm{~cm}^{-1}$ in 2,7-DMQ, and $2863.1 \mathrm{~cm}^{-1}$ in $2,8-$ DMQ. This band can be correlated with the calculated anharmonic frequencies at $2928.5 \mathrm{~cm}^{-1}$ in 2,4-DMQ, $2959.6 \mathrm{~cm}^{-1}$ in 2,6-DMQ, $2962.8 \mathrm{~cm}^{-1}$ in 2,7-DMQ, and $2971.4 \mathrm{~cm}^{-1}$ in 2,8-DMQ, respectively. DFT calculated asymmetric and symmetric anharmonic frequencies are generally overestimated, whereas the force field fitted frequencies are quite close to the observed frequencies as seen from Tables $4.4-4.7$. It is also found that the absolute intensities of the C H stretching bands do not match well with the calculated band intensities perhaps partially due to the occurrence of Fermi resonances in the region.

### 4.4.2 Non C-H stretching Vibrations:

Except aromatic C-H out-of-plane bending vibrations, most of the non $\mathrm{C}-\mathrm{H}$ stretching vibrations belong to the irreducible representation, $\mathrm{A}^{\prime}$. A highly intense band observed at $1609.7 \mathrm{~cm}^{-1}$ in 2,4-DMQ, at $1610.3 \mathrm{~cm}^{-1}$ in 2,6-DMQ, at $1612.5 \mathrm{~cm}^{-1}$ in $2,7-\mathrm{DMQ}$ and at $1615.1 \mathrm{~cm}^{-1}$ in 2,8-DMQ is assigned to the aromatic C-C stretching vibration.

Table 4.4: Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-31 G^{*}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of $2,4-D M Q$.

| Sym | B3LYP/6-31G* |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| $A^{\prime}$ |  |  |  |  |  |  |  |
| 1 | 3218.3 | 14.954 | 3079.4 | 3075.8 | 16.327 | 3076.3 | $r_{2}(48)+r_{5}(47)$ |
| 2 | 3210.0 | 27.665 | 3072.2 | (3075.0) |  | 3074.5 | $r_{2}(50)+r_{5}(47)$ |
| 3 | 3197.5 | 14.608 | 3052.2 | 3039.2 | 8.577 | 3039.2 | $r_{4}(92)$ |
| 4 | 3185.1 | 1.440 | 3046.9 | 2984.9 | 3.009 | 2984.9 | $r_{3}(96)$ |
| 5 | 3180.9 | 19.449 | 3041.6 | (2984.0) |  | 2984.0 | $r_{1}(98)$ |
| 6 | 3157.6 | 8.121 | 3007.3 | 2961.0 | 2.106 | 2959.7 | $r_{7}^{\prime}(77)+r_{6}^{\prime}(23)$ |
| 7 | 3131.4 | 16.314 | 2985.1 | (2960.0) |  | 2958.8 | $r_{9}^{\prime}(80)+r_{8}^{\prime}(18)$ |
| 8 | 3044.8 | 17.224 | 2928.5 | 2873.8 | 5.643 | 2878.8 | $r_{8}^{\prime}(81)+r_{9}^{\prime}(18)$ |
| 9 | 3044.1 | 25.493 | 2942.6 | (2873.0) |  | 2877.2 | $r_{6}^{\prime}(77)+r_{7}^{\prime}(23)$ |
| 10 | 1672.5 | 4.589 | 1633.2 | (1627.0) |  | 1626.2 | $R_{8}(26)+R_{10}(18)+R_{11}(11)$ |
| 11 | 1661.7 | 76.208 | 1619.5 | 1609.7 | 73.664 | 1610.9 | $R_{2}$ ( 36) |
| 12 | 1617.6 | 23.918 | 1577.2 | 1566.9 | 14.371 | 1568.2 | $R_{4}^{\prime}(23)+R_{9}(13)+R_{10}(13)$ |
| 13 | 1561.7 | 19.393 | 1525.8 | 1512.8 | 18.510 | 1513.0 | $R_{9}$ ( 17) |
| 14 | 1529.7 | 10.823 | 1472.0 | (1488.0) |  | 1489.1 | $\delta_{s} \mathrm{CH}_{3}(2)(67)$ |
| 15 | 1514.7 | 9.856 | 1498.1 | (1474.0) |  | 1470.2 | $\begin{aligned} & \delta_{s} \mathrm{CH}_{3}(1)(16)+\delta_{s} \mathrm{CH}_{3}(2)(14) \\ & +\beta_{4}(10) \end{aligned}$ |
| 16 | 1499.6 | 3.227 | 1464.6 | (1449.0) |  | 1450.8 | $\delta_{s} \mathrm{CH}_{3}(1)(58)$ |
| 17 | 1457.7 | 20.604 | 1423.8 | 1413.8 | 11.136 | 1412.6 | $\beta_{2}$ ( 18) |
| 18 | 1440.1 | 0.491 | 1433.7 | (1401.0) |  | 1401.1 | $\rho \mathrm{CH}_{3}(1)(86)$ |
| 19 | 1431.2 | 5.113 | 1422.1 | 1380.1 | 8.201 | 1381.3 | $\delta_{5}(63)+R_{12}^{\prime \prime}(17)$ |
| 20 | 1411.0 | 2.956 | 1375.5 | (1373.0) |  | 1371.4 | $R_{6}(30)+R_{5}^{\prime}(14)$ |
| 21 | 1386.6 | 3.509 | 1358.5 | (1349.0) |  | 1347.5 | $R_{4}^{\prime}(12)+R_{10}(12)+R_{2}(10)$ |
| 22 | 1370.0 | 16.948 | 1341.7 | 1336.9 | 12.415 | 1332.1 | $R_{3}(18)+R_{5}^{\prime}(12)$ |
| 23 | 1300.0 | 0.247 | 1279.6 | (1265.0) |  | 1263.3 | $\begin{aligned} & \beta_{6}(17)+\beta_{2}(15)+R_{11}(13) \\ & \beta_{5}(11) \end{aligned}$ |
| 24 | 1268.5 | 1.101 | 1246.6 | 1223.3 | 2.106 | 1226.6 | $\begin{aligned} & R_{7}(23)+R_{5}^{\prime}(15)+R_{1}(13) \\ & +r_{11}^{\prime}(12) \end{aligned}$ |
| 25 | 1223.6 | 6.944 | 1202.0 | 1192.9 | 4.966 | 1192.1 | $r_{11}^{\prime}(34)+R_{12}^{\prime \prime}(14)$ |
| 26 | 1192.8 | 0.750 | 1177.9 | (1160.0) |  | 1161.0 | $\beta_{3}^{\prime}(39)+\beta_{2}(16)+R_{8}(11$ |
| 27 | 1157.6 | 1.904 | 1142.4 | 1121.2 | 2.332 | 1122.9 | $\beta_{4}(30)+\beta_{5}(22)+R_{10}(12)$ |
| 28 | 1093.0 | 0.707 | 1078.3 | (1063.0) |  | 1063.2 | $\begin{aligned} & \delta_{2}(16)+R_{13}^{\prime \prime}(14) \\ & +\delta_{a} C H_{3}(2)(14)+R_{11} \end{aligned}$ |
| 29 | 1053.6 | 4.610 | 1035.0 | (1025.0) |  | 1025.6 | $R_{9}(38)+R_{10}(12)$ |
| 30 | 1042.4 | 2.048 | 1028.2 | 1024.0 | 3.837 | 1021.0 | $\begin{aligned} & \delta_{a} \mathrm{CH}_{3}(1)(24)+\delta_{a} \mathrm{CH}_{3}(2)(14) \\ & +R_{9}(12) \end{aligned}$ |
| 31 | 1003.3 | 6.645 | 989.2 | 982.5 | 2.558 | 980.4 | $\begin{aligned} & \delta_{2}(21)+\delta_{a} \mathrm{CH}_{3}(2)(17) \\ & +R_{13}^{\prime \prime}(16)+R_{12}^{\prime \prime}(11) \end{aligned}$ |
| 32 | 977.3 | 1.703 | 966.0 | 951.2 | 1.655 | 953.2 | $R_{3}(29)+\beta_{6}(18)+\delta_{1}(10)$ |
| 33 | 877.3 | 4.283 | 863.9 | ( 853.0) |  | 855.3 | $\delta_{2}(33)$ |
| 34 | 758.3 | 2.064 | 750.0 | ( 738.0) |  | 737.4 | $\begin{aligned} & R_{1}(15)+R_{7}(15)+\delta_{1} \\ & +\delta_{3}(11)+R_{6}(11)+\beta_{6}(11) \end{aligned}$ |
| 35 | 657.9 | 4.115 | 650.4 | 645.8 | 3.837 | 645.3 | $\delta_{3}(44)+\beta_{6}(12)$ |
| 36 | 546.9 | 1.913 | 540.5 | 531.0 | 1.882 | 531.2 | $\begin{aligned} & \beta_{7}(27)+\delta_{4}(16)+R_{13}^{\prime \prime}(11) \\ & +\delta_{1}(10) \end{aligned}$ |

## Chapter 4: Infrared spectra of DMQs

Table 4.4:(Continued) Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-31 G^{*}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of $2,4-D M Q$.

| Sym | B3LYP/6-31G* |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| 37 | 533.0 | 1.397 | 529.4 | ( 518.0) |  | 518.7 | $\delta_{3}(25)+\delta_{4}(19)$ |
| 38 | 501.6 | 2.765 | 500.9 | ( 488.0) |  | 487.9 | $\delta_{1}(24)+r_{10}^{\prime}(21)+\beta_{1}^{\prime}(20)$ |
| 39 | 452.7 | 2.050 | 449.6 | ( 440.7) |  | 439.8 | $\begin{aligned} & \beta_{7}(30)+\delta_{1}(29) \\ & +\delta_{4}(13) \end{aligned}$ |
| 40 | 280.6 | 0.932 | 285.1 | ( 273.0) |  | 273.1 | $r_{10}^{\prime}(43)+\beta_{1}^{\prime}(37)$ |
| 41 | 266.9 | 1.142 | 267.2 | ( 259.0) |  | 259.0 | $\beta_{1}^{\prime}(30)+\delta_{4}(25)+r_{10}^{\prime}(15)$ |
| $A^{\prime \prime}$ |  |  |  |  |  |  |  |
| 42 | 3097.2 | 15.845 | 2955.8 | 2933.5 | 15.500 | 2930.4 | $r_{6}^{\prime}(100)$ |
| 43 | 3094.4 | 18.237 | 2947.2 | (2933.0) |  | 2928.9 | $r_{8}^{\prime}(100)$ |
| 44 | 1513.7 | 3.042 | 1508.6 | (1473.3) |  | 1472.6 | $\delta_{s} \mathrm{CH}_{3}(1)$ (92) |
| 45 | 1512.2 | 10.639 | 1504.7 | 1450.7 | 11.813 | 1450.3 | $\delta_{s} \mathrm{CH}_{3}(2)(92)$ |
| 46 | 1076.8 | 1.079 | 1053.0 | (1048.0) |  | 1052.3 | $\delta_{6}(55)+\delta_{a} \mathrm{CH}_{3}(1)(19)$ |
| 47 | 1069.0 | 3.989 | 1049.2 | (1040.0) |  | 1044.1 | $\begin{aligned} & \rho \mathrm{CH}_{3}(1)(48)+\delta_{a} \mathrm{CH}_{3}(2)(17) \\ & +\rho \mathrm{CH}_{3}(2)(10) \end{aligned}$ |
| 48 | 996.2 | 0.136 | 982.2 | ( 969.0) |  | 968.6 | $\begin{aligned} & \gamma_{5}(35)+\gamma_{4}(24)+\gamma_{3}^{\prime}(15) \\ & +\tau_{2}(12) \end{aligned}$ |
| 49 | 961.4 | 1.579 | 953.1 | ( 950.0) |  | 949.2 | $\gamma_{2}(34)+\gamma_{3}^{\prime}(30)+\gamma_{5}(25)$ |
| 50 | 895.2 | 2.926 | 877.2 | ( 871.0) |  | 872.0 | $\begin{aligned} & \rho \mathrm{CH}_{3}(2)(23)+\gamma_{2}(22)+ \\ & \gamma_{4}(15)+\gamma_{3}^{\prime}(10) \end{aligned}$ |
| 51 | 882.7 | 8.855 | 866.7 | 857.1 | 9.932 | 856.4 | $\rho \mathrm{CH}_{3}(2)$ ( 59$)$ |
| 52 | 799.9 | 0.986 | 791.3 | ( 778.0) |  | 780.6 | $\tau_{2}(38)+\gamma_{6}(35)$ |
| 53 | 778.8 | 47.456 | 766.0 | 755.7 | 63.256 | 756.2 | $\begin{aligned} & \gamma_{3}^{\prime}(29)+\gamma_{4}(23)+\gamma_{2}(22) \\ & +\gamma_{5}(12) \end{aligned}$ |
| 54 | 664.9 | 0.130 | 656.4 | ( 647.0) |  | 645.2 | $\tau_{2}(33)+\gamma_{6}(25)+\gamma_{1}^{\prime}(18)$ |
| 55 | 573.3 | 0.124 | 568.1 | ( 558.0) |  | 556.4 | $\begin{aligned} & \rho \mathrm{CH}_{3}(2)(26)+\tau_{1}(17) \\ & +\tau_{5}(17)+\gamma_{7}(11) \end{aligned}$ |
| 56 | 533.5 | 0.100 | 526.3 | ( 519.0) |  | 519.7 | $\begin{aligned} & \tau_{4}(21)+\gamma_{1}^{\prime}(14)+\tau_{2}(13) \\ & +\tau_{6}(11) \end{aligned}$ |
| 57 | 434.7 | 2.376 | 429.5 | ( 427.0) |  | 427.2 | $\begin{aligned} & \tau_{3}(32)+\tau_{4}(25) \\ & +\rho C H_{3}(2)(13) \end{aligned}$ |
| 58 | 309.9 | 0.848 | 304.6 | ( 301.0) |  | 300.7 | $\tau_{4}(42)+\gamma_{1}^{\prime}(11)$ |
| 59 | 206.6 | 0.493 | 207.8 | ( 201.0) |  | 200.9 | $\begin{aligned} & \tau_{1}(39)+\tau_{\text {ring }} \\ & +\rho \mathrm{CH}_{3}(2)(12) \end{aligned}$ |
| 60 | 163.0 | 0.070 | 186.5 | ( 158.0) |  | 158.0 | $\tau_{\text {ring }}(67)+\tau_{1}(14)$ |
| 61 | 153.9 | 2.721 | 153.6 | ( 149.0) |  | 149.0 | $\begin{aligned} & \tau_{5}(29)+\rho C H_{3}(2)(19) \\ & +\tau_{3}(17) \end{aligned}$ |
| 62 | 114.3 | 0.191 | 103.9 | ( 111.0) |  | 111.1 | $\gamma_{7}(49)+\tau_{4}(15)+\tau_{3}(11)$ |
| 63 | 81.0 | 0.624 | 49.8 | ( 78.0) |  | 78.0 | $\tau_{6}(72)$ |

Since the fitting algorithm required all the experimental frequencies, the numbers in parenthesis are introduced as good guesses for $2,4-D M Q$ and do not have any other significance. RMS error is 1.9720 for the fitting of experimental frequencies.

Table 4.5: Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-31 G^{*}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of 2,6-DMQ.

| Sym | B3LYP/6-31G ${ }^{*}$ |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| $A^{\prime}$ |  |  |  |  |  |  |  |
| 1 | 3215.0 | 9.908 | 3073.9 | (3066.0) |  | 3066.3 | $r_{2}(46)+r_{5}(46)$ |
| 2 | 3199.7 | 23.718 | 3057.3 | 3066.1 | 16.737 | 3066.0 | $r_{5}(47)+r_{2}(46)$ |
| 3 | 3178.7 | 12.350 | 3024.2 | (3033.0) |  | 3033.4 | $r_{4}(34)+r_{1}(32)+r_{3}(27)$ |
| 4 | 3178.2 | 15.913 | 3026.4 | 3032.9 | 10.258 | 3032.7 | $r_{4}(56)+r_{1}(32)$ |
| 5 | 3169.8 | 16.336 | 3008.7 | (3030.0) |  | 3029.8 | $r_{3}(67)+r_{1}(28)$ |
| 6 | 3158.9 | 8.269 | 3013.1 | 2959.9 | 4.409 | 2959.3 | $r_{7}^{\prime}(76)+r_{6}^{\prime}(24)$ |
| 7 | 3126.1 | 15.737 | 2980.7 | (2959.0) |  | 2958.2 | $r_{9}^{\prime}(81)+r_{8}^{\prime}(19)$ |
| 8 | 3044.4 | 23.522 | 2959.6 | 2876.0 | 13.497 | 2879.3 | $r_{8}^{\prime}(81)+r_{9}^{\prime}(18)$ |
| 9 | 3041.1 | 40.044 | 2982.6 | (2876.0) |  | 2877.9 | $r_{6}^{\prime}(76)+r_{7}^{\prime}(24)$ |
| 10 | 1685.0 | 2.275 | 1648.0 | (1640.0) |  | 1639.9 | $R_{8}(23)+R_{10}(20)+\delta_{4}(11)$ |
| 11 | 1661.8 | 63.725 | 1624.8 | 1610.3 | 62.269 | 1609.1 | $R_{2}$ ( 36) |
| 12 | 1614.0 | 13.368 | 1571.9 | 1565.5 | 8.098 | 1568.6 | $\begin{aligned} & R_{4}^{\prime}(18)+R_{6}(12)+R_{1}(11) \\ & +R_{10}(11) \end{aligned}$ |
| 13 | 1552.0 | 29.518 | 1516.4 | 1498.6 | 33.024 | 1503.7 | $\delta_{s} \mathrm{CH}_{3}(2)(16)+\mathrm{R}_{9}(13)$ |
| 14 | 1537.8 | 0.596 | 1502.0 | (1496.0) |  | 1493.5 | $R_{11}(13)+\delta_{s} \mathrm{CH}_{3}(2)(12)$ |
| 15 | 1514.5 | 14.448 | 1511.4 | (1474.0) |  | 1473.1 | $\delta_{s} \mathrm{CH}_{3}(2)(53)+r_{11}^{\prime}(10)$ |
| 16 | 1506.5 | 8.419 | 1499.0 | 1453.1 | 8.278 | 1453.3 | $\delta_{s} \mathrm{CH}_{3}(1)(75)$ |
| 17 | 1445.2 | 0.275 | 1427.4 | (1406.0) |  | 1406.1 | $\rho \mathrm{CH}_{3}(1)(88)$ |
| 18 | 1440.9 | 4.430 | 1411.5 | (1402.4) |  | 1398.7 | $\begin{aligned} & R_{10}(17)+R_{7}(14)+\beta_{2}(13) \\ & +\delta_{5}(10) \end{aligned}$ |
| 19 | 1431.1 | 2.951 | 1415.5 | (1392.0) |  | 1392.7 | $\delta_{5}(76)$ |
| 20 | 1413.4 | 3.843 | 1380.5 | 1378.6 | 14.037 | 1381.4 | $R_{6}(27)+R_{8}(13)$ |
| 21 | 1394.9 | 10.995 | 1358.8 | 1340.0 | 1.709 | 1341.7 | $R_{4}^{\prime}(26)+R_{2}(20)$ |
| 22 | 1349.3 | 11.198 | 1326.3 | 1313.1 | 13.587 | 1311.2 | $R_{5}^{\prime}(28)+\beta_{4}(14)+\delta_{2}(13)$ |
| 23 | 1295.6 | 1.855 | 1279.0 | 1266.8 | 0.899 | 1265.4 | $\beta_{6}(23)+\beta_{2}(19)+\beta_{5}^{\prime}(13)$ |
| 24 | 1260.7 | 5.395 | 1235.6 | 1223.0 | 12.507 | 1221.7 | $R_{5}^{\prime}(15)+R_{7}(14)+R_{12}^{\prime \prime}(14)$ |
| 25 | 1252.5 | 5.537 | 1223.7 | (1219.1) |  | 1217.4 | $\begin{aligned} & R_{13}^{\prime \prime}(14)+\delta_{2}(13)+R_{11}(12) \\ & +r_{11}^{\prime}(11)+R_{9}(11) \end{aligned}$ |
| 26 | 1201.8 | 1.263 | 1182.7 | 1162.0 | 0.899 | 1162.8 | $\begin{aligned} & r_{10}^{\prime}(22)+\beta_{2}(17)+R_{13}^{\prime \prime}(16) \\ & +R_{1}(13) \end{aligned}$ |
| 27 | 1174.7 | 0.602 | 1157.7 | (1143.0) |  | 1143.9 | $\begin{aligned} & \beta_{5}^{\prime}(28)+\beta_{4}(17)+R_{10}(12) \\ & r_{11}^{\prime}(12) \end{aligned}$ |
| 28 | 1151.2 | 6.650 | 1136.8 | 1118.2 | 8.998 | 1118.6 | $r_{11}^{\prime}(17)+r_{10}^{\prime}(12)+R_{5}^{\prime}(11)$ |
| 29 | 1040.3 | 15.703 | 1022.0 | 1013.1 | 4.859 | 1013.1 | $\delta_{a} \mathrm{CH}_{3}(2)(30)+\delta_{a} \mathrm{CH}_{3}(1)(14)$ |
| 30 | 1030.6 | 2.056 | 1016.1 | (1003.0) |  | 1002.9 | $\delta_{a} \mathrm{CH}_{3}(1)(28)+\delta_{a} \mathrm{CH}_{3}(2)(19)$ |
| 31 | 976.3 | 1.277 | 962.0 | ( 950.0) |  | 948.9 | $\beta_{6}(21)+\delta_{2}(19)+R_{3}(13)$ |
| 32 | 935.6 | 0.795 | 922.9 | ( 910.0) |  | 908.4 | $R_{3}(16)+R_{9}(14)$ |
| 33 | 842.5 | 3.581 | 829.6 | ( 820.0) |  | 824.0 | $\beta_{6}(20)+\delta_{2}(15)+R_{6}(11)$ |
| 34 | 765.4 | 0.285 | 754.1 | 755.0 | 1.709 | 744.1 | $R_{6}(20)+\delta_{3}(15)+\beta_{7}(10)$ |
| 35 | 678.0 | 1.062 | 670.0 | ( 659.0) |  | 663.9 | $\beta_{7}(26)+\delta_{3}(25)$ |
| 36 | 599.3 | 4.151 | 593.4 | 592.4 | 4.139 | 589.4 | $\beta_{7}(30)+\delta_{3}(20)+R_{12}^{\prime \prime}(10)$ |
| 37 | 545.5 | 0.120 | 540.4 | ( 530.0) |  | 530.2 | $\delta_{1}(38)+\delta_{4}(20)$ |

## Chapter 4: Infrared spectra of DMQs

Table 4.5:(Continued) Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-31 G^{*}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of 2,6-DMQ.

| Sym | B3LYP/6-31G* |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| 38 | 457.8 | 6.570 | 456.9 | ( 445.0) |  | 444.9 | $\begin{aligned} & \delta_{4}(26)+\beta_{1}(25)+ \\ & \beta_{3}^{\prime}(13)+\delta_{1}(11) \end{aligned}$ |
| 39 | 419.2 | 0.184 | 416.2 | ( 408.0) |  | 408.9 | $\begin{aligned} & \delta_{3}(16)+\delta_{1}(14) \\ & +\delta_{4}(14)+\beta_{7}(11) \end{aligned}$ |
| 40 | 328.7 | 0.259 | 330.3 | ( 319.0) |  | 318.8 | $\beta_{3}^{\prime}(37)+\beta_{1}(32)$ |
| 41 | 226.9 | 1.338 | 226.7 | ( 220.0) |  | 220.1 | $\beta_{3}^{\prime}(29)+\beta_{1}(26)$ |
| $A^{\prime \prime}$ |  |  |  |  |  |  |  |
| 42 | 3094.6 | 19.309 | 2944.0 | 2933.3 | 27.265 | 2931.9 | $r_{6}^{\prime}(100)$ |
| 43 | 3091.5 | 20.426 | 2946.2 | (2933.0) |  | 2927.3 | $r_{8}^{\prime}(100)$ |
| 44 | 1514.2 | 5.39 | 1514.4 | (1473.8) |  | 1473.8 | $\delta_{s} \mathrm{CH}_{3}(1)$ (93) |
| 45 | 1513.8 | 6.609 | 1521.2 | (1473.0) |  | 1473.0 | $\delta_{s} \mathrm{CH}_{3}(2)(92)$ |
| 46 | 1077.9 | 3.969 | 1050.9 | (1049.0) |  | 1049.0 | $\rho \mathrm{CH}_{3}(1)(52)+\delta_{a} \mathrm{CH}_{3}(2)$ ( 18$)$ |
| 47 | 1069.9 | 3.886 | 1045.5 | 1042.0 | 1.079 | 1042.6 | $\begin{aligned} & \delta_{6}(55)+\delta_{a} C H_{3}(1)(19) \\ & +\gamma_{1}(12) \end{aligned}$ |
| 48 | 987.9 | 1.514 | 973.3 | 968.2 | 2.159 | 967.9 | $\rho \mathrm{CH}_{3}(2)(59)+\rho \mathrm{CH}_{3}(2)(28)$ |
| 49 | 983.5 | 0.100 | 965.9 | ( 957.0) |  | 957.1 | $\gamma_{5}^{\prime}(47)+\gamma_{4}(39)$ |
| 50 | 902.6 | 7.831 | 887.9 | 877.9 | 8.458 | 877.7 | $\gamma_{2}(65)+\tau_{2}(12)$ |
| 51 | 853.4 | 39.968 | 838.7 | 830.3 | 65.418 | 830.2 | $\begin{aligned} & \gamma_{4}(30)+\gamma_{5}^{\prime}(28)+\gamma_{6}(11) \\ & +\rho \mathrm{CH}_{3}(2)(10) \end{aligned}$ |
| 52 | 830.4 | 2.229 | 818.1 | ( 808.0) |  | 808.6 | $\begin{aligned} & \rho \mathrm{CH}_{3}(2)(34)+\rho \mathrm{CH}_{3}(2)(27) \\ & +\gamma_{2}(14) \end{aligned}$ |
| 53 | 789.3 | 0.065 | 778.1 | ( 768.0) |  | 768.1 | $\gamma_{6}(34)+\tau_{2}(28)+\gamma_{4}(11)$ |
| 54 | 668.4 | 0.727 | 658.2 | (650.0) |  | 649.9 | $\tau_{2}(33)+\gamma_{6}(21)+\gamma_{1}(17)$ |
| 55 | 551.0 | 1.014 | 542.6 | (536.0) |  | 535.4 | $\begin{aligned} & \gamma_{3}^{\prime}(26)+\tau_{4}(23)+\gamma_{1}(17) \\ & +\gamma_{7}(14) \end{aligned}$ |
| 56 | 501.8 | 0.462 | 490.9 | ( 488.0) |  | 488.3 | $\tau_{5}(35)+\tau_{3}(27)+\tau_{1}(20)$ |
| 57 | 410.5 | 1.894 | 404.1 | ( 399.0) |  | 399.0 | $\tau_{3}(44)+\tau_{1}(31)$ |
| 58 | 348.1 | 3.157 | 339.1 | ( 338.0) |  | 337.8 | $\gamma_{1}(23)+\gamma_{3}^{\prime}(23)+\tau_{2}(11)$ |
| 59 | 211.1 | 0.815 | 200.0 | ( 205.0) |  | 205.2 | $\tau_{4}(30)+\gamma_{3}^{\prime}(15)+\gamma_{1}(15)$ |
| 60 | 173.6 | 1.947 | 171.4 | ( 169.0) |  | 169.0 | $\begin{aligned} & \tau_{1}(26)+\gamma_{7}(16)+\tau_{5} \\ & (15)+\tau_{4}(12)+\tau_{3}(12) \end{aligned}$ |
| 61 | 101.0 | 0.010 | 56.8 | (98.0) |  | 98.1 | $\tau_{\text {ring }}(59)+\gamma_{7}(11)$ |
| 62 | 89.3 | 0.330 | 58.2 | ( 86.9) |  | 86.7 | $\tau_{\text {ring }}(29)+\tau_{6}(23)$ |
| 63 | 75.6 | 0.828 | 60.7 | ( 73.6) |  | 73.7 | $\tau_{6}(58)$ |

Since the fitting algorithm required all the experimental frequencies, the numbers in parenthesis are introduced as good guesses for $2,6-D M Q$ and do not have any other significance. RMS error is 1.6618 for the fitting of experimental frequencies.

Table 4.6: Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-31 G^{*}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of $2,7-D M Q$.

| Sym | B3LYP/6-31G ${ }^{*}$ |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| $A^{\prime}$ |  |  |  |  |  |  |  |
| 1 | 3203.3 | 5.150 | 3064.1 | 3059.3 | 33.825 | 3059.3 | $r_{5}(93)$ |
| 2 | 3200.5 | 25.686 | 3054.6 | (3059.0) |  | 3059.0 | $r_{2}(91)$ |
| 3 | 3190.2 | 33.904 | 3053.5 | 3028.2 | 7.572 | 3028.2 | $r_{4}(94)$ |
| 4 | 3178.6 | 6.619 | 3020.0 | 2987.7 | 0.829 | 2988.8 | $r_{1}(49)+r_{3}(47)$ |
| 5 | 3172.0 | 4.946 | 3025.8 | (2987.0) |  | 2985.9 | $r_{1}(49)+r_{3}(47)$ |
| 6 | 3159.3 | 8.184 | 3007.2 | 2958.6 | 1.989 | 2957.7 | $r_{7}^{\prime}(74)+r_{6}^{\prime}(25)$ |
| 7 | 3130.7 | 15.511 | 2981.8 | (2958.0) |  | 2956.6 | $r_{9}^{\prime}(78)+r_{8}^{\prime}(21)$ |
| 8 | 3044.5 | 22.728 | 2962.8 | 2875.8 | 9.175 | 2880.0 | $r_{8}^{\prime}(79)+r_{9}^{\prime}(21)$ |
| 9 | 3041.0 | 37.099 | 2976.1 | (2875.0) |  | 2877.6 | $r_{6}^{\prime}(74)+r_{7}^{\prime}(25)$ |
| 10 | 1683.7 | 37.525 | 1644.9 | 1633.0 | 22.716 | 1633.8 | $\begin{aligned} & R_{10}(21)+R_{8}(15)+R_{11}(11) \\ & +\delta_{4}(11) \end{aligned}$ |
| 11 | 1663.7 | 55.653 | 1625.8 | 1612.5 | 33.991 | 1612.9 | $R_{2}(34)$ |
| 12 | 1611.3 | 11.888 | 1574.2 | 1563.6 | 11.275 | 1563.3 | $R_{4}^{\prime}(16)+R_{10}(15)+R_{6}(12)$ |
| 13 | 1562.0 | 41.169 | 1525.9 | 1513.5 | 44.216 | 1518.4 | $R_{9}(18)+R_{7}(11)+\beta_{3}^{\prime}(11)$ |
| 14 | 1528.3 | 2.965 | 1464.9 | (1487.0) |  | 1486.8 | $\delta_{s} \mathrm{CH}_{3}(2)(61)$ |
| 15 | 1509.9 | 10.262 | 1494.3 | (1469.0) |  | 1469.4 | $\delta_{s} \mathrm{CH}_{3}(1)(66)+\delta_{s} \mathrm{CH}_{3}(2)(16)$ |
| 16 | 1497.9 | 10.566 | 1469.4 | 1450.6 | 13.375 | 1454.0 | $\begin{aligned} & \beta_{2}(19)+r_{11}^{\prime}(15)+r_{10}^{\prime}(14) \\ & +R_{8}(11) \end{aligned}$ |
| 17 | 1460.8 | 5.779 | 1430.7 | 1425.4 | 1.602 | 1422.8 | $R_{11}(13)+\delta_{s} \mathrm{CH}_{3}(1)(12)+R_{5}^{\prime}(11)$ |
| 18 | 1441.2 | 0.284 | 1434.5 | (1402.0) |  | 1402.1 | $\rho \mathrm{CH}_{3}(1)$ (89) |
| 19 | 1429.1 | 3.010 | 1419.6 | (1390.0) |  | 1390.1 | $\delta_{5}(89)$ |
| 20 | 1413.7 | 7.207 | 1380.3 | 1380.1 | 11.551 | 1378.0 | $R_{6}(30)+R_{8}(12)+R_{11}(10)$ |
| 21 | 1394.3 | 7.627 | 1363.4 | 1340.6 | 2.708 | 1343.5 | $R_{4}^{\prime}(24)+R_{2}(16)$ |
| 22 | 1341.5 | 9.909 | 1318.8 | 1308.7 | 11.993 | 1310.5 | $R_{5}^{\prime}(19)+\delta_{2}(14)$ |
| 23 | 1291.0 | 0.493 | 1265.6 | (1256.6) |  | 1253.8 | $\beta_{2}(26)+\beta_{5}(17)+\beta_{6}^{\prime}(17)$ |
| 24 | 1254.7 | 12.347 | 1230.2 | 1222.6 | 16.083 | 1218.6 | $R_{12}^{\prime \prime}(16)+R_{7}(13)+R_{3}(13)$ |
| 25 | 1247.1 | 0.375 | 1221.3 | (1213.0) |  | 1210.7 | $R_{1}(21)+r_{10}^{\prime}(17)+R_{11}(13)$ |
| 26 | 1201.7 | 3.384 | 1177.9 | 1172.2 | 2.542 | 1170.2 | $R_{13}^{\prime \prime}(27)+\beta_{5}(25)$ |
| 27 | 1183.5 | 4.870 | 1172.9 | 1145.8 | 4.366 | 1145.6 | $\begin{aligned} & \beta_{3}^{\prime}(28)+\beta_{2}(18)+ \\ & R_{8}(16)+r_{11}^{\prime}(10) \end{aligned}$ |
| 28 | 1153.6 | 2.837 | 1134.2 | 1121.8 | 5.029 | 1120.6 | $r_{11}^{\prime}(26)+\beta_{3}^{\prime}(14)$ |
| 29 | 1055.9 | 1.447 | 1038.0 | 1014.6 | 0.497 | 1024.1 | $\delta_{a} \mathrm{CH}_{3}(2)(21)+\delta_{a} \mathrm{CH}_{3}(1)(16)$ |
| 30 | 1018.5 | 16.659 | 1006.1 | 993.4 | 1.602 | 987.6 | $\delta_{a} \mathrm{CH}_{3}(2)(28)+\delta_{a} \mathrm{CH}_{3}(1)$ (22) |
| 31 | 969.0 | 2.740 | 956.9 | 952.7 | 1.823 | 949.7 | $\delta_{2}(28)+\beta_{6}^{\prime}(19)+R_{9}(14)$ |
| 32 | 956.9 | 1.827 | 941.4 | 929.8 | 0.552 | 930.8 | $R_{3}(24)+\delta_{a} \mathrm{CH}_{3}(1)(14)+\beta_{6}^{\prime}(13)$ |
| 33 | 789.9 | 2.027 | 779.7 | ( 768.0) |  | 768.1 | $R_{6}(32)+R_{1}(13)+R_{7}(11)$ |
| 34 | 782.9 | 1.276 | 768.7 | ( 762.0) |  | 762.5 | $\begin{aligned} & R_{12}^{\prime \prime}(18)+R_{13}^{\prime \prime}(17)+\delta_{2}(17) \\ & +\beta_{6}^{\prime}(15) \end{aligned}$ |
| 35 | 689.2 | 0.901 | 681.4 | ( 670.0) |  | 670.7 | $\begin{aligned} & R_{12}^{\prime \prime}(14)+\beta_{6}^{\prime}(14)+\delta_{2}(12) \\ & +\delta_{3}(10) \end{aligned}$ |
| 36 | 643.2 | 3.884 | 636.5 | ( 629.6) |  | 629.2 | $\beta_{7}(47)+\delta_{3}(36)$ |
| 37 | 482.0 | 0.266 | 479.8 | ( 469.0) |  | 469.2 | $\delta_{1}(52)+\delta_{4}(11)$ |

Chapter 4: Infrared spectra of DMQs
Table 4.6:(Continued) Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-31 G^{*}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of $2,7-D M Q$.

| Sym | B3LYP/6-31G* |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| 38 | 464.1 | 1.301 | 462.2 | ( 451.0) |  | 451.3 | $\delta_{4}(30)+\beta_{1}(18)+\beta_{7}(15)$ |
| 39 | 436.2 | 1.655 | 433.3 | ( 424.0) |  | 424.0 | $\delta_{4}(25)+\delta_{3}(17)$ |
| 40 | 332.9 | 2.589 | 338.6 | ( 324.0) |  | 323.9 | $\beta_{4}(38)+\beta_{1}(32)$ |
| 41 | 222.5 | 1.211 | 224.6 | ( 216.0) |  | 216.5 | $\beta 4(30)+\beta_{1}(27)$ |
| $A^{\prime \prime}$ |  |  |  |  |  |  |  |
| 42 | 3094.8 | 19.158 | 2945.1 | 2934.4 | 27.303 | 2932.6 | $r_{6}^{\prime}(100)$ |
| 43 | 3091.0 | 20.452 | 2945.1 | (2934.0) |  | 2930.3 | $r_{8}^{\prime}(100)$ |
| 44 | 1513.9 | 7.285 | 1504.0 | (1473.0) |  | 1473.1 | $\delta_{s} \mathrm{CH}_{3}(1)$ ( 93) |
| 45 | 1513.0 | 4.978 | 1512.9 | (1472.0) |  | 1472.1 | $\delta_{s} \mathrm{CH}_{3}(2)(93)$ |
| 46 | 1076.9 | 5.034 | 1052.1 | 1041.5 | 1.658 | 1041.0 | $\rho \mathrm{CH}_{3}(1)(50)+\delta_{a} \mathrm{CH}_{3}(2)(17)$ |
| 47 | 1069.3 | 3.100 | 1046.8 | (1040.0) |  | 1038.6 | $\begin{aligned} & \delta_{6}(53)+\delta_{a} C H_{3}(1)(18) \\ & +\gamma_{1}(12) \end{aligned}$ |
| 48 | 987.1 | 1.198 | 972.2 | 968.1 | 0.276 | 968.5 | $\rho \mathrm{CH}_{3}(2)(60)+\mathrm{\rho CH}_{3}(2)(26)$ |
| 49 | 963.6 | 0.214 | 959.3 | ( 937.0) |  | 937.1 | $\gamma_{3}^{\prime}(44)+\gamma_{2}(42)$ |
| 50 | 919.2 | 6.222 | 893.6 | 888.9 | 8.511 | 889.4 | $\gamma_{5}(71)+\tau_{2}(12)$ |
| 51 | 860.0 | 36.431 | 845.5 | 835.6 | 56.266 | 835.8 | $\begin{aligned} & \rho \mathrm{CH}_{3}(2)(32)+\rho \mathrm{CH}_{3}(2) \\ & +\gamma_{2}(14)+\gamma_{3}^{\prime}(13) \end{aligned}$ |
| 52 | 803.7 | 2.470 | 790.4 | ( 782.0) |  | 782.0 | $\begin{aligned} & \gamma_{3}^{\prime}(30)+\gamma_{2}(26)+\rho C H_{3}(2)(12) \\ & +\rho C H_{3}(2)(11) \end{aligned}$ |
| 53 | 796.4 | 4.847 | 790.1 | 780.0 | 8.788 | 777.0 | $\begin{aligned} & \gamma_{6}^{\prime}(45)+\tau_{2}(\text { ring } 1)(23) \\ & +\rho C H_{3}(2)(15) \end{aligned}$ |
| 54 | 665.5 | 0.830 | 660.2 | (647.0) |  | 648.0 | $\begin{aligned} & \tau_{2}(37)+\gamma_{6}^{\prime}(18)+\gamma_{1}(15) \\ & +\gamma_{4}(10) \end{aligned}$ |
| 55 | 574.6 | 2.968 | 569.9 | 562.7 | 1.879 | 559.3 | $\begin{aligned} & \tau_{4}(20)+\gamma_{4}(19)+ \\ & \gamma_{1}(15)+\tau_{1}(10) \end{aligned}$ |
| 56 | 492.2 | 2.575 | 483.5 | ( 479.0) |  | 478.2 | $\tau_{3}(28)+\tau_{5}(27)+\tau_{1}(14)$ |
| 57 | 420.5 | 1.112 | 415.1 | ( 409.0) |  | 408.9 | $\tau_{3}(36)+\tau_{1}(25)$ |
| 58 | 295.4 | 1.193 | 291.5 | ( 287.0) |  | 287.5 | $\begin{aligned} & \gamma_{1}(21)+\tau_{4}(17)+ \\ & \tau_{3}(15)+\gamma_{6}^{\prime}(10) \end{aligned}$ |
| 59 | 270.6 | 0.078 | 269.8 | ( 263.4) |  | 263.4 | $\tau_{1}(29)+\gamma_{4}(19)$ |
| 60 | 123.7 | 0.001 | 120.0 | ( 120.0) |  | 120.1 | $\gamma_{7}(45)+\tau_{4}(33)$ |
| 61 | 119.4 | 2.413 | 116.5 | ( 116.0) |  | 116.2 | $\tau_{5}(26)+\tau_{3}(18)+\gamma_{5}(12)$ |
| 62 | 87.3 | 0.221 | 15.8 | ( 84.9) |  | 84.8 | $\tau_{\text {(ring })}(68)+\tau_{6}(11)$ |
| 63 | 79.4 | 1.176 | -1.0 | ( 77.0) |  | 77.0 | $\tau_{6}(64)$ |

Since the fitting algorithm required all the experimental frequencies, the numbers in parenthesis are introduced as good for $2,7-D M Q$ and do not have any other significance. RMS error is 2.1157 for the fitting of experimental frequencies.

Table 4.7: Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-31 G^{*}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of $2,8-D M Q$.

| Sym | B3LYP/6-31G* |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| $A^{\prime}$ |  |  |  |  |  |  |  |
| 1 | 3203.8 | 31.229 | 3069.3 | 3056.8 | 33.585 | 3056.8 | $r_{2}(96)$ |
| 2 | 3200.5 | 27.074 | 3055.8 | (3056.0) |  | 3056.0 | $r_{4}(89)$ |
| 3 | 3184.0 | 26.451 | 3049.4 | 3027.3 | 1.909 | 3027.3 | $r_{5}(90)$ |
| 4 | 3179.1 | 4.992 | 3020.6 | 2978.9 | 2.343 | 2980.0 | $r_{1}(49)+r_{3}(49)$ |
| 5 | 3176.5 | 1.497 | 3021.4 | (2978.0) |  | 2976.8 | $r_{1}(49)+r_{3}(49)$ |
| 6 | 3156.8 | 8.124 | 3007.3 | 2966.3 | 0.998 | 2963.5 | $r_{7}^{\prime}(78)+r_{6}^{\prime}(18)$ |
| 7 | 3129.3 | 20.645 | 2980.9 | (2966.0) |  | 2963.0 | $r_{9}^{\prime}(79)+r_{8}^{\prime}(17)$ |
| 8 | 3055.0 | 26.142 | 2971.4 | 2863.1 | 4.642 | 2876.5 | $r_{8}^{\prime}(82)+r_{9}^{\prime}(17)$ |
| 9 | 3044.4 | 24.186 | 2967.7 | (2863.0) |  | 2874.5 | $r_{6}^{\prime}(81)+r_{7}^{\prime}(18)$ |
| 10 | 1671.6 | 17.805 | 1631.4 | (1626.0) |  | 1626.4 | $R_{10}(19)+R_{7}(13)+R_{2}(11)$ |
| 11 | 1662.3 | 39.932 | 1623.8 | 1615.1 | 34.149 | 1615.8 | $R_{2}(27)+R_{8}(16)$ |
| 12 | 1625.6 | 11.462 | 1583.4 | 1578.2 | 6.335 | 1579.3 | $\begin{aligned} & R_{4}^{\prime}(16)+R_{8}(12)+R_{9}(12) \\ & +R_{6}(10) \end{aligned}$ |
| 13 | 1553.6 | 37.373 | 1516.6 | 1506.4 | 32.631 | 1504.4 | $\begin{aligned} & \beta_{3}^{\prime}(13)+R_{3}(11)+R_{9}(10) \\ & \delta_{s} C H_{3}(2)(10) \end{aligned}$ |
| 14 | 1529.9 | 1.326 | 1493.2 | (1489.0) |  | 1489.7 | $\delta_{s} \mathrm{CH}_{3}(2)(58)$ |
| 15 | 1517.8 | 1.023 | 1486.9 | (1477.0) |  | 1474.5 | $\begin{aligned} & \delta_{s} \mathrm{CH}_{3}(1)(15)+R_{4}^{\prime}(14)+ \\ & \delta_{s} \mathrm{CH}_{3}(2)(13)+R_{11}(10) \end{aligned}$ |
| 16 | 1490.5 | 22.922 | 1454.8 | 1434.3 | 27.510 | 1434.8 | $\delta_{s} \mathrm{CH}_{3}(1)(62)$ |
| 17 | 1477.2 | 11.949 | 1445.6 | (1430.0) |  | 1430.8 | $\begin{aligned} & r_{10}^{\prime}(13)+\beta_{2}(12)+\beta_{3}^{\prime}(11) \\ & +R_{7}(10) \end{aligned}$ |
| 18 | 1444.4 | 0.657 | 1432.5 | (1405.0) |  | 1405.0 | $\rho \mathrm{CH}_{3}(1)(87)$ |
| 19 | 1430.9 | 2.578 | 1417.4 | 1378.1 | 11.455 | 1377.9 | $\delta_{5}$ (84) |
| 20 | 1408.7 | 4.682 | 1372.5 | (1371.0) |  | 1371.9 | $R_{6}$ (33) |
| 21 | 1377.3 | 7.638 | 1345.1 | (1340.0) |  | 1339.6 | $R_{2}(14)+R_{4}^{\prime}(13)+R_{10}(12)$ |
| 22 | 1353.8 | 10.832 | 1326.3 | 1318.7 | 13.321 | 1317.5 | $R_{5}^{\prime}(25)+\delta_{2}(18)$ |
| 23 | 1290.3 | 0.338 | 1263.1 | (1255.0) |  | 1256.1 | $\begin{aligned} & \beta_{4}(26)+\beta_{6}(12)+R_{11}(11) \\ & \beta_{2}(10) \end{aligned}$ |
| 24 | 1261.4 | 5.952 | 1233.5 | 1231.5 | 4.382 | 1234.0 | $R_{12}^{\prime \prime}(21)+r_{10}^{\prime}(16)+\delta_{2}(11)$ |
| 25 | 1250.2 | 5.628 | 1226.2 | 1207.0 | 0.911 | 1213.5 | $\begin{aligned} & R_{1}(18)+R_{7}(18)+R_{5}^{\prime}(14) \\ & +\beta_{3}^{\prime}(12) \end{aligned}$ |
| 26 | 1197.9 | 1.932 | 1183.0 | 1164.0 | 1.562 | 1161.5 | $\beta_{3}^{\prime}(32)+\beta_{2}(19)$ |
| 27 | 1173.6 | 3.832 | 1155.2 | 1135.3 | 5.207 | 1133.7 | $r_{11}^{\prime}(33)+r_{10}^{\prime}(23)+R_{2}(12)$ |
| 28 | 1113.1 | 1.794 | 1092.3 | (1083.0) |  | 1081.4 | $\begin{aligned} & R_{9}(13)+\beta_{4}(13)+\delta_{a} \mathrm{CH}_{3}(2) \\ & +\beta_{6}(12) \end{aligned}$ |
| 29 | 1095.0 | 3.601 | 1073.5 | 1066.9 | 7.246 | 1068.4 | $\begin{aligned} & R_{9}(22)+\beta_{6}(14)+\beta_{2}(12) \\ & R_{8}(11)+R_{13}^{\prime \prime}(11) \end{aligned}$ |
| 30 | 1030.4 | 11.371 | 1008.6 | 1002.5 | 2.386 | 1003.2 | $\delta_{a} \mathrm{CH}_{3}(1)(40)+\delta_{6}(13)$ |
| 31 | 999.6 | 2.432 | 978.2 | 970.0 | 0.477 | 972.4 | $\delta_{a} \mathrm{CH}_{3}(2)(31)+\delta_{2}(11)$ |
| 32 | 922.4 | 0.213 | 906.4 | ( 897.0) |  | 894.7 | $R_{3}(25)+\delta_{1}(14)$ |
| 33 | 870.2 | 4.122 | 854.3 | 858.1 | 0.998 | 858.2 | $\delta_{2}(34)$ |
| 34 | 730.2 | 2.969 | 720.2 | 721.0 | 1.518 | 718.3 | $\delta_{4}(18)+\beta_{6}(14)+R_{7}(11)$ |
| 35 | 703.1 | 0.699 | 692.9 | 687.6 | 1.518 | 689.9 | $\beta_{7}^{\prime}(37)+\beta_{6}(11)$ |

Table 4.7:(Continued) Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-31 G^{*}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of $2,8-D M Q$.

| Sym | B3LYP/6-31G* |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| 36 | 553.2 | 4.581 | 546.3 | 544.2 | 3.514 | 541.2 | $\delta_{3}(31)+\beta_{7}^{\prime}(29)+R^{\prime \prime} 13(10)$ |
| 37 | 535.7 | 0.195 | 528.6 | ( 512.0) |  | 515.1 | $\delta_{1}(28)+\delta_{3}(22)+\delta_{4}(16)$ |
| 38 | 490.5 | 1.453 | 485.1 | (477.0) |  | 477.4 | $\delta_{1}(39)+\beta_{1}(19)+\beta_{5}(13)$ |
| 39 | 440.2 | 0.803 | 435.3 | ( 428.0) |  | 426.6 | $\delta_{1}(41)+\delta_{3}(18)$ |
| 40 | 346.7 | 3.800 | 341.3 | ( 337.0) |  | 337.4 | $\beta_{1}(43)+\beta_{5}(33)$ |
| 41 | 221.2 | 0.672 | 215.4 | (215.0) |  | 214.6 | $\beta_{1}(28)+\beta_{5}(28)+\delta_{4}(18)$ |
| $A^{\prime \prime}$ |  |  |  |  |  |  |  |
| 42 | 3112.9 | 13.690 | 2958.1 | 2934.7 | 23.952 | 2925.5 | $r_{6}^{\prime}(100)$ |
| 43 | 3094.8 | 18.313 | 2949.5 | (2934.0) |  | 2923.1 | $r_{8}^{\prime}(100)$ |
| 44 | 1513.8 | 5.458 | 1512.2 | (1473.0) |  | 1473.1 | $\delta_{s} \mathrm{CH}_{3}(1)$ ( 93) |
| 45 | 1504.4 | 5.865 | 1474.7 | (1464.0) |  | 1464.3 | $\delta_{s} \mathrm{CH}_{3}(2)$ (93) |
| 46 | 1079.4 | 4.245 | 1053.5 | (1050.0) |  | 1045.2 | $\begin{aligned} & \rho \mathrm{CH}_{3}(1)(39)+\delta_{a} \mathrm{CH}_{3}(2)(13) \\ & +\delta_{6}(12) \end{aligned}$ |
| 47 | 1069.1 | 2.024 | 1043.9 | (1040.0) |  | 1040.1 | $\begin{aligned} & \delta_{6}(42)+\delta_{a} \mathrm{CH}_{3}(1)(14) \\ & +\rho C H_{3}(1)(12) \end{aligned}$ |
| 48 | 989.4 | 1.126 | 970.5 | (963.0) |  | 963.0 | $\rho \mathrm{CH}_{3}(2)(56)+\rho \mathrm{CH}_{3}(2)(28)$ |
| 49 | 974.0 | 0.259 | 962.4 | ( 948.0) |  | 947.8 | $\gamma_{3}^{\prime}(49)+\gamma_{4}(23)+\gamma_{2}(13)$ |
| 50 | 913.1 | 0.950 | 896.3 | (888.0) |  | 888.2 | $\gamma_{4}(47)+\gamma_{2}(37)$ |
| 51 | 853.8 | 30.146 | 835.6 | 829.3 | 27.207 | 829.7 | $\begin{aligned} & \rho \mathrm{CH}_{3}(2)(27)++\tau_{2}(20) \\ & +\rho C H_{3}(2)(18) \end{aligned}$ |
| 52 | 813.6 | 10.504 | 802.5 | 792.3 | 16.662 | 791.4 | $\begin{aligned} & \gamma_{6}(32)+\tau_{2}(30) \\ & +\rho C H_{3}(2)(16) \end{aligned}$ |
| 53 | 779.8 | 17.015 | 762.9 | 756.2 | 19.569 | 756.4 | $\gamma_{2}(39)+\gamma_{3}^{\prime}(34)$ |
| 54 | 670.3 | 0.092 | 659.7 | (652.0) |  | 651.9 | $\gamma_{6}(29)+\tau_{2}(24)+\gamma_{1}(19)$ |
| 55 | 564.4 | 0.002 | 555.3 | ( 549.0) |  | 549.3 | $\begin{aligned} & \tau_{3}(29)+\tau_{2}(\text { ring } 2)(21) \\ & +\tau_{2}(13) \end{aligned}$ |
| 56 | 520.1 | 0.631 | 511.4 | ( 506.0) |  | 505.4 | $\begin{aligned} & \tau_{4}(23)+\gamma_{7}^{\prime}(20)+\gamma_{1}(18) \\ & +\gamma_{5}(14) \end{aligned}$ |
| 57 | 424.1 | 0.035 | 417.2 | ( 412.0) |  | 412.0 | $\tau_{1}(48)+\gamma_{5}(12)+\tau_{3}(12)$ |
| 58 | 311.3 | 0.003 | 306.0 | ( 302.0) |  | 302.4 | $\begin{aligned} & \tau_{4}(32)+\gamma_{1}(21)+\gamma_{5}(11) \\ & +\gamma_{6}(10) \end{aligned}$ |
| 59 | 212.2 | 0.974 | 203.4 | ( 206.0) |  | 206.0 | $\tau_{3}(48)$ |
| 60 | 168.4 | 5.545 | 163.9 | ( 163.0) |  | 163.0 | $\tau_{5}(33)+\tau_{1}(24)+\gamma_{5}(13)$ |
| 61 | 136.5 | 0.090 | 27.7 | ( 132.0 ) |  | 132.0 | $\tau_{\text {ring }}(81)$ |
| 62 | 101.4 | 0.074 | 106.7 | (98.0) |  | 98.0 | $\gamma_{7}^{\prime}(39)+\tau_{4}(17)+\tau_{3}(16)$ |
| 63 | 74.7 | 0.426 | 211.0 | ( 72.0) |  | 72.0 | $\tau_{6}(72)$ |

Since the fitting algorithm required all the experimental frequencies, the numbers in parenthesis are introduced as good guesses for $2,8-D M Q$ and do not have any other significance. RMS error is 3.3118 for the fitting of experimental frequencies.


Figure 4.3. Comparison of observed and calculated IR spectra of (a, a) 2,4-DMQ and (b, b) 2,6DMQ. In the calculated spectrum, FWHM assumed to be $15 \mathrm{~cm}^{-1}$. Prominent peaks are labeled in the observed spectrum.


Figure 4.3. (Continued) Comparison of observed and calculated IR spectra of (c, c) 2,7-DMQ and (d, d) 2,8-DMQ. In the calculated spectrum, FWHM assumed to be $15 \mathbf{c m}^{-1}$. Prominent peaks are labeled in the observed spectrum.

The corresponding force field fitted frequency is $1610.9 \mathrm{~cm}^{-1}$ in 2,4-DMQ, $1609.1 \mathrm{~cm}^{-1}$ in 2,6DMQ, $1612.9 \mathrm{~cm}^{-1}$ in 2,7-DMQ, and $1615.8 \mathrm{~cm}^{-1}$ in 2,8-DMQ. The relative intensity of this band in DMQs is more intense compared to that in dimethylnaphthalenes (DMNs). ${ }^{24}$ The larger intensity result from a large change in dipole moment as the ring is stretched. In 2,7DMQ one extra band observed at $1632.2 \mathrm{~cm}^{-1}$ which is not clearly resolved from the adjacent band at $1612.5 \mathrm{~cm}^{-1}$. This band is not observed for the rest of the isomers of DMQ. In the calculated spectra of $2,8-\mathrm{DMQ}$, this band is moderately intense however in the experimental spectra it is not observed. Perhaps this band is masked by the adjacent band found at 1615.1 $\mathrm{cm}^{-1}$. A low intensity band observed at $1566.9 \mathrm{~cm}^{-1}$ in $2,4-\mathrm{DMQ}$, at $1565.5 \mathrm{~cm}^{-1}$ in $2,6-\mathrm{DMQ}$, at 1563.6 in $\mathrm{cm}^{-1}$ in 2,7-DMQ, and at $1578.2 \mathrm{~cm}^{-1}$ in 2,8-DMQ is assigned as a mixture of local coordinate vibration of aromatic $\mathrm{C}-\mathrm{N}$ stretching ( $\mathrm{R}^{\prime}$ ) and aromatic $\mathrm{C}-\mathrm{C}$ stretching ( R ) by comparing with the force field fitted frequency calculated at $1568.2 \mathrm{~cm}^{-1}$ in $2,4-\mathrm{DMQ}, 1568.6$ $\mathrm{cm}^{-1}$ in 2,6-DMQ, $1563.3 \mathrm{~cm}^{-1}$ in 2,7-DMQ, and $1579.3 \mathrm{~cm}^{-1}$ in 2,8-DMQ, respectively. A moderately intense band observed at $1512.8,1498.6,1513.5$, and $1506 \mathrm{~cm}^{-1}$ for $2,4-, 2,6-, 2,7-$ and $2,8-\mathrm{DMQ}$, respectively, is unique for different isomers of DMQ . The agreement between the calculated anharmonic frequencies and observed frequencies is satisfactory for these non $\mathrm{C}-\mathrm{H}$ stretching vibrations.

A band observed at $1450.7 \mathrm{~cm}^{-1}$ in 2,4-DMQ and $1453.1 \mathrm{~cm}^{-1}$ in 2,6-DMQ is of low intensity whereas the same band observed at $1450.6 \mathrm{~cm}^{-1}$ in $2,7-\mathrm{DMQ}$ and $1434.3 \mathrm{~cm}^{-1}$ in $2,8-$ DMQ is of moderate intensity. This band is correlated with the calculated anharmonic frequency at $1504.7 \mathrm{~cm}^{-1}$ in 2,4-DMQ, $1499.0 \mathrm{~cm}^{-1}$ in 2,7-DMQ, $1469.4 \mathrm{~cm}^{-1}$ in 2,7-DMQ, and $1454.8 \mathrm{~cm}^{-1}$ in 2,8-DMQ, respectively, which is responsible for methyl C-H antisymmetric deformation $\left(\delta_{\mathrm{s}}\right)$. In 2,4-DMQ this band can also be correlated with the fundamental
anharmonic band at $1464.4 \mathrm{~cm}^{-1}$ instead of that at $1504.7 \mathrm{~cm}^{-1}$ since its corresponding fitted frequency and the nature of vibration is the same. In such a case assignment is confirmed with the help of the intensity. A band observed at $1413.8 \mathrm{~cm}^{-1}$ in 2,4-DMQ corresponds to the force field fitted frequency at $1412.6 \mathrm{~cm}^{-1}$ which is responsible for aromatic C-H in-plane bending $(\beta)$ vibration. A pair of aromatic $\mathrm{C}-\mathrm{C}$ stretching/aromatic ring deformation bands found at 1380.1 and $1336.9 \mathrm{~cm}^{-1}$ in 2,4-DMQ; at 1376.8 and $1313.1 \mathrm{~cm}^{-1}$ in 2,6-DMQ; at 1380.1 and $1308.7 \mathrm{~cm}^{-1}$ in 2,7-DMQ; at 1378.1 and $1318.7 \mathrm{~cm}^{-1}$ in $2,8-\mathrm{DMQ}$ correspond to the DFT calculated anharmonic frequencies at 1422.1 and $1341.7 \mathrm{~cm}^{-1}$ in 2,4-DMQ; at 1380.5 and $1326.3 \mathrm{~cm}^{-1}$ in 2,6-DMQ; at 1380.3 and $1318.8 \mathrm{~cm}^{-1}$ in 2,7-DMQ; at 1417.4 and $1326.3 \mathrm{~cm}^{-1}$ in 2,8-DMQ, respectively. In this region the agreement between observed and calculated anharmonic frequencies are not very good for $2,4-\mathrm{DMQ}$ and $2,8-\mathrm{DMQ}$. They deviate by more than $10 \mathrm{~cm}^{-1}$, however, the force field fitted frequencies are quite close and calculated at 1381.3 and $1332.1 \mathrm{~cm}^{-1}$ in 2,4-DMQ; at 1381.4 and $1311.2 \mathrm{~cm}^{-1}$ in 2,6-DMQ; at 1378.0 and $1310.5 \mathrm{~cm}^{-1}$ in 2,7-DMQ; at 1377.9 and $1317.5 \mathrm{~cm}^{-1}$, respectively.

A band observed at $1223.3 \mathrm{~cm}^{-1}$ in 2,4-DMQ, at $1223.0 \mathrm{~cm}^{-1}$ in 2,6-DMQ, at $1222.6 \mathrm{~cm}^{-1}$ in 2,7-DMQ, and at $1231.5 \mathrm{~cm}^{-1}$ in 2,8-DMQ match well with the calculated fundamental anharmonic band at $1246.6 \mathrm{~cm}^{-1}$ in 2,4-DMQ, $1223.7 / 1235.6 \mathrm{~cm}^{-1}$ in 2,6-DMQ, $1230.2 \mathrm{~cm}^{-1}$ in 2,7-DMQ, and $1233.5 \mathrm{~cm}^{-1}$ in 2,8-DMQ. In 2,4-DMQ this band is assigned to a mixture of local coordinate vibration of aromatic C-C stretch $(\mathrm{R})$ and aromatic $\mathrm{C}-\mathrm{N}$ stretch $\left(\mathrm{R}^{\prime}\right)$; whereas for other three isomers it is assigned to a mixture of local coordinate vibration of aromaticmethyl C-C stretch $\left(\mathrm{R}^{\prime \prime}\right)$ and aromatic C-C stretch $(\mathrm{R})$ as obtained from PEDs. A low intensity aromatic $\mathrm{C}-\mathrm{C} / \mathrm{C}-\mathrm{N}$ stretching vibration appears at $1207.0 \mathrm{~cm}^{-1}$ in 2,8-DMQ which is close to the calculated anharmonic band at $1226.2 \mathrm{~cm}^{-1}$ and with the force field fitted frequency at
$\overline{1213.5 \mathrm{~cm}^{-1} \text {. This band is not observed in other three isomers. In 2,7-DMQ two extra bands }}$ observed at 1172.2 and $1145.8 \mathrm{~cm}^{-1}$ are assigned to aromatic-methyl C-C stretching ( $\mathrm{R}^{\prime \prime}$ ) and aromatic C -H in-plane bending ( $\beta$ ) vibrations with the help of force field fitted frequencies at 1170.2 and $1145.6 \mathrm{~cm}^{-1}$, respectively. A band observed at $1121.2,1118.2,1121.8$, and 1135.3 $\mathrm{cm}^{-1}$ for 2,4-, 2,6-, 2,7-, and 2,8-DMQ, respectively, is assigned to aromatic C-H in-plane bending vibrations $(\beta)$ by comparing with the calculated anharmonic bands at $1142.4,1136.8$, 1134.2, and $1155.2 \mathrm{~cm}^{-1}$ which differ by $\sim 20 \mathrm{~cm}^{-1}$ from their respective observed frequencies.

In 2,8-DMQ, one moderately intense band observed at $1066.9 \mathrm{~cm}^{-1}$ is identified as a mixture of local coordinate vibration of aromatic C-H in-plane bending ( $\beta$ ), aromatic $\mathrm{C}-\mathrm{C}$ stretching (R) and aromatic-methyl C-C stretching ( $\mathrm{R}^{\prime \prime}$ ) by correlating with the DFT calculated anharmonic frequency at $1073.5 \mathrm{~cm}^{-1}$. A low intensity band observed at $1024.3 \mathrm{~cm}^{-1}$ in $2,4-$ DMQ is assigned to a mixture of local-coordinate vibration of aromatic $\mathrm{C}-\mathrm{C}$ stretching $(\mathrm{R})$ and methyl C-H symmetric deformation $\left(\delta_{\mathrm{a}}\right)$ by comparing with the calculated anharmonic band at $1028.2 \mathrm{~cm}^{-1}$. Next one set of band observed at $1013.1,1014.6$, and $1002.5 \mathrm{~cm}^{-1}$ for $2,6-, 2,7-$ and $2,8-\mathrm{DMQ}$, respectively, is assigned to the methyl C-H symmetric deformation $\left(\delta_{\mathrm{a}}\right)$. This band is correlated with the calculated anharmonic band at $1022.0,1038.0$, and $1008.6 \mathrm{~cm}^{-1}$ in 2,6-, 2,7-, and 2,8-DMQ, respectively. In 2,4- and 2,8-DMQ one extra band observed at 982.5 and $970.0 \mathrm{~cm}^{-1}$, respectively, correspond to the DFT calculated anharmonic band at 989.2 and $978.2 \mathrm{~cm}^{-1}$. This band is assigned as a mixture of local coordinate vibration of aromatic ring deformation $(\delta)$ and methyl C-H symmetric deformation $\left(\delta_{a}\right)$.

The next groups of two to three intense bands in the recorded spectra at 857.1 and 755.7 $\mathrm{cm}^{-1}$ in 2,4-DMQ; at 877.9 and $830.3 \mathrm{~cm}^{-1}$ in 2,6-DMQ; at $888.9,835.6$, and $780.0 \mathrm{~cm}^{-1}$ in 2,7DMQ; at $829.3,792.3$, and $756.2 \mathrm{~cm}^{-1}$ in $2,8-\mathrm{DMQ}$ are assigned to aromatic C-H out-of-plane
bending vibrations ( $\gamma$ ) by comparing with the anharmonic frequencies calculated at 866.7 and $766.0 \mathrm{~cm}^{-1}$ in 2,4-DMQ; 887.9 and $838.7 \mathrm{~cm}^{-1}$ in 2,6-DMQ; 893.6, 845.5 , and $790.4 \mathrm{~cm}^{-1}$ in 2,7-DMQ; $835.6,802.5$, and $762.9 \mathrm{~cm}^{-1}$ in $2,8-\mathrm{DMQ}$, respectively. In the lower frequency region bands observed at 645.8 and $531.0 \mathrm{~cm}^{-1}$ in 2,4-DMQ; at 755.0 and $592.4 \mathrm{~cm}^{-1}$ in 2,6DMQ; at $562.7 \mathrm{~cm}^{-1}$ in 2,7-DMQ; at $721.0,687.6$, and $544.2 \mathrm{~cm}^{-1}$ in $2,8-\mathrm{DMQ}$ are assigned to aromatic ring deformation ( $\delta$ ) vibrations. Their corresponding anharmonic frequencies are 650.4 and $540.5 \mathrm{~cm}^{-1}$ in 2,4-DMQ; 754.1 and $593.4 \mathrm{~cm}^{-1}$ in $2,6-\mathrm{DMQ} ; 569.9 \mathrm{~cm}^{-1}$ in $2,7-$ DMQ; 720.2, 692.9 , and $546.3 \mathrm{~cm}^{-1}$ in 2,8-DMQ, respectively.

### 4.4.3 Non-fundamental bands

In DMQs a few weak bands are seen in the spectral range of $(2800-1780) \mathrm{cm}^{-1}$ which do not correspond to any calculated fundamentals. They are identified as non-fundamental (combination/overtone) bands (see Table 4.8). I have assigned these bands with the help of calculated force field fitted frequencies. There are many possibilities for the assignment of the observed non-fundamental bands with the calculated ones, and we have assigned them by correlating with those whose corresponding fundamental bands are intense. The band observed at $2741.2 \mathrm{~cm}^{-1}$ in 2,4-DMQ, at $2744.0 \mathrm{~cm}^{-1}$ in $2,6-\mathrm{DMQ}$, at $2743.9 \mathrm{~cm}^{-1}$ in $2,7-\mathrm{DMQ}$, and at $2741.0 \mathrm{~cm}^{-1}$ in 2,8-DMQ is assigned to the first overtone band of $v_{19}$ in 2,4- and 2,8-DMQ and to the first overtone of $v_{20}$ in 2,6- and 2,7-DMQ by comparing with the force field fitted band at $2762.2 \mathrm{~cm}^{-1}$ in 2,4-DMQ, at $2762.8 \mathrm{~cm}^{-1}$ in 2,6-DMQ, at $2756.0 \mathrm{~cm}^{-1}$ in $2,7-\mathrm{DMQ}$, and at $2755.8 \mathrm{~cm}^{-1}$ in 2,8-DMQ. The low intensity band observed at $2600.0 \mathrm{~cm}^{-1}$ in 2,6-DMQ and at $2599.8 \mathrm{~cm}^{-1}$ in 2,7-DMQ is compared with the force field fitted frequencies at 2622.4/2603.1 and $2621.0 / 2596.6 \mathrm{~cm}^{-1}$, respectively. It could be a first overtone of $v_{22}$ or a combination of the
fundamentals, $v_{24}$ and $v_{20}$. A non-fundamental band observed at $1925.0 \mathrm{~cm}^{-1}$ in 2,6-DMQ, $1928.9 \mathrm{~cm}^{-1}$ in 2,7-DMQ and $1923.9 \mathrm{~cm}^{-1}$ in 2,8-DMQ corresponds to the non-fundamental band at $1948.8 \mathrm{~cm}^{-1}$ in 2,6-DMQ, at $1956.4 \mathrm{~cm}^{-1}$ in 2,7-DMQ, and at $1963.4 \mathrm{~cm}^{-1}$ in 2,8-DMQ, respectively, which is a combination of $v_{51}$ and $v_{27}$ in $2,8-\mathrm{DMQ}$, and $v_{51}+v_{28}$ in $2,6-$, and 2,7-DMQs. Combination bands are not seen in the $2,4-\mathrm{DMQ}$ spectrum perhaps due to lower absorbances of the fundamentals compared to the other dimethylquinolines.

Table 4.8: Observed and calculated fitted and anharmonic non-fundamental bands in DMQs. All frequencies are in $\mathbf{c m}^{-1}$.

| Compound | Observed Non- <br> fundamental bands |  | Force Field Fitted |  | Anharmonic <br> Non-fundamental Bands |  |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |
|  | Freq. | Int. | Overtone | Combination | Overtone | Combination |
| 2,4-DMQ | 2741.2 | 1.053 | $2762.6\left(2 v_{19}\right)$ |  | 2817.1 |  |
| 2,6-DMQ | 2744.0 | 1.709 | $2762.8\left(2 v_{20}\right)$ |  | 2757.5 |  |
|  | 2600.0 | 0.539 | $2622.4\left(2 v_{22}\right)$ | $2603.1\left(v_{24}+v_{20}\right)$ | 2649.0 | 2616.6 |
|  | 1925.0 | 3.149 |  | $1948.8\left(v_{51}+v_{28}\right)$ |  | 1955.5 |
| 2,7-DMQ | 2743.9 | 1.713 | $2756.0\left(2 v_{20}\right)$ |  | 2756.5 |  |
|  | 2599.8 | 0.386 | $2621.0\left(2 v_{22}\right)$ | $2596.6\left(v_{24}+v_{20}\right)$ | 2631.4 | 2609.0 |
|  | 1928.9 | 1.602 |  | $1956.4\left(v_{51}+v_{28}\right)$ |  | 1980.0 |
|  | 1896.0 | 0.663 |  | $1897.6\left(v_{53}+v_{28}\right)$ |  | 1924.1 |
| 2,8-DMQ | 2741.0 | 0.968 | $2755.8\left(2 v_{19}\right)$ |  | 2805.1 |  |
|  | 1923.9 | 4.313 |  | $1963.4\left(v_{51}+v_{27}\right)$ |  | 1991.8 |
|  | 1855.8 | 1.628 |  | $1859.8\left(v_{52}+v_{29}\right)$ |  | 1879.0 |
|  | 1789.7 | 2.205 |  | $1824.8\left(v_{53}+v_{29}\right)$ |  | 1874.9 |

In parentheses frequency, $v_{i}$ refers to the i-th fundamental vibration. For description see Tables 4.4-4.7.

One band observed at $1896.0 \mathrm{~cm}^{-1}$ in 2,7-DMQ corresponds to the calculated band at 1897.6 $\mathrm{cm}^{-1}$ which is a combination band of fundamental vibrations, $v_{53}$ and $v_{28}$. In 2,8-DMQ two non-fundamental bands observed at 1855.8 and $1789.7 \mathrm{~cm}^{-1}$ can be correlated with the nonfundamental bands at 1859.8 and $1824.8 \mathrm{~cm}^{-1}$ which are assigned to a combination band of $\left(v_{52}\right.$ $\left.+v_{29}\right)$ and $\left(v_{53}+v_{29}\right)$, respectively. It is worth noting that the assignment of the nonfundamental modes may be done as well by comparison with calculated anharmonic frequencies in the region. However, the mismatch between the observed and calculated anharmonic frequencies is much more than that found between the observed and force field fitted frequencies. For comparison, we have included the corresponding calculated anharmonic frequencies in Table 4.8 for all the nonfundamental modes.

In 2,4-, 2,6-, and 2,7-DMQs the comparison of the observed and calculated spectra indicates that the intense vibrations in the experimental spectra are also intense in the theoretical spectra except for bands that are present in the lower frequency region which are generally intense in the observed spectra compared to those in the calculated spectra.

### 4.5 Conclusion

In this chapter, I have reported the gas phase IR spectra of 2,4-, 2,6-, 2,7-, and 2,8-DMQ recorded at low concentrations and assigned their vibrational spectra using force field fitted frequencies and their PEDs of normal modes and DFT calculated anharmonic frequencies. The anharmonic frequencies match well with the observed frequencies at lower frequency region. Unambiguously, I have assigned the aromatic C-H and methyl C-H stretching bands with the help of force field fitted frequencies. The error in fitting is within $3 \mathrm{~cm}^{-1}$ between the observed fundamental vibrations and the force field fitted frequencies. PEDs help identify the type of
vibrations in terms of the activity in the local coordinate motion. For nonfundamental vibrations such as combinations or overtones, however, the error in fitting is higher than $3 \mathrm{~cm}^{-1}$ but still better than that found between the calculated anharmonic and observed frequencies.

# Chapter 4: Infrared spectra of DMQs 

### 4.6 References

[1] Adams, J.; Atlas, E. L.; Giam, C. S. Anal. Chem.1982, 54, 1515.
[2] Onuska, F. I.; Terry, K. A. J. High Res. Chromatog. 1989, 12, 362.
[3] Dmitrikov, V. P.; Fedorov, Y. V.; Nabivach, V. M. Chromatographia 1984, 18, 28.
[4] Schmitter, J. M.; Ignatiadis, I.; Dorbon, M.; Arpino, P. ; Guiochon, G.; Toulhoat, H. Huc, A. Fuel 1984, 63, 557.
[5] Later, D. W.; Lee, M. L.; Bartle, K. D.; Kong, R. C.; Vassilaros, D. L. Anal. Chem. 1981, 53, 1612.
[6] Stuermer, D. H.; Ng, D. J.; Morris, C. J. Environ. Sci. Technol. 1982, 16, 582.
[7] Royer, R. E.; Mitchell, C. E.; Hanson, R. L.; Dutcher, J. S.; Bechtold, W. E. Environ. Res. 1983, 31, 460.
[8] Qian, K.; Edwards, K. E.; Diehl, J. H.; Green, L. A. Energy \& Fuel 2004, 18, 1784.
[9] Guerin, M. R.; Rubin, I. B.; Rao, T. K.; Clark, B. R.; Epler, J. L. Fuel 1981, 60, 282.
[10] Drushel, H. V.; Sommers, A. L. Anal. Chem. 1966, 38, 10.
[11] Drushel, H. V.; Sommers, A. L. Anal. Chem. 1966, 38, 19.
[12] Kaden, D. A.; Hites, R. A.; Thilly, W. G. Cancer Res. 1979, 39, 4152.
[13] Birkholz, D. A.; Coutts, R. T.; Hrudey, S. E.; Danell, R. W.; Lockhart, W. L. Wat. Res. 1990, 24, 67.
[14] Lavoie, E. J.; Shigematsu, A.; Adams E. A.; Rigotty, J.; Hoffmann, D. Cancer Lett. 1984, 22, 269.
[15] NIST Chemistry WeBook, IR database, http://www.webbook.nist.gov/chemistry/
[16] Ozel, A. E.; Kecel, S.; Akyuz, S. Vibr. Spectrosc. 2006, 42, 325.
[17] Karr, C. B.; Estep, P. A.; Papa, A. J. J. Am. Chem. 1959, 81, 152.
[18] Calculated using Advanced Chemistry Development (ACD/Labs) software.
[19] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J.Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H.Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision D.01, Gaussian, Inc Pittsburg, PA, 2003.
[20] UMAT, Mclntosh D.F.; Peterson M. R.; General Vibrational Analysis System, QCPE 576. Indiana University, Bloomington, IN 47405.
[21] Das, P.; Manogaran, S.; Arunan, E.; Das, P. K. J. Phys. Chem. A 2010, 114, 8351.
[22] (a) Daunt, S. J.; Shurvell, H. F. Spectrochim. Acta, 1976, 32A, 1545 (b) Reddy, K. V.; Heller, D. F.; Berry, M. J. J. Chem. Phys. 1982, 76, 2814.
[23] (a) McKean, D. C. Spectrochim. Acta 1973, 29A, 1559 (b) Gellini, C.; Moroni, L.; MunizMiranda, M. J. Phys. Chem. A 2002, 106, 10999.
[24] Das, P; Arunan, E.; Das, P. K. Vibr. Spectrosc. 2008, 47, 1.

## Chapter-5

# An Experimental and Theoretical investigation of Infrared spectra of Dimethylphenanthrenes (DMPs) in the Gas Phase 

### 5.1 Introduction

In chapter 3 and 4, I have investigated the gas phase IR spectra of dimethyl polycyclic aromatic compounds having two fused benzene/nitrogen substituted benzene rings in the gas phase. ${ }^{1}$ By combining IR spectroscopy and theory, I have assigned the fundamental and nonfundamental bands in the observed spectra. Here, I continue with tricyclicaromatic compounds namely dimethylphenanthrenes (DMPs) and report their IR spectra. They are present in interplanetary dust particles (IDPs), meteorites individual, diesel fuels, and sugar cane soot. ${ }^{2-6}$ The residential wood combustion and motor vehicle exhaust emissions contribute to monomethylphenanthrene (MMPs) and DMPs to the lower atmosphere. ${ }^{7-11}$ The isomer of DMPs have different biological activities, e.g., 4,10-DMP acts as a tumor initiating agent and 9,10DMP is mutagenic whereas 1,4-DMP exhibits both the activities. ${ }^{12}$ Another interesting feature of these molecules is that they are known to be the reasons behind unidentified infrared bands (UIR) in the interstellar medium (ISM). ${ }^{13}$ Therefore, it is necessary to find accurate frequencies and intensities for DMPs and to identify different isomers of DMP in the gas phase.

In section 1.2 of chapter1, I have discussed that a few experimental techniques employed for the analysis and identification of PAHs including DMPs. ${ }^{2,10}$ Pakdel et al. used FTNMR and FT-IR technique for the analysis of aromatic fractions of pyrolysis oil containing DMPs along with other methylated PAHs. ${ }^{14}$ In 1997, Cane et al. recorded the gas phase IR spectra of anthracene and phenanthrene with the help of a multi-pass gas cell of 4.2 meter. ${ }^{15}$ There is no literature report on the infrared spectroscopy of DMPs in the gas phase.

In this chapter, I report the mid-IR spectra of DMPs at low concentrations using a longpath gas cell and assign the observed vibrational frequencies unambiguously using scaled force field calculation at the B3LYP/6-311G** level of theory as discussed in chapter 2.

### 5.2 Experimental section

### 5.2.1 Materials

DMPs chosen in this study are 1, 9-dimethylphenanthrene (Chiron, $99.1 \%$ ), 2,4dimethylphenanthrene (Chiron, 99.9 \%), and 3,6-dimethylphenanthrene (Chiron, 99.9 \% purity) and they were used as received.

Table 5.1: Some physical properties of phenanthrene and DMPs.

| Compound | State at $25^{\circ} \mathrm{C}$ | m.p (in ${ }^{\circ} \mathrm{C}$ ) | $\mathrm{P}\left(\right.$ at $25^{\circ} \mathrm{C}$ in mmHg$)$ |
| :--- | :--- | :---: | :---: |
| Phenanthrene | Solid powder | 100 | ${ }^{\mathrm{a}} 1.25 \times 10^{-4}$ |
| 1,9-DMP | Solid powder | 88 | ${ }^{\mathrm{b}} 2.89 \times 10^{-5}$ |
| 2,4-DMP | Solid powder | 80 | ${ }^{\mathrm{b}} 2.60 \times 10^{-5}$ |
| 3,9-DMP | Solid powder | 62 | ${ }^{\mathrm{b}} 2.49 \times 10^{-5}$ |

${ }^{\text {a }}$ Experimentally measured value. ${ }^{16}$
${ }^{\text {b }}$ Since experimental vapor pressures are not available, calculated values found through SciFinder search are given. ${ }^{17}$

### 5.2.2 Methods

Experimental set-up employed for this study has been discussed in section 2.3.3 of chapter 2. DMPs have very low vapor pressures $\left(\sim 10^{-5} \mathrm{mmHg}\right)$ at room temperature [see Table 5.1]. I have thermally vaporized the DMPs by placing them inside a gas cell at $110{ }^{\circ} \mathrm{C}$. During the vaporization, UHP Ar gas was introduced through a ball valve to seed the DMPs. The total pressure of Ar gas containing DMPs in the cell was maintained at 30 mmHg . For this study optical path length was fixed at 7.2 meter. The mid-IR spectra ( $4000-400 \mathrm{~cm}^{-1}$ ) were collected using a liquid nitrogen cooled mercury cadmium telluride or HgCdTe (MCT) detector and KBr beam splitter combination. The spectra were recorded at $0.5 \mathrm{~cm}^{-1}$ spectral
resolution with averaging over 2048 scans. The suitable $\mathrm{H}_{2} \mathrm{O}$ spectrum was recorded and subtracted from sample spectra in order to get clear spectra of DMPs. The integrated band area $\int \log \left(\mathrm{I}_{0} / \mathrm{I}\right) \mathrm{d} v\left(\mathrm{in} \mathrm{cm}^{-1}\right)$ for each band was obtained with the help of OPUS software provided by Bruker. Levenberg Marquardt algorithm is used in the OPUS software to calculate single component band area in the region of overlapping bands particularly in the $\mathrm{C}-\mathrm{H}$ stretching region.

Intensity of observed was calculated for DMPs using experimental band area and DFT calculated intensity. The detail of the intensity calculation was discussed in section 2.5 of chapter 2. The estimated vapor pressures found to be $1.069 \times 10^{-5}, 0.913 \times 10^{-5}$, and $0.533 \times$ $10^{-5} \mathrm{~atm}$ at $110{ }^{\circ} \mathrm{C}$ for $1,9-, 2,4-$, and 3,9-DMP, respectively, when B3LYP/6-311G** calculated intensities were considered in the vapor pressure calculation under all the bands.

### 5.3 Theoretical calculations

I followed the approach which was applied to DMQs (see section 4.3 of chapter 3). At first the molecular geometry of DMPs were optimized at Cs point group with the B3LYP/631G* and B3LYP/6-311G** levels of theory using the Gaussian 09 program. ${ }^{18}$ At the computed equilibrium geometry, the harmonic and anharmonic frequencies and their intensities were calculated in a Tesla Cluster (EM64L) system. For 2,4-DMP, I found one imaginary frequency due to the interaction between an aromatic $\mathrm{C}-\mathrm{H}$ bond and the methyl group present in the adjacent ring. For the quantitative fitting of observed bands with calculated spectra, I have performed scaled quantum mechanical force field calculation as described in section 2.4.2 of chapter 2. The internal coordinates were defined for DMPs as shown in Figure 5.1. Then the set of nonredundant local coordinates were constructed (see

Table 5.2). The symbolic force constant matrix, unscaled and scaled force constants in term of nonredundant local coordinates was calculated for DMPs in a similar manner as was done for DMQs (data not shown).

Calculations were carried out with $6-311 \mathrm{G}^{* *}$ and $6-31 \mathrm{G}^{*}$ basis sets and mean deviation between calculated (harmonic, anharmonic and scaled force field fitted) and observed frequencies were evaluated using equation 2.13. Table 5.3 lists the mean deviation between calculated and observed frequencies for three different types of vibration. It is clear that (i) the extent of anharmonicty is different for different types of vibration, (ii) fundamental anharmonic frequencies obtained with $6-31 G^{*}$ basis set differ by $\sim 10 \mathrm{~cm}^{-1}$ from that with 6 $311 \mathrm{G}^{* *}$ whereas for the non-fundamental frequencies the difference is more significant and (iii) the force field fitted frequencies obtained by the SQM method are more reliable in the CH stretching region irrespective of the basis sets. It should be noted that the SQM approach relies on minimizing the fitting error and it can be applied with confidence to the methylated polycyclic compounds.

Figure 5.1. Optimized B3LYP/6-311G** structure and internal coordinates of (a) 1,9-DMP (b) 2,4-DMP and (c) 3,9-DMP.


Twist coordinates, $\tau$ 's numbering are the same as defined for R (the $\mathrm{C}-\mathrm{C}$ bond coordinates). $\alpha_{1}{ }^{\prime}$ and $\beta_{1}$ is one of the $\mathrm{C}-\mathrm{C}-\mathrm{H}$ and $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle coordinate of the $\mathrm{CH}_{3}$ groups, respectively. The other C-C-H and $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle coordinates, $\alpha_{2}^{\prime}, \alpha_{3}^{\prime}$, etc. and $\beta_{2}, \beta_{3}$, etc., respectively, are defined similarly.

Figure 5.1. (Continued)


Table 5.2: Nonredundant local coordinates of DMPs used in this thesis.

| Compound | Nonredundant local coordinates |
| :---: | :---: |
| 1,9-DMP <br> See Fig 5.1 (a) for the internalcoordinates | In-plane <br> $\mathrm{S}_{1-16}=\mathrm{R}(\mathrm{Ar}, \mathrm{C}-\mathrm{C}$ stretch $)\left(\mathrm{R}_{\mathrm{i}}\right) ; \mathrm{S}_{20,22}=\mathrm{R}\left(\mathrm{Ar}-\mathrm{CH}_{3}, \mathrm{C}-\mathrm{C}\right.$ stretch $)\left(\mathrm{R}_{\mathrm{i}}{ }_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{17-19,21,23-26}=\mathrm{r}(\mathrm{Ar}, \mathrm{C}-\mathrm{H}$ stretch $)\left(\mathrm{r}_{\mathrm{i}}\right) ; \mathrm{S}_{27-32}=\mathrm{r}\left(\mathrm{CH}_{3}, \mathrm{C}-\mathrm{H}\right.$ stretch $)\left(\mathrm{r}_{\mathrm{i}} \mathrm{i}\right)$ <br> $\mathrm{S}_{33-35,37,39-42}=2^{-1 / 2}\left(\phi_{3}-\phi_{4}\right) ;\left(\phi_{7}-\phi_{8}\right) \ldots(\mathrm{Ar}, \mathrm{C}-\mathrm{H}$ def. $)\left(\beta_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{36,38}=2^{-1 / 2}\left(\phi_{1}-\phi_{2}\right) ;\left(\phi_{5}-\phi_{6}\right)\left(\mathrm{C}-\mathrm{CH}_{3}\right.$ def. $)\left(\beta_{\mathrm{i}}^{\prime}\right)$ <br> $S_{43,46,49}=6^{-1 / 2}\left(\alpha_{1}-\alpha_{2}+\alpha_{3}-\alpha_{4}+\alpha_{5}-\alpha_{6}\right)($ ring def. $)\left(\delta_{1}, \delta_{4}, \delta_{7}\right)$ <br> $\mathrm{S}_{44,47,50}=3^{-1 / 2}\left(2 \alpha_{1}-\alpha_{2}-\alpha_{3}+2 \alpha_{4}-\alpha_{5}-\alpha_{6}\right)\left(\right.$ ring def.) $\left(\delta_{2}, \delta_{5}, \delta_{8}\right)$ <br> $\mathrm{S}_{45,48,51}=1 / 2\left(\alpha_{2}+\alpha_{3}-\alpha_{5}-\alpha_{6}\right)$ (ring def.) $\left(\delta_{3}, \delta_{6,} \delta_{9}\right)$ <br> Out-of-plane <br> $S_{52,57}=6^{-1 / 2}\left(\alpha_{1}^{\prime}+\alpha^{\prime}{ }_{2}+\alpha^{\prime}{ }_{3}-\beta_{1}-\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ sym. def. $)\left(\delta_{\mathrm{a}}\right)$ <br> $\mathrm{S}_{53,58}=6^{-1 / 2}\left(2 \alpha_{1}^{\prime}-\alpha^{\prime}-\alpha^{\prime}{ }_{3}\right)\left(\mathrm{CH}_{3}\right.$ antisym. def.) $\left(\delta_{\mathrm{s}}\right)$ <br> $\mathrm{S}_{54,59}=2^{-1 / 2}\left(\alpha^{\prime}{ }_{2}-\alpha^{\prime}{ }_{3}\right)\left(\mathrm{CH}_{3}\right.$ antisym. def.) $\left(\delta_{\mathrm{s}}\right)$ <br> $\mathrm{S}_{55,60}=6^{-1 / 2}\left(2 \beta_{1}-\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ rock $) \rho\left(\mathrm{CH}_{3}\right)$ <br> $\mathrm{S}_{56,61}=2^{-1 / 2}\left(\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ rock $) \rho\left(\mathrm{CH}_{3}\right)$ <br> $\mathrm{S}_{62,64,65,68-71}=\gamma\left(\mathrm{Ar}, \mathrm{C}-\mathrm{H}\right.$ wag) $\gamma_{\mathrm{i}} ; \mathrm{S}_{65,67}=\gamma\left(\mathrm{Ar}-\mathrm{CH}_{3}, \mathrm{C}-\mathrm{C}\right.$ wag $) \gamma_{\mathrm{i}}^{\prime}$ <br> $\mathrm{S}_{72,75,78}=6^{-1 / 2}\left(\tau_{1}-\tau_{2}+\tau_{3}-\tau_{4}+\tau_{5}-\tau_{6}\right)($ ring torsion $)\left(\tau_{1}, \tau_{4}, \tau_{7}\right)$ <br> $\mathrm{S}_{73,76,79}=1 / 2\left(\tau_{1}-\tau_{3}+\tau_{4}-\tau_{6}\right)$ (ring torsion) $\left(\tau_{2}, \tau_{5}, \tau_{8}\right)$ <br> $\mathrm{S}_{74,77,80}=12^{-1 / 2}\left(-\tau_{1}+2 \tau_{2}-\tau_{3}-\tau_{4}+2 \tau_{5}-\tau_{6}\right)$ (ring torsion) $\left(\tau_{3}, \tau_{6}, \tau_{9}\right)$ <br> $\mathrm{S}_{81}=2^{-1 / 2}\left(\tau_{5-4-3-7}-\tau_{8-4-3-2}\right)\left(\tau_{\text {ring }}\right) ; \mathrm{S}_{82}=2^{-1 / 2}\left(\tau_{4-8-9-11}-\tau_{15-8-9-10}\right)\left(\tau_{\text {ring }}\right)$ <br> $\mathrm{S}_{83,84}=\tau_{2-23} ; \tau_{10-17}\left(\mathrm{C}-\mathrm{CH}_{3}\right.$ twist $)\left(\tau_{\mathrm{\prime} \mathrm{\prime}}^{\mathrm{i}}\right)$ |

Table 5.2: Continued

| Compound | Nonredundant local coordinates |
| :---: | :---: |
| 2,4-DMP <br> See Fig 5.2 <br> (b) for the internalcoordinates | In-plane <br> $\mathrm{S}_{1-16}=\mathrm{R}(\mathrm{Ar}, \mathrm{C}-\mathrm{C}$ stretch $)\left(\mathrm{R}_{\mathrm{i}}\right) ; \mathrm{S}_{17,19}=\mathrm{R}\left(\mathrm{Ar}-\mathrm{CH}_{3}, \mathrm{C}-\mathrm{C}\right.$ stretch $)\left(\mathrm{R}^{\prime}{ }_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{18,22-26}=\mathrm{r}(\mathrm{Ar}, \mathrm{C}-\mathrm{H}$ stretch $)\left(\mathrm{r}_{\mathrm{i}}\right) ; \mathrm{S}_{27-32}=\mathrm{r}\left(\mathrm{CH}_{3}, \mathrm{C}-\mathrm{H}\right.$ stretch $)\left(\mathrm{r}_{\mathrm{i}}{ }_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{33,35}=2^{-1 / 2}\left(\phi_{1}-\phi_{2}\right) ;\left(\phi_{5}-\phi_{6}\right)\left(\mathrm{C}-\mathrm{CH}_{3}\right.$ def. $)\left(\beta^{\prime}{ }_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{34,36-42}=2^{-1 / 2}\left(\phi_{3}-\phi_{4}\right) ;\left(\phi_{7}-\phi_{8}\right) \ldots(\mathrm{Ar}, \mathrm{C}-\mathrm{H}$ def. $)\left(\beta_{\mathrm{i}}\right)$ <br> $S_{43,46,49}=6^{-1 / 2}\left(\alpha_{1}-\alpha_{2}+\alpha_{3}-\alpha_{4}+\alpha_{5}-\alpha_{6}\right)$ (ring def.) $\left(\delta_{1}, \delta_{4}, \delta_{7}\right)$ <br> $\mathrm{S}_{44,47,50}=3^{-1 / 2}\left(2 \alpha_{1}-\alpha_{2}-\alpha_{3}+2 \alpha_{4}-\alpha_{5}-\alpha_{6}\right)\left(\right.$ ring def.) $\left(\delta_{2}, \delta_{5}, \delta_{8}\right)$ <br> $\mathrm{S}_{45,48,51}=1 / 2\left(\alpha_{2}+\alpha_{3}-\alpha_{5}-\alpha_{6}\right)$ (ring def.) $\left(\delta_{3}, \delta_{6,} \delta_{9}\right)$ <br> Out-of-plane <br> $S_{52,57}=6^{-1 / 2}\left(\alpha^{\prime}{ }_{1}+\alpha^{\prime}{ }_{2}+\alpha^{\prime}{ }_{3}-\beta_{1}-\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ sym. def. $)\left(\delta_{\mathrm{a}}\right)$ <br> $\mathrm{S}_{53,58}=6^{-1 / 2}\left(2 \alpha^{\prime}{ }_{1}-\alpha^{\prime}{ }_{2}-\alpha^{\prime}{ }_{3}\right)\left(\mathrm{CH}_{3}\right.$ antisym. def.) $\left(\delta_{\mathrm{s}}\right)$ <br> $\mathrm{S}_{54,59}=2^{-1 / 2}\left(\alpha_{2}^{\prime}-\alpha^{\prime}{ }_{3}\right)\left(\mathrm{CH}_{3}\right.$ antisym. def.) $\left(\delta_{\mathrm{s}}\right)$ <br> $\mathrm{S}_{55,60}=6^{-1 / 2}\left(2 \beta_{1}-\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ rock $) \rho\left(\mathrm{CH}_{3}\right)$ <br> $\mathrm{S}_{56,61}=2^{-1 / 2}\left(\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ rock $) \rho\left(\mathrm{CH}_{3}\right)$ <br> $\mathrm{S}_{62,64}=\gamma\left(\mathrm{Ar}-\mathrm{CH}_{3}, \mathrm{C}-\mathrm{C}\right.$ wag) $\gamma_{\mathrm{i}}^{\prime} ; \mathrm{S}_{63,65-71}=\gamma(\mathrm{Ar}, \mathrm{C}-\mathrm{H}$ wag $) \gamma_{\mathrm{i}}$ <br> $\mathrm{S}_{72,75,78}=6^{-1 / 2}\left(\tau_{1}-\tau_{2}+\tau_{3}-\tau_{4}+\tau_{5}-\tau_{6}\right)$ (ring torsion) $\left(\tau_{1}, \tau_{4}, \tau_{7}\right)$ <br> $\mathrm{S}_{73,76,79}=1 / 2\left(\tau_{1}-\tau_{3}+\tau_{4}-\tau_{6}\right)$ (ring torsion) $\left(\tau_{2}, \tau_{5}, \tau_{8}\right)$ <br> $S_{74,77,80}=12^{-1 / 2}\left(-\tau_{1}+2 \tau_{2}-\tau_{3}-\tau_{4}+2 \tau_{5}-\tau_{6}\right)$ (ring torsion) $\left(\tau_{3}, \tau_{6}, \tau_{9}\right)$ <br> $\mathrm{S}_{81}=2^{-1 / 2}\left(\tau_{5-4-3-7}-\tau_{8-4-3-2}\right)\left(\tau_{\text {ring }}\right) ; \mathrm{S}_{82}=2^{-1 / 2}\left(\tau_{4-8-9-11}-\tau_{15-8-9-10}\right)\left(\tau_{\text {ring }}\right)$ <br> $\mathrm{S}_{83,84}=\tau_{1-23} ; \tau_{5-27}\left(\mathrm{C}-\mathrm{CH}_{3}\right.$ twist $)\left(\tau^{\prime \prime}{ }_{\mathrm{i}}\right)$ |
| 3,9-DMP <br> See Fig 5.2 <br> (c) for the internalcoordinates | In-plane <br> $\mathrm{S}_{1-16}=\mathrm{R}(\mathrm{Ar}, \mathrm{C}-\mathrm{C}$ stretch $)\left(\mathrm{R}_{\mathrm{i}}\right) ; \mathrm{S}_{18,22}=\mathrm{R}\left(\mathrm{Ar}-\mathrm{CH}_{3}, \mathrm{C}-\mathrm{C}\right.$ stretch $)\left(\mathrm{R}^{\prime}{ }_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{17,19-21,23-26}=\mathrm{r}(\mathrm{Ar}, \mathrm{C}-\mathrm{H}$ stretch $)\left(\mathrm{r}_{\mathrm{i}}\right) ; \mathrm{S}_{27-32}=\mathrm{r}\left(\mathrm{CH}_{3}, \mathrm{C}-\mathrm{H}\right.$ stretch $)\left(\mathrm{r}_{\mathrm{i}}{ }_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{33,35-37,39-42}=2^{-1 / 2}\left(\phi_{3}-\phi_{4}\right) ;\left(\phi_{7}-\phi_{8}\right) \ldots(\mathrm{Ar}, \mathrm{C}-\mathrm{H}$ def. $)\left(\beta_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{34,38}=2^{-1 / 2}\left(\phi_{1}-\phi_{2}\right) ;\left(\phi_{5}-\phi_{6}\right)\left(\mathrm{C}-\mathrm{CH}_{3}\right.$ def. $)\left(\beta^{\prime}{ }_{\mathrm{i}}\right)$ <br> $\mathrm{S}_{43,46,49}=6^{-1 / 2}\left(\alpha_{1}-\alpha_{2}+\alpha_{3}-\alpha_{4}+\alpha_{5}-\alpha_{6}\right)($ ring def. $)\left(\delta_{1}, \delta_{4}, \delta_{7}\right)$ <br> $\mathrm{S}_{44,47,50}=3^{-1 / 2}\left(2 \alpha_{1}-\alpha_{2}-\alpha_{3}+2 \alpha_{4}-\alpha_{5}-\alpha_{6}\right)($ ring def. $)\left(\delta_{2}, \delta_{5}, \delta_{8}\right)$ <br> $\mathrm{S}_{45,48,51}=1 / 2\left(\alpha_{2}+\alpha_{3}-\alpha_{5}-\alpha_{6}\right)\left(\right.$ ring def.) $\left(\delta_{3}, \delta_{6,} \delta_{9}\right)$ <br> Out-of-plane <br> $S_{52,57}=6^{-1 / 2}\left(\alpha^{\prime}{ }_{1}+\alpha^{\prime}{ }_{2}+\alpha^{\prime}{ }_{3}-\beta_{1}-\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ sym. def. $)\left(\delta_{\mathrm{a}}\right)$ <br> $\mathrm{S}_{53,58}=6^{-1 / 2}\left(2 \alpha_{1}^{\prime}-\alpha^{\prime}{ }_{2}-\alpha^{\prime}{ }_{3}\right)\left(\mathrm{CH}_{3}\right.$ antisym. def. $)\left(\delta_{\mathrm{s}}\right)$ <br> $\mathrm{S}_{54,59}=2^{-1 / 2}\left(\alpha_{2}^{\prime}-\alpha_{3}^{\prime}\right)\left(\mathrm{CH}_{3}\right.$ antisym. def.) $\left(\delta_{\mathrm{s}}\right)$ <br> $\mathrm{S}_{55,60}=6^{-1 / 2}\left(2 \beta_{1}-\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ rock $) \rho\left(\mathrm{CH}_{3}\right)$ <br> $\mathrm{S}_{56,61}=2^{-1 / 2}\left(\beta_{2}-\beta_{3}\right)\left(\mathrm{CH}_{3}\right.$ rock $) \rho\left(\mathrm{CH}_{3}\right)$ <br> $\mathrm{S}_{62,64-66,69-71}=\gamma\left(\mathrm{Ar}, \mathrm{C}-\mathrm{H}\right.$ wag) $\gamma_{\mathrm{i}} ; \mathrm{S}_{63,68}=\gamma\left(\mathrm{Ar}-\mathrm{CH}_{3}, \mathrm{C}-\mathrm{C}\right.$ wag $) \gamma_{\mathrm{i}}^{\prime}$ <br> $\mathrm{S}_{72,75,78}=6^{-1 / 2}\left(\tau_{1}-\tau_{2}+\tau_{3}-\tau_{4}+\tau_{5}-\tau_{6}\right)$ (ring torsion) $\left(\tau_{1}, \tau_{4}, \tau_{7}\right)$ <br> $\mathrm{S}_{73,76,79}=1 / 2\left(\tau_{1}-\tau_{3}+\tau_{4}-\tau_{6}\right)$ (ring torsion) $\left(\tau_{2}, \tau_{5}, \tau_{8}\right)$ <br> $\mathrm{S}_{74,77,80}=12^{-1 / 2}\left(-\tau_{1}+2 \tau_{2}-\tau_{3}-\tau_{4}+2 \tau_{5}-\tau_{6}\right)$ (ring torsion) $\left(\tau_{3}, \tau_{6}, \tau_{9}\right)$ <br> $\mathrm{S}_{81}=2^{-1 / 2}\left(\tau_{5-4-3-7}-\tau_{8-4-3-2}\right)\left(\tau_{\text {ring }}\right) ; \mathrm{S}_{82}=2^{-1 / 2}\left(\tau_{4-8-9-11}-\tau_{15-8-9-10}\right)\left(\tau_{\text {ring }}\right)$ <br> $\mathrm{S}_{83,84}=\tau_{6-23} ; \tau_{10-27}\left(\mathrm{C}-\mathrm{CH}_{3}\right.$ twist $)\left(\tau^{\prime \prime}{ }_{\mathrm{i}}\right)$ |

Table 5.3: Mean deviation, $\delta$ (in $\mathbf{~ c m}^{-1}$ ), between the calculated (harmonic, anharmonic and force field fitted) and observed band position of DMPs.

| $\delta$ Mode of | Basis set | Harmonic |  |  | Anharmonic |  |  | Fitted |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vibration |  | (a) | (b) | (c) | (a) | (b) | (c) | (a) | (b) | (c) |
| AromaticC- | 6-31G* | 181.5 | 149.4 | 178.9 | 43.6 | 19.0 | 41.6 | 0.1 | 0.8 | 0.2 |
| H str | 6-311G** | 161.6 | 125.5 | 161.6 | 36.8 | 20.0 | 36.8 | $<0.1$ | 0.7 | $<0.1$ |
| Methyl | 6-31G* | 181.3 | 161.3 | 180.0 | 34.5 | 13.8 | 61.0 | 7.6 | 0.7 | 6.5 |
| C-H str | 6-311G** | 160.2 | 140.4 | 160.2 | 23.5 | 13.8 | 23.5 | 6.4 | 1.0 | 6.4 |
| Non-C-H | 6-31G* | 35.3 | 33.7 | 30.6 | 14.3 | 15.9 | 15.5 | 1.3 | 1.7 | 1.5 |
| str | 6-311G** | 24.1 | 23.7 | 24.1 | 8.6 | 8.0 | 8.6 | 0.8 | 1.7 | 0.8 |
| Non- | 6-31G* |  |  |  | 84.8 | 97.6 | 170.2 |  |  |  |
| Fundam. | 6-311G** |  |  |  | 48.8 | 79.5 | 67.3 | 57.1 | 71.9 | 60.9 |

(a), (b) and (c) represent the 1,9-, 2,4- and 3,9-DMP, respectively.

### 5.4 Results and discussion

The gas phase IR absorption spectra of DMPs are shown in Figures 5.2-5.4. The DMP molecule in $\mathrm{C}_{\mathrm{s}}$ symmetry has 84 normal modes which belong to the irreducible representation $55 \mathrm{~A}^{\prime}+29 \mathrm{~A}^{\prime \prime}$. The recorded band-origin frequencies and their intensities, calculated (harmonic, anharmonic and force field fitted) frequencies of DMPs with $6-311 \mathrm{G}^{* *}$ and $6-31 \mathrm{G}^{*}$ basis sets are presented in Tables $5.4(\mathrm{a}-\mathrm{c})$ and $5.5(\mathrm{a}-\mathrm{c})$, respectively. A few observed nonfundamental and corresponding calculated anharmonic and force field fitted frequencies are listed in Table 5.6. Observed bands are assigned with the help of scaled force field fitted frequencies and PEDs at the B3LYP/6-311G** level of theory. From Tables $5.4(\mathrm{a}-\mathrm{c})$ and 5.5 $(\mathrm{a}-\mathrm{c})$ it is clear that the description of PEDs of normal modes remains the same for the 6$31 \mathrm{G}^{*}$ and $6-311 \mathrm{G}^{* *}$ basis sets, although, percent contribution of coordinates to PEDs change by a small extent. The observed spectra of DMPs can be divided into five distinct regions: (1)
aromatic C-H and methyl C-H stretching, (2) aromatic C-C stretching (3) methyl C-H symmetric and asymmetric and aromatic in-plane ring deformation, (4) aromatic C-H out-ofplane and aromatic out-of-plane ring deformation, and (5) non-fundamental modes: overtone and combination. Details of the assignment have been discussed region wise in the following section.

### 5.4.1 Spectral region of $2800-3200 \mathrm{~cm}^{-1}$

Two types of bands appear in this region. They are aromatic C-H and methyl C-H stretching vibrations. The assignment of the observed bands in this region is always difficult because of the presence of Fermi resonances. ${ }^{1 b, 19}$


Figure 5.2. Expanded gas phase IR absorption spectra of 1,9-, 2,4-, and 3,9-DMPs from 2600 to $3400 \mathrm{~cm}^{-1}$ at $0.5 \mathrm{~cm}^{-1}$ resolution.

In the aromatic C-H stretching region, this occurs due to interaction of a fundamental mode with an overtone or a combination of lower frequency modes. On the other hand in the methyl C-H stretching region, Fermi resonance occurs between the methyl C-H symmetric stretch and an overtone involving two quanta of a methyl deformation mode. Therefore, an assignment of the observed bands in this region with the help of force fitted frequencies and their PEDs is tentative. We have tried to use intensity criteria to resolve this but it is not straightforward.

A group of five bands observed at $3089.1,3069.7,3035.3,2979.6$, and $2955.2 \mathrm{~cm}^{-1}$ in 1,9-DMP; 3155.1, $3076.5,3057.2,3038.0$, and $3017.1 \mathrm{~cm}^{-1}$ in 2,4-DMP; 3085.7, 3062.5 , 3029.1, 2978.9 , and $2956.3 \mathrm{~cm}^{-1}$ in 3,9-DMP match well with the scaled force field frequencies at $3089.1,3069.8,3035.3,2979.8$, and $2955.2 \mathrm{~cm}^{-1}$ in $1,9-$ DMP; $3155.1,30765.2$, 3057.7, 3039.3, and $3018.1 \mathrm{~cm}^{-1}$ in 2,4-DMP; 3085.8, $3062.5,3030.6,2978.9$, and $2957.0 \mathrm{~cm}^{-1}$ in 3,9-DMP, respectively. Their respective anharmonic frequencies deviate by 40 and $25 \mathrm{~cm}^{-1}$ with $6-31 G^{*}$ and $6-311 G^{* *}$ basis sets, respectively. These bands are assigned to aromatic C-H stretching vibration.

A groups of three bands of methyl C-H stretching vibration is seen in the experimental spectra of DMPs. Bands at 2933.5 and $2905.0 \mathrm{~cm}^{-1}$ in 1,9-DMP; 2976.7 and $2930.8 \mathrm{~cm}^{-1}$ in 2,4-DMP; 2933.5 and $2908.2 \mathrm{~cm}^{-1}$ in 3,9-DMP correspond to the force field fitted frequencies at 2936.1 and $2912.4 \mathrm{~cm}^{-1}$ in 1,9-DMP; 2976.3 and $2930.6 \mathrm{~cm}^{-1}$ in 2,4-DMP; 2936.0 and $2914.1 \mathrm{~cm}^{-1}$ in 3,9-DMP, respectively. These bands are assigned to the asymmetric C-H stretching vibrations of methyl group. The symmetric C-H stretching band observed at a lower frequency region such as $2875.3,2882.3$, and $2875.0 \mathrm{~cm}^{-1}$ for $1,9-, 2,4-$, and $3,9-\mathrm{DMP}$, respectively, is correlated with the fitted frequency at

Table 5.4(a): Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-311 G^{* *}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PEDs of $1,9-D M P$.

| Sym | B3LYP/6-311G** |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| $A^{\prime}$ |  |  |  |  |  |  |  |
| $\nu_{1}$ | 3210.7 | 23.82 | 3069.7 | 3089.1 | 14.454 | 3089.1 | $r_{5}(70)+r_{1}(28)$ |
| $\nu_{2}$ | 3198.3 | 23.42 | 3064.8 | 3069.7 | 31.830 | 3069.8 | $r_{1}(54)+r_{8}(25)+r_{5}(19)$ |
| $\nu_{3}$ | 3194.1 | 0.78 | 3069.0 | (3069.0) |  | 3069.0 | $r_{8}(73)+r_{1}(17)$ |
| $\nu_{4}$ | 3184.7 | 12.70 | 3043.7 | 3035.3 | 11.215 | 3035.3 | $r_{4}(99)$ |
| $\nu_{5}$ | 3179.1 | 14.98 | 3053.9 | 2979.6 | 14.454 | 2979.8 | $r_{2}(43)+r_{6}(43)$ |
| $\nu_{6}$ | 3175.1 | 33.10 | 3034.2 | (2979.0) |  | 2979.4 | $r_{2}(43)+r_{6}(43)$ |
| $\nu_{7}$ | 3164.2 | 2.11 | 3033.1 | 2955.2 | 8.293 | 2955.2 | $r_{7}(81)+r_{6}(43)$ |
| $\nu_{8}$ | 3157.9 | 11.45 | 3036.8 | (2955.0) |  | 2954.9 | $r_{3}(79)+r_{2}(11)$ |
| $\nu_{9}$ | 3105.4 | 17.77 | 2971.9 | 2933.5 | 34.121 | 2936.1 | $r^{\prime} 12(77)+r^{\prime} 11(21)$ |
| $\nu_{10}$ | 3104.5 | 22.23 | 2961.5 | (2933.0) |  | 2935.6 | $r^{\prime} 10(76)+r^{\prime} 9(20)$ |
| $\nu_{11}$ | 3021.1 | 32.70 | 2895.4 | 2875.3 | 14.533 | 2866.0 | $r^{\prime} 11(65)+r^{\prime} 12(17)+r^{\prime} 9(14)$ |
| $\nu_{12}$ | 3019.5 | 34.69 | 2903.5 | (2875.0) |  | 2865.6 | $r^{\prime} 9(65)+r^{\prime} 10(16)+r^{\prime} 11(14)$ |
| $\nu_{13}$ | 1659.8 | 9.84 | 1620.0 | 1626.5 | 9.952 | 1626.9 | $R_{10}$ ( 36) |
| $\nu_{14}$ | 1651.4 | 1.34 | 1613.6 | (1619.0) |  | 1619.6 | $R_{15}(21)+R_{13}(16)+\delta_{7}(11)$ |
| $\nu_{15}$ | 1642.4 | 7.32 | 1605.3 | 1604.6 | 7.819 | 1604.9 | $R_{4}(25)+R_{2}(14)+R_{1}(12)$ |
| $\nu_{16}$ | 1614.5 | 1.72 | 1578.5 | 1584.5 |  | 1583.0 | $R_{2}(13)+R_{3}(13)+R_{6}(11)$ |
| $\nu_{17}$ | 1567.1 | 4.28 | 1533.4 | (1536.2) |  | 1535.5 | $R_{14}$ ( 21) |
| $\nu_{18}$ | 1523.9 | 10.68 | 1491.6 | 1495.4 | 3.791 | 1495.3 | $R_{9}$ ( 14) |
| $\nu_{19}$ | 1507.7 | 11.54 | 1459.7 | 1471.2 |  | 1473.9 | $\delta_{s}(1)(40)+\delta_{s}(2)(21)$ |
| $\nu_{20}$ | 1497.9 | 4.44 | 1459.7 | (1469.0) |  | 1465.8 | $\delta_{s}(1)(33)+\delta_{s}(2)(14)$ |
| $\nu_{21}$ | 1487.9 | 16.63 | 1458.1 | 1456.0 | 25.433 | 1455.7 | $\delta_{s}(2)(34)$ |
| $\nu_{22}$ | 1475.2 | 0.14 | 1445.0 | (1446.0) |  | 1445.8 | $\beta_{5}(17)+R_{10}(11)+R_{15}(10)$ |
| $\nu_{23}$ | 1440.8 | 11.59 | 1414.8 | 1412.4 | 6.713 | 1413.5 | $\beta_{8}(15)+R_{11}(11)$ |
| $\nu_{24}$ | 1419.1 | 5.78 | 1379.8 | 1389.5 | 5.213 | 1390.6 | $\delta_{8}(36)+\rho(1)(33)$ |
| $\nu_{25}$ | 1427.0 | 0.16 | 1373.5 | (1389.0) |  | 1388.2 | $\delta_{8}(44)+\rho(1)(44)$ |
| $\nu_{26}$ | 1405.6 | 0.33 | 1374.9 | (1378.0) |  | 1377.9 | $R_{9}(16)+\beta_{3}(11)$ |
| $\nu_{27}$ | 1374.1 | 0.27 | 1344.9 | (1347.0) |  | 1347.9 | $R_{6}(16)+R_{7}(14)+R_{2}(11)$ |
| $\nu_{28}$ | 1362.4 | 0.59 | 1332.7 | (1336.0) |  | 1337.0 | $R_{8}(19)$ |
| $\nu_{29}$ | 1319.6 | 2.33 | 1293.7 | 1296.1 | 1.263 | 1295.2 | $R_{7}(15)+\beta_{9}(14)+R_{11}(12)$ |
| $\nu_{30}$ | 1299.9 | 1.33 | 1281.3 | 1273.2 | 0.868 | 1274.6 | $\delta_{2}(19)+\beta_{1}(14)+\beta_{5}(13)+\beta_{8}(11)$ |
| $\nu_{31}$ | 1271.5 | 2.22 | 1253.9 | 1249.5 | 3.712 | 1247.7 | $R_{16}(14)+\beta_{3}(14)+\beta_{8}(13)$ |
| $\nu_{32}$ | 1253.1 | 3.98 | 1233.5 | (1228.0) |  | 1228.1 | $\beta_{3}(23)+R_{17}^{\prime}(15)+\beta_{1}(15)+R_{5}(15)$ |
| $\nu_{33}$ | 1236.0 | 2.55 | 1217.3 | 1213.0 | 0.789 | 1213.4 | $R_{1}(18)+R_{11}(16)$ |
| $\nu_{34}$ | 1203.1 | 0.54 | 1192.8 | (1179.0) |  | 1179.4 | $r^{\prime} 14(31)+r^{\prime} 13$ (12) |
| $\nu_{35}$ | 1191.2 | 0.46 | 1185.4 | (1168.0) |  | 1168.6 | $\beta_{7}(26)+\beta_{6}^{\prime}(22)+\beta_{8}(11)+\beta_{5}(10)$ |
| $\nu_{36}$ | 1173.4 | 1.57 | 1160.9 | 1152.7 | 0.631 | 1151.7 | $R_{15}(4)+\beta_{7}(13)+\beta_{6}^{\prime}(11)+\delta_{2}(10)$ |
| $\nu_{37}$ | 1110.8 | 3.96 | 1097.5 | 1089.9 | 2.290 | 1089.9 | $R_{3}(35)+\beta_{1}(16)$ |
| $\nu_{38}$ | 1089.3 | 0.15 | 1070.5 | (1068.0) |  | 1068.5 | $\delta_{a}(2)(11)$ |
| $\nu_{39}$ | 1082.7 | 0.14 | 1063.4 | (1061.0) |  | 1061.6 | $\delta_{5}(41)$ |
| $\nu_{40}$ | 1058.6 | 7.41 | 1040.0 | 1036.4 | 7.108 | 1036.5 | $R_{14}$ (42) |
| $\nu_{41}$ | 1018.6 | 0.85 | 989.8 | ( 998.0) |  | 998.7 | $\delta_{a}(1)(19)+\beta_{9}(16)+\delta_{a}(2)(13)$ |
| $\nu_{42}$ | 1012.4 | 4.98 | 985.4 | 995.3 | 2.843 | 993.6 | $\delta_{a}(1)(22)+\delta_{a}(2)(18)+\delta_{5}(13)$ |
| $\nu_{43}$ | 891.3 | 2.22 | 879.2 | ( 874.0) |  | 873.5 | $\delta_{5}(16)+\delta_{4}(11)+R_{17}^{\prime}(11)$ |
| $\nu_{44}$ | 867.9 | 0.31 | 854.0 | ( 851.0) |  | 851.0 | $\beta_{9}$ ( 31) |

Table 5.4(a): (Continued)Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-311 G^{* *}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of $1,9-D M P$.

| Sym | B3LYP/6-311G ${ }^{* *}$ |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| $\nu_{45}$ | 778.9 | 0.19 | 767.5 | ( 763.0) |  | 763.3 | $\delta_{7}(26)+\delta_{5}(12)+R_{9}(12)$ |
| $\nu_{46}$ | 710.7 | 3.66 | 702.2 | 698.5 | 3.633 | 697.8 | $\delta_{6}(22)+\delta_{1}(15)+\delta_{2}(13)$ |
| $\nu_{47}$ | 635.7 | 0.54 | 630.7 | ( 623.0) |  | 623.5 | $\delta_{6}(35)+\delta_{1}(22)+\delta_{2}(14)$ |
| $\nu_{48}$ | 574.2 | 0.58 | 569.8 | ( 563.0) |  | 562.7 | $\delta_{7}(25)+\beta_{4}^{\prime}(22)+\delta_{1}(20)$ |
| $\nu_{49}$ | 552.4 | 5.63 | 548.4 | 539.5 | 1.816 | 539.6 | $\beta_{10}(37)+R_{17}^{\prime}(12)+\delta_{3}(11)$ |
| $\nu_{50}$ | 513.8 | 1.71 | 508.0 | ( 503.0) |  | 502.8 | $\delta_{4}(23)+\beta_{10}(16)+\delta_{7}(11)$ |
| $\nu_{51}$ | 447.2 | 0.82 | 443.6 | ( 438.0) |  | 437.9 | $\delta_{4}(29)+\beta_{2}(25)+\delta_{3}(14)$ |
| $\nu_{52}$ | 425.7 | 0.21 | 423.1 | ( 417.0) |  | 417.0 | $\delta_{3}(38)+\beta_{10}(12)$ |
| $\nu_{53}$ | 334.0 | 0.57 | 330.6 | ( 327.0) |  | 327.7 | $\beta_{2}(28)+\beta_{4}^{\prime}(19)$ |
| $\nu_{54}$ | 282.4 | 0.24 | 281.1 | ( 277.0) |  | 277.0 | $\beta_{4}^{\prime}(47)+\delta_{7}(18)$ |
| $\nu_{55}$ | 221.7 | 0.43 | 223.3 | ( 217.0) |  | 217.1 | $\delta_{1}(24)+\beta_{2}(22)$ |
| $A^{\prime \prime}$ |  |  |  |  |  |  |  |
| $\nu_{56}$ | 3067.9 | 21.34 | 2917.2 | 2905.0 | 3.554 | 2912.4 | $r_{9}^{\prime}(81)+r^{\prime} 11(18)$ |
| $\nu_{57}$ | 3065.2 | 18.34 | 2919.7 | (2905.0) |  | 2912.1 | $r_{11}^{\prime}(82)+r^{\prime} 9(18)$ |
| $\nu_{58}$ | 1490.3 | 5.47 | 1432.3 | (1461.0) |  | 1460.9 | $\delta_{s}(1)(90)$ |
| $\nu_{59}$ | 1487.2 | 9.70 | 1442.7 | (1458.0) |  | 1457.9 | $\delta_{s}(2)(90)$ |
| $\nu_{60}$ | 1063.8 | 0.99 | 1034.2 | (1043.0) |  | 1043.5 | $\rho(1)(51)+\delta_{a}(2)(18)$ |
| $\nu_{61}$ | 1061.9 | 1.94 | 1030.9 | (1041.0) |  | 1042.3 | $\delta_{9}(50)+\delta_{a}(1)(18)$ |
| $\nu_{62}$ | 990.7 | 0.00 | 987.1 | ( 971.0) |  | 970.7 | $\gamma_{7}(38)+\gamma_{8}(28)+\gamma_{6}^{\prime}(18)$ |
| $\nu_{63}$ | 972.7 | 0.49 | 977.8 | ( 954.0) |  | 954.1 | $\rho(2)(48)+\gamma_{1}(16)+\rho(2)(15)$ |
| $\nu_{64}$ | 954.0 | 0.58 | 957.9 | ( 935.0) |  | 934.6 | $\gamma_{6}^{\prime}(33)+\gamma_{5}(26)+\gamma_{8}(19)$ |
| $\nu_{65}$ | 902.1 | 4.12 | 911.3 | (884.0) |  | 883.8 | $\gamma_{1}(42)+\rho(2)(31)+\gamma_{3}(11)$ |
| $\nu_{66}$ | 890.5 | 11.95 | 882.4 | 871.4 | 17.692 | 871.5 | $\gamma_{3}(66)$ |
| $\nu_{67}$ | 873.0 | 0.26 | 886.4 | ( 856.0) |  | 856.9 | $\gamma_{5}(26)+\gamma_{8}(18)+\tau_{2}(13)+\gamma_{7}(11)$ |
| $\nu_{68}$ | 815.9 | 5.82 | 846.3 | 803.5 | 9.952 | 801.9 | $\gamma_{9}(26)+\tau_{2}(22)+\tau_{5}(10)$ |
| $\nu_{69}$ | 768.5 | 41.94 | 767.3 | 748.3 | 105.602 | 749.0 | $\gamma_{6}^{\prime}(30)+\gamma_{5}(19)+\gamma_{7}(16)+\gamma_{8}(12)$ |
| $\nu_{70}$ | 761.5 | 49.77 | 764.0 | 746.0 |  | 746.7 | $\begin{aligned} & \rho(2)(31)+\rho(2)(25)+\tau_{5}(13)+ \\ & \tau_{2}(11) \end{aligned}$ |
| $\nu_{71}$ | 744.2 | 0.23 | 745.9 | ( 729.0) |  | 729.3 | $\gamma_{9}(36)+\tau_{5}(30)$ |
| $\nu_{72}$ | 610.7 | 0.13 | 619.5 | ( 598.0) |  | 598.2 | $\tau_{5}(28)+\tau_{2}(17)+\gamma_{4}^{\prime}(14)$ |
| 3 | 578.5 | 1.32 | 577.0 | ( 567.0) |  | 565.2 | $\tau_{8}(17)+\gamma_{2}(14)+\tau_{9}(11)$ |
| $\nu_{74}$ | 538.5 | 0.55 | 538.6 | ( 528.0) |  | 527.8 | $\tau_{1}(29)+\gamma_{9}(14)$ |
| $\nu_{75}$ | 482.9 | 0.12 | 476.8 | ( 473.0) |  | 472.9 | $\tau_{7}(23)+\gamma_{2}(17)+\gamma_{10}(13)+\tau_{3}(11)$ |
| $\nu_{76}$ | 420.9 | 4.21 | 414.8 | ( 412.0) |  | 411.9 | $\tau_{6}(54)$ |
| $\nu_{77}$ | 328.6 | 0.95 | 322.3 | ( 322.0) |  | 322.1 | $\begin{aligned} & \gamma_{2}(16)+\gamma_{4}^{\prime}(16)+\tau_{8}(16)+\tau_{1}(12) \\ & +\tau_{7}(11) \end{aligned}$ |
| $\nu_{78}$ | 245.6 | 0.64 | 243.5 | ( 240.0) |  | 240.2 | $\gamma_{10}(27)+\tau_{6}(23)+\tau_{9}(11)$ |
| $\nu_{79}$ | 212.0 | 0.07 | 195.7 | ( 207.0) |  | 207.0 | $\tau_{\text {ring }}(64)$ |
| $\nu_{80}$ | 192.3 | 0.00 | 163.3 | ( 188.0) |  | 187.9 | $\tau_{\text {ring }}(38)+\tau_{1}(17)+\tau_{\text {ring }}(15)$ |
| $\nu_{81}$ | 183.7 | 1.33 | 167.8 | ( 180.0) |  | 180.0 | $\tau_{\text {ring }}(44)+\gamma_{2}(16)+\tau_{1}(10)$ |
| $\nu_{82}$ | 140.6 | 2.71 | 146.5 | ( 137.0) |  | 137.0 | $\gamma_{4}^{\prime}(20)+\tau_{9}(16)+\tau_{8}(14)+\tau_{7}(14)$ |
| $\nu_{83}$ | 93.2 | 0.39 | 98.7 | ( 91.0) |  | 91.1 | $\tau_{3}(39)+\tau_{7}(23)+\tau_{8}(11)$ |
| $\nu_{84}$ | 59.1 | 0.03 | 71.5 | ( 57.0) |  | 57.0 | $\tau_{4}(33)+\tau_{3}(13)+\gamma_{10}(12)+\tau_{1}(12)$ |

Since the fitting algorithm required all the experimental frequencies, the numbers in parenthesis are introduced as good guesses for $1,9-D M P$ and do not have any other significance. RMS error is 1.9880 for the fitting of experimental frequencies.

Table 5.4(b): Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-311 G^{* *}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of $2,4-D M P$.

| Sym | B3LYP/6-311G** |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| $A^{\prime}$ |  |  |  |  |  |  |  |
| $\nu_{1}$ | 3309.7 | 3.69 | 3159.7 | 3155.1 | 2.350 | 3155.1 | $r_{5}$ (98) |
| $\nu_{2}$ | 3185.9 | 33.46 | 3048.3 | 3076.5 | 2.644 | 3075.2 | $r_{7}(70)+r_{6}(25)$ |
| $\nu_{3}$ | 3176.8 | 36.94 | 3030.4 | 3057.2 | 41.917 | 3057.7 | $r_{4}(47)+r_{3}(23)+r_{6}(21)$ |
| $\nu_{4}$ | 3168.2 | 13.30 | 3032.5 | (3057.0) |  | 3056.7 | $r_{6}(52)+r_{7}(17)+r_{4}(16)+r_{3}(10)$ |
| $\nu_{5}$ | 3159.5 | 7.58 | 3011.1 | 3038.0 | 17.237 | 3039.3 | $r_{8}(50)+r_{3}(32)$ |
| $\nu_{6}$ | 3156.9 | 7.63 | 3018.9 | (3038.0) |  | 3036.3 | $r_{8}(38)+r_{3}(32)+r_{4}(25)$ |
| $\nu_{7}$ | 3154.1 | 4.46 | 3007.9 | 3017.1 | 6.072 | 3018.1 | $r_{2}(50)+r_{1}(48)$ |
| $\nu_{8}$ | 3151.1 | 26.29 | 3002.8 | (3017.0) |  | 3016.1 | $r_{1}(50)+r_{2}(48)$ |
| $\nu_{9}$ | 3103.6 | 18.24 | 2963.4 | 2976.7 | 20.273 | 2976.3 | $r_{10}^{\prime}(87)+r_{9}^{\prime}(12)$ |
| $\nu_{10}$ | 3102.5 | 22.85 | 2957.8 | (2976.0) |  | 2976.0 | $r_{12}^{\prime}$ ( 89) |
| $\nu_{11}$ | 3026.6 | 21.74 | 2862.3 | 2882.3 | 18.902 | 2884.9 | $r_{9}^{\prime}(88)+r_{10}^{\prime}(11)$ |
| $\nu_{12}$ | 3021.8 | 43.87 | 2905.4 | (2882.0) |  | 2883.6 | $r_{11}^{\prime}$ ( 91) |
| $\nu_{13}$ | 1668.3 | 0.72 | 1632.3 | (1636.0) |  | 1635.0 | $R_{10}(36)+R_{4}(13)$ |
| $\nu_{14}$ | 1659.9 | 24.46 | 1618.4 | 1621.4 | 28.206 | 1624.0 | $R_{4}(15)+R_{2}(12)+R_{5}(12)$ |
| $\nu_{15}$ | 1648.2 | 8.53 | 1614.8 | 1609.1 |  | 1609.9 | $\begin{aligned} & R_{15}(20)+R_{13}(17)+R_{16}(11) \\ & +\delta_{7}(11) \end{aligned}$ |
| $\nu_{16}$ | 1604.7 | 2.56 | 1563.3 | (1573.0) |  | 1570.8 | $R_{14}(14)+R_{3}(10)$ |
| $\nu_{17}$ | 1562.7 | 1.45 | 1521.6 | (1532.0) |  | 1531.1 | $R_{14}(15)+R_{3}(12)$ |
| $\nu_{18}$ | 1527.8 | 3.25 | 1492.6 | (1498.0) |  | 1495.7 | $R_{9}$ (17) |
| $\nu_{19}$ | 1518.7 | 18.47 | 1407.0 | 1470.9 | 40.742 | 1471.5 | $\delta_{s}(2)(66)$ |
| $\nu_{20}$ | 1492.6 | 13.15 | 1468.8 | 1457.4 |  | 1460.2 | $\delta_{s}(1)(36)+\beta_{5}(11)$ |
| $\nu_{21}$ | 1484.9 | 13.46 | 1450.0 | 1456.0 |  | 1454.4 | $\delta_{s}(1)(28)+\beta_{5}(11)$ |
| $\nu_{22}$ | 1458.1 | 2.28 | 1428.5 | 1431.8 | 1.567 | 1429.6 | $\beta_{7}(15)+\beta_{6}(11)$ |
| $\nu_{23}$ | 1430.0 | 0.10 | 1399.1 | (1402.0) |  | 1399.0 | $R_{5}(14)+r_{14}^{\prime}(12)+\beta_{2}(12)$ |
| $\nu_{24}$ | 1425.3 | 0.39 | 1391.5 | (1390.0) |  | 1389.0 | $R_{2}$ (11) |
| $\nu_{25}$ | 1419.9 | 2.08 | 1361.9 | 1384.4 | 2.644 | 1384.4 | $\rho(1)(76)$ |
| $\nu_{26}$ | 1414.3 | 0.17 | 1403.3 | (1380.0) |  | 1380.2 | $\delta_{8}(79)$ |
| $\nu_{27}$ | 1361.4 | 1.28 | 1326.3 | (1335.0) |  | 1331.7 | $\begin{aligned} & R_{8}(21)+R_{13}(14)+R_{15}(14)+ \\ & R_{16}(12) \end{aligned}$ |
| $\nu_{28}$ | 1356.9 | 4.85 | 1321.3 | 1324.7 | 1.371 | 1321.1 | $R_{6}(21)+R_{2}(12)$ |
| $\nu_{29}$ | 1325.0 | 2.35 | 1294.8 | 1300.0 | 1.469 | 1298.6 | $R_{7}(12)+\beta_{5}(12)+\beta_{9}(10)$ |
| $\nu_{30}$ | 1298.2 | 1.81 | 1268.4 | 1270.6 | 0.976 | 1271.7 | $r_{14}^{\prime}(27)+R_{7}(17)$ |
| $\nu_{31}$ | 1275.1 | 0.86 | 1251.3 | (1250.0) |  | 1250.1 | $R_{1}(11)+\beta_{8}(10)$ |
| $\nu_{32}$ | 1242.8 | 3.26 | 1213.2 | 1217.4 | 2.546 | 1218.2 | $\beta_{6}(13)+\beta_{5}(12)$ |
| $\nu_{33}$ | 1227.6 | 0.09 | 1204.1 | (1203.0) |  | 1203.9 | $R_{9}(20)+R_{12}(17)+\beta_{7}(11)$ |
| $\nu_{34}$ | 1208.1 | 1.37 | 1186.5 | (1184.0) |  | 1185.0 | $\beta_{2}(25)+\beta_{3}^{\prime}(13)+r_{14}^{\prime}(11)$ |
| $\nu_{35}$ | 1191.7 | 2.41 | 1168.8 | 1170.6 | 2.056 | 1169.8 | $\beta_{6}(19)$ |
| $\nu_{36}$ | 1176.4 | 1.33 | 1166.3 | 1148.6 | 0.391 | 1150.3 | $\beta_{4}(19)+\beta_{3}^{\prime}(15)+\beta_{8}(11)$ |
| $\nu_{37}$ | 1148.7 | 0.66 | 1128.6 | (1126.0) |  | 1126.7 | $\beta_{7}(18)+\delta_{5}(12)+R_{15}(10)$ |
| $\nu_{38}$ | 1077.3 | 5.00 | 1057.7 | 1053.2 | 3.525 | 1053.9 | $R_{14}(47)+R_{15}(11)$ |
| $\nu_{39}$ | 1057.0 | 0.54 | 1015.8 | (1036.0) |  | 1032.1 | $\delta_{a}(2)(39)+\rho(1)(12)$ |
| $\nu_{40}$ | 1040.5 | 3.53 | 1026.2 | (1020.0) |  | 1019.6 | $\delta_{a}(1)(38)+\delta_{9}(12)$ |
| $\nu_{41}$ | 1010.2 | 3.40 | 995.1 | 996.4 | 4.896 | 995.1 | $\beta_{9}(32)+\delta_{5}(24)$ |
| $\nu_{42}$ | 983.7 | 1.32 | 968.9 | 968.8 | 0.587 | 967.1 | $R_{18}^{\prime}(23)+R_{17}^{\prime}(17)+\delta_{5}(12)$ |
| $\nu_{43}$ | 979.6 | 2.27 | 955.5 | 944.9 | 0.489 | 952.2 | $\begin{aligned} & \delta_{a}(2)(12)+\delta_{1}(11)+R_{6}(11)+ \\ & R_{11}(10) \end{aligned}$ |

Table 5.4(b): (Continued)Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-311 G^{* *}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of $2,4-D M P$.

| Sym | B3LYP/6-311G** |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| $\nu_{44}$ | 857.9 | 1.78 | 846.6 | ( 841.0) |  | 843.7 | $\delta_{5}(19)+\delta_{3}(11)+R_{8}(11)+\delta_{7}(11)$ |
| $\nu_{45}$ | 773.4 | 0.92 | 765.4 | ( 758.0) |  | 757.0 | $\delta_{2}(27)+\delta_{7}(14)+\delta_{4}(12)$ |
| $\nu_{46}$ | 698.2 | 2.94 | 687.4 | 688.7 | 3.623 | 688.1 | $\delta_{6}(44)+R_{8}(11)$ |
| $\nu_{47}$ | 589.7 | 0.45 | 585.3 | ( 578.0) |  | 579.1 | $R_{18}^{\prime}(17)+\beta_{9}(15)+\delta_{1}(12)+\delta_{6}(12)$ |
| $\nu_{48}$ | 568.9 | 0.73 | 562.7 | ( 557.0) |  | 557.7 | $\delta_{6}(20)+\delta_{3}(16)+\delta_{4}(11)+\delta_{7}(11)$ |
| $\nu_{49}$ | 557.3 | 0.61 | 551.5 | ( 546.0) |  | 546.3 | $\beta_{10}(39)+R_{17}^{\prime}(13)$ |
| $\nu_{50}$ | 529.1 | 2.61 | 520.6 | ( 518.0) |  | 517.2 | $\delta_{1}(27)+r_{13}^{\prime}(18)+\beta_{10}(12)$ |
| $\nu_{51}$ | 504.9 | 0.39 | 503.0 | ( 495.0) |  | 493.7 | $\delta_{7}(30)+\delta_{1}(22)+\delta_{3}(13)$ |
| $\nu_{52}$ | 392.0 | 0.47 | 388.1 | ( 384.0) |  | 383.8 | $\delta_{4}(45)$ |
| $\nu_{53}$ | 327.6 | 0.72 | 315.2 | ( 321.0) |  | 321.2 | $r_{13}^{\prime}(47)+\delta_{3}(18)$ |
| $\nu_{54}$ | 303.8 | 0.00 | 300.8 | ( 298.0) |  | 297.8 | $\beta_{1}^{\prime}(38)+\delta_{1}(16)$ |
| $\nu_{55}$ $A^{\prime \prime}$ | 214.8 | 0.81 | 211.8 | ( 210.0) |  | 210.4 | $\beta_{1}^{\prime}(34)+\delta_{4}(11)$ |
| $\nu_{56}$ | 3081.0 | 15.52 | 2939.1 | 2930.8 | 30.458 | 2930.6 | $r_{11}^{\prime}(100)$ |
| $\nu_{57}$ | 3069.6 | 19.95 | 2918.1 | (2930.0) |  | 2927.7 | $r_{9}^{\prime}(100)$ |
| $\nu_{58}$ | 1501.8 | 7.02 | 1460.3 | (1469.0) |  | 1468.7 | $\delta_{s}(2)(94)$ |
| $\nu_{59}$ | 1486.6 | 7.30 | 1468.5 | (1456.0) |  | 1456.2 | $\delta_{s}(1)(92)$ |
| $\nu_{60}$ | 1061.8 | 3.94 | 1045.3 | 1038.5 | 2.938 | 1042.7 | $\begin{aligned} & \rho(1)(50)+\delta_{a}(2)(18)+ \\ & \rho(2)(10) \end{aligned}$ |
| $\nu_{61}$ | 1060.3 | 0.83 | 1023.2 | (1038.0) |  | 1035.9 | $\delta_{9}(52)+\delta_{a}(1)(18)$ |
| $\nu_{62}$ | 992.4 | 0.04 | 978.0 | ( 973.0) |  | 974.4 | $\gamma_{7}(30)+\gamma_{6}(28)+\gamma_{8}(14)+\tau_{5}(10)$ |
| $\nu_{63}$ | 979.8 | 0.00 | 972.9 | ( 960.0) |  | 959.1 | $\gamma_{4}(40)+\gamma_{3}^{\prime}(39)$ |
| $\nu_{64}$ | 955.5 | 1.21 | 958.6 | ( 937.0) |  | 936.5 | $\gamma_{8}(30)+\gamma_{5}(26)+\gamma_{7}(15)+\gamma_{6}(15)$ |
| $\nu_{65}$ | 903.0 | 6.90 | 895.6 | 885.3 | 4.505 | 885.3 | $\rho(2)(53)+\gamma_{2}(30)$ |
| $\nu_{66}$ | 881.1 | 21.29 | 875.1 | 864.2 | 29.969 | 863.0 | $\gamma_{5}(15)+\gamma_{8}(15)+\rho(2)(12)+\gamma_{2}(11)$ |
| $\nu_{67}$ | 871.8 | 4.43 | 861.9 | 855.0 |  | 853.3 | $\gamma_{2}(25)+\gamma_{9}(17)+\rho(2)(16)$ |
| $\nu_{68}$ | 823.7 | 19.41 | 810.7 | 806.4 | 24.190 | 808.5 | $\gamma_{3}^{\prime}(27)+\gamma_{2}(17)+\gamma_{4}(14)+\tau_{2}(10)$ |
| $\nu_{69}$ | 806.9 | 2.02 | 807.7 | ( 791.0) |  | 792.6 | $\tau_{2}(30)+\gamma_{9}(15)+\gamma_{4}(14)+\tau_{5}(13)$ |
| $\nu_{70}$ | 757.0 | 40.94 | 746.9 | 742.7 | 47.598 | 741.4 | $\gamma_{7}(24)+\gamma_{6}(22)+\gamma_{5}(19)+\gamma_{8}(16)$ |
| $\nu_{71}$ | 727.3 | 10.01 | 718.0 | 708.7 | 16.159 | 708.0 | $\tau_{5}(38)+\gamma_{9}(30)$ |
| $\nu_{72}$ | 616.6 | 3.42 | 606.0 | 603.2 | 3.525 | 603.9 | $\tau_{5}(19)+\tau_{2}(16)+\gamma_{9}(10)$ |
| $\nu_{73}$ | 583.7 | 0.05 | 576.7 | ( 572.0) |  | 573.8 | $\gamma_{1}^{\prime}(18)+\gamma_{10}(17)+\tau_{8}(14)$ |
| $\nu_{74}$ | 532.0 | 0.20 | 522.6 | ( 521.0) |  | 521.0 | $\tau_{7}(26)+\tau_{5}(14)+\gamma_{1}^{\prime}(12)+\gamma_{10}(11)$ |
| $\nu_{75}$ | 490.3 | 4.75 | 484.6 | ( 480.0) |  | 482.8 | $\rho(2)(24)+\tau_{1}(18)+\tau_{9}(16)+\tau_{6}(14)$ |
| $\nu_{76}$ | 419.3 | 1.43 | 403.9 | ( 411.0) |  | 411.1 | $\tau_{6}(46)+\tau_{3}(12)$ |
| $\nu_{77}$ | 351.3 | 0.78 | 327.6 | ( 344.0) |  | 344.6 | $\tau_{\text {ring }}(39)+\tau_{7}(14)$ |
| $\nu_{78}$ | 325.4 | 0.86 | 318.0 | ( 319.0) |  | 318.0 | $\tau_{\text {ring }}(37)+\tau_{6}(16)+\gamma_{1}^{\prime}(10)$ |
| $\nu_{79}$ | 229.3 | 1.71 | 222.2 | ( 224.0) |  | 223.8 | $\tau_{1}(23)+\tau_{9}(15)+\tau_{6}(12)+\tau_{4}(12)$ |
| $\nu_{80}$ | 187.3 | 3.77 | 170.6 | ( 183.0) |  | 182.9 | $\tau_{1}(33)+\rho(2)(12)+\rho(2)(11)$ |
| $\nu_{81}$ | 177.8 | 0.36 | 168.1 | ( 174.0) |  | 174.8 | $\tau_{4}(14)+\tau_{7}(14)+\gamma_{1}^{\prime}(11)+\gamma_{10}(11)$ |
| $\nu_{82}$ | 78.1 | 0.03 | 61.8 | ( 76.0) |  | 76.2 | $\tau_{\text {ring }}(36)+\tau_{3}(16)+\tau_{8}(11)+\tau_{7}(11)$ |
| $\nu_{83}$ | 66.8 | 0.52 | 51.8 | (65.0) |  | 64.7 | $\tau_{\text {ring }}(37)+\tau_{3}(18)$ |
| $\nu_{84}$ | -16.1 | 0.00 | -76.1 | ( 15.0) |  | nan | $\tau_{\text {ring }}(40)+\tau_{3}(12)+\gamma_{10}(11)$ |

Since the fitting algorithm required all the experimental frequencies, the numbers in parenthesis are introduced as good guesses for $2,4-D M P$ and do not have any other significance. RMS error is 2.3804 for the fitting of experimental frequencies.

Table 5.4(c): Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-311 G^{* *}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of $3,9-D M P$.

| Sym | B3LYP/6-311G** |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| $A^{\prime}$ |  |  |  |  |  |  |  |
| $\nu_{1}$ | 3203.4 | 17.48 | 3063.6 | 3085.7 | 19.159 | 3085.8 | $r_{5}(95)$ |
| $\nu_{2}$ | 3197.7 | 26.27 | 3061.2 | 3062.5 | 13.063 | 3062.5 | $r_{8}(98)$ |
| $\nu_{3}$ | 3182.7 | 5.00 | 3048.0 | 3029.1 | 10.757 | 3030.6 | $r_{1}(50)+r_{6}(48)$ |
| $\nu_{4}$ | 3176.6 | 12.81 | 3026.0 | (3029.0) |  | 3027.5 | $r_{1}(47)+r_{6}(46)$ |
| $\nu_{5}$ | 3170.5 | 38.13 | 3039.4 | 2978.9 | 10.668 | 2978.9 | $r_{7}(95)$ |
| $\nu_{6}$ | 3163.8 | 2.47 | 3032.2 | (2978.0) |  | 2978.1 | $r_{3}(79)+r_{2}(20)$ |
| $\nu_{7}$ | 3153.2 | 20.31 | 3012.6 | 2956.3 | 5.660 | 2957.0 | $r_{4}(49)+r_{2}(43)$ |
| $\nu_{8}$ | 3150.2 | 6.45 | 3004.5 | (2956.0) |  | 2955.2 | $r_{4}(47)+r_{2}(36)+r_{3}(14)$ |
| $\nu_{9}$ | 3106.2 | 18.06 | 2960.1 | 2933.5 | 51.838 | 2936.0 | $r_{12}^{\prime}(76)+r_{11}^{\prime}(22)$ |
| $\nu_{10}$ | 3102.2 | 16.61 | 2954.3 | (2933.0) |  | 2935.7 | $r_{10}^{\prime}(76)+r_{9}^{\prime}(23)$ |
| $\nu_{11}$ | 3020.5 | 36.57 | 2974.6 | 2875.0 | 19.377 | 2867.0 | $r_{11}^{\prime}(64)+r_{12}^{\prime}(18)+r_{9}^{\prime}(14)$ |
| $\nu_{12}$ | 3019.0 | 46.34 | 2908.1 | (2875.0) |  | 2866.8 | $r_{9}^{\prime}(62)+r_{10}^{\prime}(19)+r_{11}^{\prime}(14)$ |
| $\nu_{13}$ | 1664.1 | 0.33 | 1624.1 | (1632.0) |  | 1632.8 | $R_{10}(43)+\beta_{3}(10)$ |
| $\nu_{14}$ | 1659.2 | 17.17 | 1621.2 | 1620.8 | 24.167 | 1623.6 | $R_{4}(19)+R_{2}(11)$ |
| $\nu_{15}$ | 1648.8 | 6.94 | 1610.1 | 1614.2 |  | 1614.6 | $R_{13}(17)+R_{15}(17)$ |
| $\nu_{16}$ | 1605.2 | 0.48 | 1567.4 | (1574.0) |  | 1574.9 | $R_{6}(12)+R_{14}(12)$ |
| $\nu_{17}$ | 1560.4 | 0.99 | 1525.0 | (1530.0) |  | 1528.9 | $R_{3}(14)+R_{14}(12)$ |
| $\nu_{18}$ | 1539.7 | 20.01 | 1505.6 | 1508.8 | 20.030 | 1507.9 | $\beta_{7}$ ( 11) |
| $\nu_{19}$ | 1505.0 | 1.76 | 1461.3 | (1476.0) |  | 1476.1 | $\delta_{s}(2)(74)$ |
| $\nu_{20}$ | 1496.3 | 19.19 | 1469.8 | 1460.6 | 34.618 | 1460.8 | $\delta_{s}(1)(61)$ |
| $\nu_{21}$ | 1481.6 | 6.57 | 1451.6 | (1437.0) |  | 1439.7 | $\beta_{6}^{\prime}(16)$ |
| $\nu_{22}$ | 1459.8 | 5.28 | 1427.6 | (1431.0) |  | 1427.9 | $\beta_{8}(17)+\beta_{5}(11)$ |
| $\nu_{23}$ | 1444.9 | 1.23 | 1419.3 | (1417.0) |  | 1412.0 | $R_{1}(16)+\delta_{s}(1)(13)$ |
| $\nu_{24}$ | 1418.2 | 6.18 | 1390.0 | 1388.3 | 12.410 | 1390.8 | $\rho(1)(24)+R_{9}(17)+\beta_{3}(10)$ |
| $\nu_{25}$ | 1414.3 | 0.78 | 1408.2 | (1387.0) |  | 1387.1 | $\delta_{8}(87)$ |
| $\nu_{26}$ | 1412.4 | 0.17 | 1380.5 | (1385.0) |  | 1384.1 | $\rho(1)$ (63) |
| $\nu_{27}$ | 1381.2 | 1.16 | 1346.0 | (1349.0) |  | 1349.5 | $R_{6}(20)+R_{2}(16)+R_{4}(15)$ |
| $\nu_{28}$ | 1355.2 | 1.38 | 1326.9 | 1327.6 | 0.870 | 1329.3 | $\begin{aligned} & R_{8}(25)+R_{13}(13)+R_{15}(11)+ \\ & R_{16}(10) \end{aligned}$ |
| $\nu_{29}$ | 1325.1 | 1.92 | 1302.4 | 1296.3 | 1.088 | 1296.6 | $\beta_{1}(12)+\beta_{9}(12)+R_{11}(11)+\beta_{2}(10)$ |
| $\nu_{30}$ | 1310.7 | 0.07 | 1287.0 | (1260.0) |  | 1268.3 | $\delta_{2}(18)+\beta_{5}(14)+\beta_{8}(11)$ |
| $\nu_{31}$ | 1269.3 | 1.66 | 1249.4 | (1244.0) |  | 1241.4 | $\beta_{3}(16)+R_{16}(13)+\beta_{8}(13)$ |
| $\nu_{32}$ | 1243.9 | 1.80 | 1223.3 | 1215.2 | 0.653 | 1215.9 | $R_{1}$ (15) |
| $\nu_{33}$ | 1230.9 | 0.95 | 1210.9 | (1207.0) |  | 1206.6 | $\beta_{3}(23)+R_{5}(18)$ |
| $\nu_{34}$ | 1209.2 | 2.25 | 1183.8 | 1185.0 | 0.653 | 1184.9 | $R_{17}^{\prime}(18)+R_{7}(14)+r_{13}^{\prime}(13)$ |
| $\nu_{35}$ | 1191.0 | 1.51 | 1170.5 | 1166.5 | 1.306 | 1167.0 | $\beta_{7}(35)$ |
| $\nu_{36}$ | 1174.7 | 2.93 | 1159.2 | 1150.0 | 1.524 | 1146.2 | $\beta_{6}^{\prime}(21)+\beta_{5}(13)+\beta_{2}(13)+\beta_{1}(12)$ |
| $\nu_{37}$ | 1138.3 | 0.19 | 1121.6 | (1116.0) |  | 1117.2 | $\beta_{6}^{\prime}(12)$ |
| $\nu_{38}$ | 1087.5 | 0.14 | 1065.6 | (1066.0) |  | 1065.3 | $\delta_{a}(2)(18)+\delta_{5}(16)+R_{18}^{\prime}(12)$ |
| $\nu_{39}$ | 1062.4 | 6.33 | 1048.6 | 1040.4 | 9.797 | 1040.8 | $R_{14}(42)+\delta_{5}(12)$ |
| $\nu_{40}$ | 1056.8 | 3.71 | 1043.4 | (1036.0) |  | 1034.7 | $\beta_{9}(30)+\delta_{5}(15)$ |
| $\nu_{41}$ | 1015.9 | 8.23 | 1001.9 | 999.6 | 3.701 | 999.4 | $\delta_{a}(2)(29)+\delta_{5}(14)+R_{18}^{\prime}(12)$ |
| $\nu_{42}$ | 1001.4 | 1.00 | 988.7 | ( 982.0) |  | 982.2 | $\delta_{a}(1)(39)+\delta_{9}(13)+R_{3}(11)$ |
| $\nu_{43}$ | 909.8 | 2.25 | 898.4 | ( 892.0) |  | 892.4 | $\delta_{1}(14)+\delta_{5}(12)$ |
| $\nu_{44}$ | 842.9 | 0.02 | 832.5 | ( 826.0) |  | 826.9 | $\beta_{9}(16)+\delta_{2}(13)$ |

Table 5.4(c): (Continued)Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-311 G^{* *}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of $3,9-D M P$.

| Sym | B3LYP/6-311G** |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| $\nu_{45}$ | 764.9 | 0.69 | 755.4 | ( 750.0) |  | 750.3 | $\delta_{7}(23)+R_{9}(12)+\delta_{2}(11)$ |
| $\nu_{46}$ | 721.0 | 0.23 | 713.8 | ( 707.0) |  | 706.9 | $\beta_{10}(31)+\delta_{6}(17)$ |
| $\nu_{47}$ | 642.1 | 3.84 | 636.4 | 629.1 | 2.394 | 629.2 | $\delta_{6}(43)+\beta_{10}(21)$ |
| $\nu_{48}$ | 607.7 | 1.64 | 605.2 | ( 596.0) |  | 594.8 | $\delta_{2}(21)+R_{18}^{\prime}(11)+\beta_{10}(10)$ |
| $\nu_{49}$ | 545.2 | 0.59 | 543.1 | ( 534.0) |  | 533.9 | $\delta_{1}(25)+\delta_{7}(24)+\beta_{4}(23)$ |
| $\nu_{50}$ | 505.0 | 0.57 | 499.8 | ( 495.0) |  | 494.1 | $\delta_{4}(31)$ |
| $\nu_{51}$ | 437.7 | 1.32 | 433.0 | ( 429.0) |  | 429.2 | $\delta_{3}(40)+r_{14}^{\prime}(19)+\delta_{4}(13)$ |
| $\nu_{52}$ | 398.2 | 0.23 | 392.2 | ( 390.0) |  | 390.2 | $\delta_{4}(23)+\beta_{10}(15)+R_{7}(13)$ |
| $\nu_{53}$ | 340.3 | 0.49 | 340.7 | ( 333.0) |  | 333.1 | $r_{14}^{\prime}(39)+\delta_{1}(20)+\delta_{3}(11)$ |
| $\nu_{54}$ | 287.3 | 0.62 | 281.3 | ( 281.0) |  | 281.0 | $\beta_{4}(62)+\delta_{7}(10)$ |
| $\nu_{55}$ | 191.9 | 0.51 | 191.1 | ( 188.0) |  | 187.9 | $r_{14}^{\prime}(32)+\delta_{1}(10)$ |
| $A^{\prime \prime}$ |  |  |  |  |  |  |  |
| $\nu_{56}$ | 3067.5 | 21.10 | 2916.8 | 2908.2 | 7.838 | 2914.1 | $r_{9}^{\prime}(99)$ |
| $\nu_{57}$ | 3064.7 | 20.18 | 2921.9 | (2908.0) |  | 2914.0 | $r_{11}^{\prime}$ ( 99) |
| $\nu_{58}$ | 1486.2 | 6.30 | 1466.8 | 1453.5 |  | 1453.2 | $\delta_{s}(1)(92)$ |
| $\nu_{59}$ | 1486.0 | 7.97 | 1449.1 | (1453.0) |  | 1452.9 | $\delta_{s}(2)(92)$ |
| $\nu_{60}$ | 1062.6 | 0.68 | 1037.4 | (1042.0) |  | 1042.7 | $\rho(1)(53)+\delta_{a}(2)(19)$ |
| $\nu_{61}$ | 1060.7 | 3.98 | 1043.2 | (1039.0) |  | 1039.4 | $\delta_{9}(49)+\delta_{a}(1)(17)+\rho(2)(10)$ |
| $\nu_{62}$ | 989.6 | 0.00 | 977.4 | ( 970.0) |  | 970.6 | $\gamma_{6}^{\prime}(34)+\gamma_{7}(34)$ |
| $\nu_{63}$ | 969.4 | 0.92 | 963.8 | 948.7 | 0.870 | 948.7 | $\gamma_{2}^{\prime}(44)+\gamma_{1}(43)$ |
| $\nu_{64}$ | 954.0 | 0.94 | 954.4 | ( 935.0) |  | 934.5 | $\gamma_{5}(28)+\gamma_{8}(28)+\gamma_{7}(18)+\gamma_{6}^{\prime}(16)$ |
| $\nu_{65}$ | 901.8 | 17.60 | 882.9 | 879.1 | 33.094 | 879.1 | $\gamma_{3}(53)+\rho(2)(16)$ |
| $\nu_{66}$ | 882.5 | 7.59 | 887.7 | 871.7 |  | 871.4 | $\rho(2)(53)+\gamma_{3}(20)$ |
| $\nu_{67}$ | 873.2 | 0.13 | 875.0 | ( 856.0) |  | 855.8 | $\gamma_{8}(26)+\gamma_{5}(25)+\tau_{5}(14)+\tau_{2}(13)$ |
| $\nu_{68}$ | 818.8 | 13.29 | 806.4 | 801.8 | 16.982 | 801.7 | $\gamma_{2}^{\prime}(39)+\gamma_{1}(33)$ |
| $\nu_{69}$ | 794.4 | 2.94 | 786.5 | ( 779.0) |  | 780.4 | $\tau_{2}(33)+\tau_{5}(22)+\gamma_{9}(13)+\gamma_{7}(10)$ |
| $\nu_{70}$ | 768.0 | 48.25 | 760.6 | 753.9 | 62.487 | 753.4 | $\gamma_{6}^{\prime}(27)+\gamma_{5}(15)+\gamma_{8}(15)+\gamma_{7}(13)$ |
| $\nu_{71}$ | 738.1 | 8.66 | 724.8 | 723.6 | 8.055 | 724.1 | $\gamma_{9}(41)+\tau_{5}(28)$ |
| $\nu_{72}$ | 611.9 | 2.23 | 601.9 | 602.1 | 4.572 | 600.5 | $\tau_{5}(23)+\tau_{2}(15)+\gamma_{9}(14)+\rho(2)(12)$ |
| $\nu_{73}$ | 586.2 | 6.66 | 579.7 | 573.6 | 6.749 | 573.6 | $\begin{aligned} & \gamma_{4}(22)+\tau_{4}(12)+\rho(2)(11)+ \\ & \gamma_{10}(10) \end{aligned}$ |
| $\nu_{74}$ | 521.9 | 3.37 | 510.0 | ( 511.0) |  | 511.7 | $\begin{aligned} & \tau_{1}(19)+\tau_{3}(17)+\tau_{8}(16)+\tau_{7}(15)+ \\ & \rho(2)(11) \end{aligned}$ |
| $\nu_{75}$ | 444.4 | 2.62 | 436.6 | ( 435.0) |  | 435.9 | $\tau_{1}(21)+\gamma_{10}(20)+\tau_{6}(20)+\tau_{8}(11)$ |
| $\nu_{76}$ | 423.1 | 1.10 | 414.6 | ( 414.0) |  | 413.9 | $\tau_{6}(39)+\tau_{9}(12)$ |
| $\nu_{77}$ | 357.2 | 1.70 | 349.2 | ( 350.0) |  | 350.0 | $\rho(2)(21)+\gamma_{4}(18)+\tau_{1}(11)$ |
| $\nu_{78}$ | 245.9 | 0.38 | 236.4 | ( 241.0) |  | 240.7 | $\tau_{6}(26)+\gamma_{10}(22)+\tau_{9}(14)$ |
| $\nu_{79}$ | 220.1 | 0.25 | 175.2 | ( 215.0) |  | 214.9 | $\tau_{\text {ring }}(60)$ |
| $\nu_{80}$ | 193.0 | 0.01 | 159.8 | ( 189.0) |  | 189.2 | $\tau_{\text {ring }}(30)+\tau_{1}(13)+\tau_{3}(12)$ |
| $\nu_{81}$ | 135.5 | 2.60 | 129.4 | ( 132.0) |  | 132.0 | $\begin{aligned} & \tau_{7}(20)+\gamma_{4}(16)+\tau_{9}(13)+ \\ & \tau_{8}(10)+\tau_{2}(10) \end{aligned}$ |
| $\nu_{82}$ | 96.4 | 0.18 | 79.9 | ( 94.0) |  | 94.2 | $\tau_{4}(26)+\tau_{7}(15)+\tau_{3}(13)+\tau_{9}(13)$ |
| $\nu_{83}$ | 79.2 | 0.26 | -90.1 | ( 77.0) |  | 77.0 | $\tau_{\text {ring }}(69)$ |
| $\nu_{84}$ | 62.2 | 0.42 | 44.4 | (61.0) |  | 60.7 | $\tau_{3}(25)+\tau_{4}(12)+\tau_{1}(11)$ |

Since the fitting algorithm required all the experimental frequencies, the numbers in parenthesis are introduced as good guesses for $3,9-D M P$ and do not have any other significance. RMS error is 2.2038 for the fitting of experimental frequencies.

Table 5.5(a): Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-31 G^{*}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PEDs of $1,9-D M P$.

| Sym | B3LYP/6-31G* |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| $A^{\prime}$ |  |  |  |  |  |  |  |
| $\nu_{1}$ | 3230.3 | 29.723 | 3092.1 | 3089.1 | 14.454 | 3088.9 | $r_{5}(63)+r_{1}(36)$ |
| $\nu_{2}$ | 3218.2 | 29.562 | 3085.1 | 3069.7 | 31.830 | 3070.0 | $r_{1}(50)+r_{5}(27)+r_{8}(21)$ |
| $\nu_{3}$ | 3213.0 | 0.968 | 3080.4 | (3069.0) |  | 3068.9 | $r_{8}(77)+r_{1}(12)$ |
| $\nu_{4}$ | 3204.8 | 14.918 | 3052.1 | 3035.3 | 11.215 | 3035.3 | $r_{4}(99)$ |
| $\nu_{5}$ | 3199.2 | 16.626 | 3066.3 | 2979.6 | 14.454 | 2979.7 | $r_{2}(43)+r_{7}(43)$ |
| $\nu_{6}$ | 3195.2 | 39.278 | 3046.2 | (2979.0) |  | 2979.5 | $r_{2}(43)+r_{7}(43)$ |
| $\nu_{7}$ | 3184.4 | 2.290 | 3051.6 | 2955.2 | 8.293 | 2955.2 | $r_{6}(83)+r_{7}(12)$ |
| $\nu_{8}$ | 3178.4 | 11.562 | 3050.0 | (2955.0) |  | 2954.9 | $r_{3}(82)+r_{2}(12)$ |
| $\nu_{9}$ | 3127.0 | 17.148 | 2990.1 | 2933.5 | 34.121 | 2936.7 | $r_{12}^{\prime}(77)+r_{11}^{\prime}(21)$ |
| $\nu_{10}$ | 3125.8 | 21.105 | 2983.7 | (2933.0) |  | 2936.1 | $r_{10}^{\prime}(76)+r_{9}^{\prime}(20)$ |
| $\nu_{11}$ | 3040.3 | 31.839 | 2904.4 | 2875.3 | 14.533 | 2864.3 | $r_{11}^{\prime}(65)+r_{12}^{\prime}(18)+r_{9}^{\prime}(13)$ |
| $\nu_{12}$ | 3038.5 | 34.593 | 2909.2 | (2875.0) |  | 2863.9 | $r_{9}^{\prime}(66)+r_{10}^{\prime}(17)+r_{11}^{\prime}(13)$ |
| $\nu_{13}$ | 1676.3 | 8.892 | 1638.9 | 1626.5 | 9.952 | 1624.8 | $R_{13}(16)+R_{16}(12)+R_{15}(11)$ |
| $\nu_{14}$ | 1668.0 | 1.370 | 1625.0 | 1619.0 |  | 1620.1 | $R_{10}(32)+R_{15}(11)$ |
| $\nu_{15}$ | 1659.4 | 6.687 | 1620.1 | 1604.6 | 7.819 | 1606.8 | $R_{4}(28)+R_{1}(12)+R_{2}(10)$ |
| $\nu_{16}$ | 1629.5 | 1.478 | 1591.5 | 1584.5 |  | 1582.9 | $R_{2}(16)+R_{3}(11)$ |
| $\nu_{17}$ | 1584.8 | 3.469 | 1551.8 | (1536.2) |  | 1538.3 | $R_{14}$ ( 20 ) |
| $\nu_{18}$ | 1541.7 | 11.020 | 1510.4 | 1495.4 | 3.791 | 1495.3 | $R_{9}$ ( 14) |
| $\nu_{19}$ | 1533.7 | 11.699 | 1481.9 | (1471.2) |  | 1473.3 | $\delta_{s}(1)(47)+\delta_{s}(2)(13)$ |
| $\nu_{20}$ | 1521.8 | 3.263 | 1486.0 | (1469.0) |  | 1465.5 | $\delta_{s}(1)(27)+\delta_{s}(2)(13)+r_{14}^{\prime}(11)$ |
| $\nu_{21}$ | 1504.4 | 12.089 | 1472.8 | 1456.0 | 25.433 | 1456.4 | $\delta_{s}(2)(42)$ |
| $\nu_{22}$ | 1491.3 | 0.408 | 1461.6 | (1446.0) |  | 1445.0 | $\beta_{5}(17)+R_{10}(12)$ |
| $\nu_{23}$ | 1457.2 | 9.055 | 1431.2 | 1412.4 | 6.713 | 1413.7 | $\beta_{8}(14)+R_{11}(11)$ |
| $\nu_{24}$ | 1445.4 | 1.807 | 1424.3 | 1389.5 | 5.213 | 1391.1 | $\delta_{8}(34)+\rho(1)(32)$ |
| $\nu_{25}$ | 1443.8 | 1.683 | 1425.0 | (1389.0) |  | 1387.9 | $\delta_{8}(44)+\rho(1)(44)$ |
| $\nu_{26}$ | 1423.4 | 0.315 | 1396.9 | (1378.0) |  | 1377.8 | $R_{9}(17)+\rho(1)(10)$ |
| $\nu_{27}$ | 1390.0 | 0.122 | 1358.0 | (1347.0) |  | 1347.9 | $R_{6}(19)+R_{2}(15)+R_{4}(14)$ |
| $\nu_{28}$ | 1379.7 | 0.654 | 1351.1 | (1336.0) |  | 1339.2 | $R_{8}(24)+R_{13}(12)$ |
| $\nu_{29}$ | 1330.7 | 1.473 | 1308.9 | 1296.1 | 1.263 | 1295.3 | $R_{7}(18)+\beta_{9}(14)+R_{11}(11)$ |
| $\nu_{30}$ | 1307.8 | 1.231 | 1291.3 | 1273.2 | 0.868 | 1274.5 | $\delta_{2}(19)+\beta_{5}(14)+\beta_{1}(14)+\beta_{8}(13)$ |
| $\nu_{31}$ | 1284.9 | 2.543 | 1265.9 | 1249.5 | 3.712 | 1248.3 | $R_{16}(12)+\beta_{8}(11)+\beta_{3}(10)$ |
| $\nu_{32}$ | 1266.7 | 3.597 | 1250.0 | (1228.0) |  | 1228.1 | $\beta_{3}(28)+R_{17}^{\prime}(16)+R_{5}(11)$ |
| $\nu_{33}$ | 1249.7 | 2.711 | 1227.5 | 1213.0 | 0.789 | 1213.9 | $R_{1}(20)+R_{11}(19)$ |
| $\nu_{34}$ | 1213.3 | 0.241 | 1197.0 | (1179.0) |  | 1179.6 | $r^{\prime} 14(28)+\beta_{6}^{\prime}(11)$ |
| $\nu_{35}$ | 1202.2 | 0.447 | 1192.2 | (1168.0) |  | 1168.3 | $\beta_{7}(29)+\beta_{6}^{\prime}(20)+\beta_{8}(11)$ |
| $\nu_{36}$ | 1181.4 | 1.242 | 1166.6 | 1152.7 | 0.631 | 1151.5 | $R_{15}(14)+\beta_{7}(13)+\beta_{6}^{\prime}(11)+\delta_{2}(10)$ |
| $\nu_{37}$ | 1121.7 | 3.163 | 1107.7 | 1089.9 | 2.290 | 1089.4 | $R_{3}(33)+\beta_{1}(15)+R_{2}(11)$ |
| $\nu_{38}$ | 1099.2 | 0.091 | 1085.7 | (1068.0) |  | 1067.8 | $\delta_{a}(2)(12)+R_{18}^{\prime}(10)$ |
| $\nu_{39}$ | 1086.7 | 0.285 | 1067.3 | (1061.0) |  | 1061.6 | $\delta_{5}(43)$ |
| $\nu_{40}$ | 1068.0 | 6.035 | 1050.1 | 1036.4 | 7.108 | 1036.1 | $R_{14}$ (42) |
| $\nu_{41}$ | 1027.1 | 0.609 | 1001.8 | ( 998.0) |  | 998.4 | $\delta_{a}(2)(17)+\delta_{a}(1)(16)+\beta_{9}(16)$ |
| $\nu_{42}$ | 1022.3 | 4.103 | 998.6 | 995.3 | 2.843 | 993.7 | $\delta_{a}(1)(25)+\delta_{a}(2)(17)+\delta_{5}(12)$ |
| $\nu_{43}$ | 894.0 | 1.905 | 882.2 | ( 874.0) |  | 872.4 | $\delta_{5}(17)+R_{17}^{\prime}(13)+\delta_{4}(11)$ |
| $\nu_{44}$ | 869.6 | 0.239 | 859.9 | (851.0) |  | 850.5 | $\beta_{9}(33)+R_{6}(10)$ |

Table 5.5(a): (Continued)Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-31 G^{*}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of 1,9-DMP.

| Sym | B3LYP/6-31G* |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| $\nu_{45}$ | 780.9 | 0.115 | 770.4 | ( 763.0) |  | 763.3 | $\delta_{7}(27)+\delta_{5}(12)+R_{9}(12)$ |
| $\nu_{46}$ | 711.6 | 3.574 | 702.2 | 698.5 | 3.633 | 697.1 | $\delta_{6}(23)+\delta_{1}(15)+\delta_{2}(13)$ |
| $\nu_{47}$ | 635.5 | 0.490 | 628.9 | ( 623.0) |  | 623.8 | $\delta_{6}(35)+\delta_{1}(21)+\delta_{2}(15)$ |
| $\nu_{48}$ | 573.8 | 0.429 | 568.8 | ( 563.0) |  | 560.5 | $\delta_{7}(25)+\delta_{1}(21)+\beta_{4}^{\prime}(21)$ |
| $\nu_{49}$ | 553.1 | 6.038 | 547.2 | 539.5 | 1.816 | 540.4 | $\beta_{10}(37)+R_{17}^{\prime}(11)+\delta_{3}(11)$ |
| $\nu_{50}$ | 514.5 | 1.761 | 506.6 | ( 503.0) |  | 502.4 | $\delta_{4}(23)+\beta_{10}(17)+\delta_{7}(11)$ |
| $\nu_{51}$ | 447.6 | 0.824 | 443.1 | ( 438.0) |  | 437.1 | $\delta_{4}(28)+\beta_{2}(25)+\delta_{3}(16)$ |
| $\nu_{52}$ | 426.5 | 0.230 | 422.4 | ( 417.0) |  | 416.6 | $\delta_{3}(35)+\beta_{10}(12)+\delta_{4}(10)$ |
| $\nu_{53}$ | 335.4 | 0.479 | 326.8 | ( 327.0) |  | 327.6 | $\beta_{2}(27)+\beta_{4}^{\prime}(18)$ |
| $\nu_{54}$ | 284.0 | 0.198 | 278.2 | ( 277.0) |  | 277.3 | $\beta_{4}^{\prime}(47)+\delta_{7}(18)$ |
| $\begin{aligned} & \nu_{55} \\ & A^{\prime \prime} \end{aligned}$ | 223.2 | 0.372 | 220.3 | ( 217.0) |  | 217.6 | $\delta_{1}(24)+\beta_{2}(21)$ |
| $\nu_{56}$ | 3090.6 | 21.375 | 2922.9 | 2905.0 | 3.554 | 2913.6 | $r_{9}^{\prime}(89)+r_{11}^{\prime}(11)$ |
| $\nu_{57}$ | 3087.6 | 18.954 | 2946.7 | (2905.0) |  | 2913.4 | $r_{11}^{\prime}(89)+r_{9}^{\prime}(11)$ |
| $\nu_{58}$ | 1517.6 | 4.201 | 1466.2 | (1461.0) |  | 1460.8 | $\delta_{s}(1)(90)$ |
| $\nu_{59}$ | 1514.6 | 8.336 | 1474.1 | (1458.0) |  | 1457.8 | $\delta_{s}(2)(90)$ |
| $\nu_{60}$ | 1079.7 | 1.658 | 1054.2 | (1043.0) |  | 1044.3 | $\rho(1)(26)+\delta_{9}(25)$ |
| $\nu_{61}$ | 1077.1 | 2.322 | 1048.4 | (1041.0) |  | 1043.7 | $\delta_{9}(27)+\rho(1)(27)$ |
| $\nu_{62}$ | 982.9 | 0.000 | 975.8 | ( 971.0) |  | 966.4 | $\gamma_{6}^{\prime}(32)+\gamma_{7}(29)+\gamma_{8}(17)$ |
| $\nu_{63}$ | 962.9 | 0.948 | 962.7 | ( 954.0) |  | 954.0 | $\rho(2)(50)+\gamma_{1}(24)$ |
| $\nu_{64}$ | 942.8 | 0.699 | 945.8 | ( 935.0) |  | 933.4 | $\gamma_{8}(38)+\gamma_{6}^{\prime}(29)+\gamma_{5}(15)$ |
| $\nu_{65}$ | 902.3 | 8.634 | 898.5 | ( 884.0) |  | 882.7 | $\gamma_{1}(33)+\rho(2)(23)+\gamma_{3}(22)$ |
| $\nu_{66}$ | 892.5 | 5.600 | 893.4 | 871.4 | 17.692 | 871.8 | $\gamma_{3}(60)+\gamma_{1}(12)$ |
| $\nu_{67}$ | 876.2 | 0.041 | 868.2 | ( 856.0) |  | 855.4 | $\begin{aligned} & \gamma_{5}(33)+\gamma_{7}(13)+\gamma_{8}(13)+ \\ & \tau_{5}(13)+\tau_{2}(11) \end{aligned}$ |
| $\nu_{68}$ | 819.6 | 5.433 | 809.2 | 803.5 | 9.952 | 802.6 | $\gamma_{9}(23)+\tau_{2}(21)+\tau_{5}(13)+\rho(2)(12)$ |
| $\nu_{69}$ | 772.6 | 38.966 | 764.4 | 748.3 | 105.602 | 754.8 | $\gamma_{7}(23)+\gamma_{6}^{\prime}(21)+\gamma_{5}(21)+\gamma_{8}(14)$ |
| $\nu_{70}$ | 765.2 | 30.851 | 760.2 | ( 746.0) |  | 747.8 | $\begin{aligned} & \rho(2)(33)+\tau_{5}(21)+\rho(2)(13)+ \\ & \tau_{2}(11) \end{aligned}$ |
| $\nu_{71}$ | 745.3 | 0.224 | 737.5 | ( 729.0) |  | 730.8 | $\gamma_{9}(40)+\tau_{5}(25)$ |
| $\nu_{72}$ | 611.3 | 0.000 | 602.3 | ( 598.0) |  | 597.9 | $\tau_{5}(25)+\tau_{2}(17)+\gamma_{4}^{\prime}(12)$ |
| $\nu_{73}$ | 585.8 | 1.030 | 576.5 | ( 567.0 ) |  | 562.5 | $\tau_{8}(19), \gamma_{2}(12)+\tau_{9}(11)+\tau_{3}(10)$ |
| $\nu_{74}$ | 540.9 | 0.210 | 531.4 | ( 528.0) |  | 526.9 | $\tau_{1}(28)+\gamma_{9}(14)$ |
| $\nu_{75}$ | 486.0 | 0.056 | 477.0 | ( 473.0) |  | 473.8 | $\tau_{7}(24)+\gamma_{2}(17)+\gamma_{10}(13)+\tau_{3}(11)$ |
| $\nu_{76}$ | 423.8 | 2.196 | 413.8 | ( 412.0) |  | 412.0 | $\tau_{6}(54)+\gamma_{4}^{\prime}(10)$ |
| $\nu_{77}$ | 332.5 | 0.486 | 323.5 | ( 322.0) |  | 322.6 | $\begin{aligned} & \gamma_{2}(17)+\gamma_{4}^{\prime}(16)+\tau_{8}(16)+ \\ & \tau_{1}(13)+\tau_{7}(10) \end{aligned}$ |
| $\nu_{78}$ | 249.7 | 0.342 | 240.2 | ( 240.0) |  | 240.4 | $\gamma_{10}(28)+\tau_{6}(23)+\tau_{9}(11)$ |
| $\nu_{79}$ | 219.0 | 0.004 | 185.9 | ( 207.0) |  | 207.1 | $\tau_{\text {ring }}(65)$ |
| $\nu_{80}$ | 197.2 | 0.007 | 138.0 | ( 188.0) |  | 187.5 | $\tau_{1}(26)+\tau_{\text {ring }}(17)+\tau_{\text {ring }}(15)$ |
| $\nu_{81}$ | 189.5 | 1.125 | 169.8 | ( 180.0) |  | 180.1 | $\tau_{\text {ring }}(69)+\gamma_{2}(11)$ |
| $\nu_{82}$ | 142.8 | 1.688 | 135.7 | ( 137.0) |  | 136.9 | $\gamma_{4}^{\prime}(19)+\tau_{9}(16)+\tau_{8}(14)+\tau_{7}(13)$ |
| $\nu_{83}$ | 95.2 | 0.259 | 90.7 | ( 91.0) |  | 91.3 | $\tau_{3}(40)+\tau_{7}(22)+\tau_{8}(10)$ |
| $\nu_{84}$ | 60.7 | 0.025 | 58.7 | ( 57.0) |  | 57.0 | $\tau_{4}(34)+\tau_{3}(13)+\gamma_{10}(12)+\tau_{1}(11)$ |

Since the fitting algorithm required all the experimental frequencies, the numbers in parenthesis are introduced as good guesses for $1,9-D M P$ and do not have any other significance. RMS error is $2.7233 \mathrm{~cm}^{-1}$ for the fitting of experimental frequencies.

Table 5.5(b): Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-31 G^{*}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of $2,4-D M P$.

| Sym | B3LYP/6-31G* |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| $A^{\prime}$ |  |  |  |  |  |  |  |
| $\nu_{1}$ | 3335.7 | 5.028 | 3182.1 | 3155.1 | 2.350 | 3155.1 | $r_{5}$ ( 99) |
| $\nu_{2}$ | 3206.6 | 29.258 | 3075.8 | 3076.5 | 2.644 | 3075.2 | $r_{7}(70)+r_{6}(24)$ |
| $\nu_{3}$ | 3196.6 | 40.682 | 3050.9 | 3057.2 | 41.917 | 3057.8 | $r_{4}(47)+r_{3}(23)+r_{6}(22)$ |
| $\nu_{4}$ | 3188.2 | 14.459 | 3056.1 | (3057.0) |  | 3056.7 | $r_{6}(52)+r_{4}(17)+r_{7}(17)+r_{3}(10)$ |
| $\nu_{5}$ | 3179.0 | 7.684 | 3030.3 | 3038.0 | 17.237 | 3039.3 | $r_{8}(50)+r_{3}(32)$ |
| $\nu_{6}$ | 3176.0 | 7.570 | 3033.7 | (3038.0) |  | 3036.3 | $r_{8}(38)+r_{3}(32)+r_{4}(25)$ |
| $\nu_{7}$ | 3173.3 | 8.308 | 3017.8 | 3017.1 | 6.072 | 3018.0 | $r_{2}(50)+r_{1}(48)$ |
| $\nu_{8}$ | 3171.2 | 27.353 | 3024.4 | (3017.0) |  | 3016.2 | $r_{1}(50)+r_{2}(48)$ |
| $\nu_{9}$ | 3125.7 | 16.627 | 2981.9 | 2976.7 | 20.273 | 2976.5 | $r_{10}^{\prime}(86)+r_{9}^{\prime}(13)$ |
| $\nu_{10}$ | 3121.5 | 22.597 | 2979.8 | (2976.0) |  | 2976.1 | $r_{12}^{\prime}(89)$ |
| $\nu_{11}$ | 3045.3 | 22.030 | 2890.6 | 2882.3 | 18.902 | 2883.5 | $r_{9}^{\prime}(87)+r_{10}^{\prime}(12)$ |
| $\nu_{12}$ | 3041.3 | 45.565 | 2930.3 | (2882.0) |  | 2881.0 | $r_{11}^{\prime}(90)$ |
| $\nu_{13}$ | 1685.5 | 0.908 | 1647.3 | (1636.0) |  | 1635.2 | $R_{10}$ (41) |
| $\nu_{14}$ | 1677.1 | 20.827 | 1635.4 | 1621.4 | 28.206 | 1622.7 | $R_{4}(19)+R_{5}(13)+R_{2}(12)+\delta_{1}(11)$ |
| $\nu_{15}$ | 1665.5 | 6.941 | 1627.8 | (1609.1) |  | 1610.0 | $\begin{aligned} & R_{15}(20)+R_{13}(16)+R_{16}(11)+ \\ & \delta_{7}(10) \end{aligned}$ |
| $\nu_{16}$ | 1620.3 | 2.093 | 1584.0 | (1573.0) |  | 1571.4 | $R_{14}(17)$ |
| $\nu_{17}$ | 1580.4 | 1.524 | 1549.8 | (1532.0) |  | 1532.3 | $R_{3}(13)+R_{14}(13)$ |
| $\nu_{18}$ | 1547.2 | 14.780 | 1498.5 | (1498.0) |  | 1495.3 | $R_{9}$ (17) |
| $\nu_{19}$ | 1543.8 | 5.145 | 1495.7 | 1470.9 | 40.742 | 1471.4 | $\delta_{s}(2)(68)$ |
| $\nu_{20}$ | 1515.9 | 9.749 | 1476.5 | 1457.4 |  | 1459.2 | $\delta_{s}(1)(45)$ |
| $\nu_{21}$ | 1502.4 | 12.860 | 1466.8 | (1456.0) |  | 1454.2 | $\delta_{s}(1)(20)+\beta_{5}(13)$ |
| $\nu_{22}$ | 1473.5 | 1.954 | 1454.3 | 1431.8 | 1.567 | 1430.4 | $\beta_{7}(14)+\beta_{6}(11)$ |
| $\nu_{23}$ | 1450.7 | 0.111 | 1405.3 | (1402.0) |  | 1400.1 | $R_{5}(14)+r_{14}^{\prime}(12)+\beta_{2}(11)$ |
| $\nu_{24}$ | 1445.8 | 0.632 | 1411.9 | (1390.0) |  | 1389.7 | $R_{2}(12)+\beta_{2}(10)$ |
| $\nu_{25}$ | 1440.7 | 0.616 | 1407.7 | 1384.4 | 2.644 | 1384.4 | $\rho(1)(70)$ |
| $\nu_{26}$ | 1440.0 | 0.305 | 1404.0 | (1380.0) |  | 1380.1 | $\delta_{8}(81)$ |
| $\nu_{27}$ | 1379.4 | 0.648 | 1354.4 | (1335.0) |  | 1333.2 | $\begin{aligned} & R_{8}(20)+R_{13}(14)+R_{15}(14)+ \\ & R_{16}(12) \end{aligned}$ |
| $\nu_{28}$ | 1373.9 | 4.981 | 1344.8 | 1324.7 | 1.371 | 1322.7 | $R_{6}(19)+R_{2}(12)$ |
| $\nu_{29}$ | 1334.4 | 1.922 | 1313.0 | 1300.0 | 1.469 | 1299.5 | $R_{7}(13)+\beta_{5}(12)+\beta_{9}(11)$ |
| $\nu_{30}$ | 1310.9 | 1.519 | 1276.2 | 1270.6 | 0.976 | 1271.7 | $r_{14}^{\prime}(27)+R_{7}(16)$ |
| $\nu_{31}$ | 1286.3 | 0.732 | 1269.8 | (1250.0) |  | 1250.5 | $\beta_{8}(11)$ |
| $\nu_{32}$ | 1255.2 | 3.485 | 1230.3 | 1217.4 | 2.546 | 1217.6 | $\beta_{6}(13)+\beta_{5}(12)$ |
| $\nu_{33}$ | 1239.3 | 0.104 | 1221.4 | (1203.0) |  | 1203.9 | $R_{9}(21)+R_{12}(18)+R_{16}(10)$ |
| $\nu_{34}$ | 1222.7 | 1.195 | 1198.2 | (1184.0) |  | 1184.2 | $\beta_{2}(26)+\beta_{3}^{\prime}(12)+R_{18}^{\prime}(11)+r_{14}^{\prime}(11)$ |
| $\nu_{35}$ | 1202.9 | 2.464 | 1191.1 | 1170.6 | 2.056 | 1170.2 | $\beta_{6}(22)+\beta_{7}(10)$ |
| $\nu_{36}$ | 1189.5 | 1.094 | 1186.8 | 1148.6 | 0.391 | 1149.4 | $\beta_{4}(24)+\beta_{3}^{\prime}(20)$ |
| $\nu_{37}$ | 1156.0 | 0.316 | 1144.3 | (1126.0) |  | 1126.8 | $\beta_{7}(20)+R_{15}(11)+\delta_{5}(11)$ |
| $\nu_{38}$ | 1086.8 | 3.888 | 1070.1 | 1053.2 | 3.525 | 1053.6 | $R_{14}(47)+R_{15}(11)$ |
| $\nu_{39}$ | 1068.7 | 0.805 | 1025.2 | (1036.0) |  | 1031.6 | $\delta_{a}(2)(39)+\rho(1)(12)$ |
| $\nu_{40}$ | 1052.2 | 3.620 | 1031.9 | (1020.0) |  | 1020.1 | $\delta_{a}(1)(37)+\delta_{9}(12)$ |
| $\nu_{41}$ | 1010.9 | 3.449 | 998.9 | 996.4 | 4.896 | 994.6 | $\beta_{9}(31)+\delta_{5}(24)$ |
| $\nu_{42}$ | 989.3 | 1.954 | 972.3 | 968.8 | 0.587 | 967.5 | $R_{18}^{\prime}(22)+R_{17}^{\prime}(17)+\delta_{5}(12)$ |
| $\nu_{43}$ | 987.6 | 0.510 | 963.6 | 944.9 | 0.489 | 951.1 | $\begin{aligned} & \delta_{1}(12)+\delta_{a}(2)(12)+R_{6}(11)+ \\ & R_{11}(10) \end{aligned}$ |

Table 5.5(b): (Continued)Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-31 G^{*}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of $2,4-D M P$.

| Sym | B3LYP/6-31G* |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| $\nu_{44}$ | 859.9 | 1.554 | 853.5 | ( 841.0) |  | 842.7 | $\delta_{5}(18)+R_{8}(11)+\delta_{7}(11)+\delta_{3}(10)$ |
| $\nu_{45}$ | 773.2 | 1.029 | 768.6 | ( 758.0) |  | 757.4 | $\delta_{2}(27)+\delta_{7}(14)+\delta_{4}(12)$ |
| $\nu_{46}$ | 669.4 | 3.068 | 691.3 | 688.7 | 3.623 | 688.2 | $\delta_{6}(45)+R_{8}(11)$ |
| $\nu_{47}$ | 590.6 | 0.293 | 585.0 | ( 578.0) |  | 578.7 | $R_{18}^{\prime}(16)+\beta_{9}(14)+\delta_{1}(12)+\delta_{6}(12)$ |
| $\nu_{48}$ | 569.7 | 0.816 | 562.5 | ( 557.0) |  | 557.8 | $\delta_{6}(19)+\delta_{3}(15)+\delta_{7}(12)+$ |
| $\nu_{49}$ | 558.3 | 0.775 | 547.7 | ( 546.0) |  | 546.3 | $\beta_{10}(40)+R_{17}^{\prime}(13)$ |
| $\nu_{50}$ | 530.0 | 2.734 | 522.1 | ( 518.0) |  | 517.3 | $\delta_{1}(27)+r_{13}^{\prime}(19)+\beta_{10}(10)$ |
| $\nu_{51}$ | 505.1 | 0.335 | 501.6 | ( 495.0) |  | 493.8 | $\delta_{7}(30)+\delta_{1}(23)+\delta_{3}(13)$ |
| $\nu_{52}$ | 391.8 | 0.454 | 388.5 | ( 384.0) |  | 383.7 | $\delta_{4}(45)$ |
| $\nu_{53}$ | 328.6 | 0.632 | 319.6 | ( 321.0) |  | 321.2 | $r_{13}^{\prime}(46)+\delta_{3}(19)$ |
| $\nu_{54}$ | 304.3 | 0.009 | 307.3 | ( 298.0) |  | 297.7 | $\beta_{1}^{\prime}(36)+\delta_{1}(16)$ |
| $\begin{aligned} & \nu_{55} \\ & A^{\prime \prime} \end{aligned}$ | 215.3 | 0.687 | 218.9 | ( 210.0) |  | 210.4 | $\beta_{1}^{\prime}(35)+\delta_{4}(11)$ |
| $\nu_{56}$ | 3102.9 | 16.738 | 2958.9 | 2930.8 | 30.458 | 2931.7 | $r_{11}^{\prime}(100)$ |
| $\nu_{57}$ | 3092.4 | 20.430 | 2941.7 | (2930.0) |  | 2929.0 | $r_{9}^{\prime}(100)$ |
| $\nu_{58}$ | 1530.0 | 5.686 | 1407.1 | (1469.0) |  | 1468.6 | $\delta_{s}(2)(94)$ |
| $\nu_{59}$ | 1513.8 | 5.931 | 1511.6 | (1456.0) |  | 1456.2 | $\delta_{s}(1)(92)$ |
| $\nu_{60}$ | 1076.0 | 3.310 | 1053.9 | 1038.5 | 2.938 | 1044.5 | $\rho(1)(51)+\delta_{a}(2)(19)+\rho(2)(11)$ |
| $\nu_{61}$ | 1074.3 | 3.063 | 1029.9 | (1038.0) |  | 1035.9 | $\delta_{9}(53)+\delta_{a}(1)(18)$ |
| $\nu_{62}$ | 986.1 | 0.027 | 987.2 | ( 973.0) |  | 971.2 | $\gamma_{6}(26)+\gamma_{7}(25)+\gamma_{8}(19)$ |
| $\nu_{63}$ | 972.7 | 0.016 | 975.0 | ( 960.0) |  | 956.6 | $\gamma_{3}^{\prime}(46)+\gamma_{4}(28)$ |
| $\nu_{64}$ | 945.7 | 2.141 | 953.9 | ( 937.0) |  | 934.5 | $\gamma_{8}(41)+\gamma_{6}(27)+\gamma_{5}(14)$ |
| $\nu_{65}$ | 903.7 | 8.070 | 895.3 | 885.3 | 4.505 | 883.7 | $\gamma_{2}(43)+\rho(2)(39)$ |
| $\nu_{66}$ | 885.6 | 16.731 | 875.3 | 864.2 | 29.969 | 863.3 | $\rho(2)(22)+\gamma_{5}(16)$ |
| $\nu_{67}$ | 876.0 | 4.954 | 867.1 | ( 855.0) |  | 855.1 | $\rho(2)(21)+\gamma_{2}(20)+\gamma_{5}(13)+\gamma_{9}(12)$ |
| $\nu_{68}$ | 828.0 | 19.735 | 824.5 | 806.4 | 24.190 | 811.9 | $\gamma_{4}(26)+\gamma_{3}^{\prime}(25)+\gamma_{2}(13)$ |
| $\nu_{69}$ | 809.2 | 0.656 | 821.4 | ( 791.0) |  | 795.5 | $\tau_{2}(33)+\tau_{5}(19)+\gamma_{9}(11)+\gamma_{7}(10)$ |
| $\nu_{70}$ | 761.7 | 29.636 | 756.4 | 742.7 | 47.598 | 744.6 | $\gamma_{5}(26)+\gamma_{7}(21)+\gamma_{6}(19)+\gamma_{8}(12)$ |
| $\nu_{71}$ | 726.6 | 4.632 | 738.2 | 708.7 | 16.159 | 708.4 | $\tau_{5}(36)+\gamma_{9}(32)$ |
| $\nu_{72}$ | 617.0 | 1.768 | 618.0 | 603.2 | 3.525 | 602.5 | $\tau_{2}(17)+\tau_{5}(14)+\gamma_{9}(13)$ |
| $\nu_{73}$ | 588.2 | 0.167 | 586.5 | ( 572.0) |  | 570.8 | $\gamma_{1}^{\prime}(17)+\gamma_{10}(16)+\tau_{8}(13)+\gamma_{9}(11)$ |
| $\nu_{74}$ | 533.3 | 0.166 | 528.2 | ( 521.0) |  | 521.0 | $\tau_{7}(25)+\gamma_{1}^{\prime}(13)+\gamma_{10}(12)+\tau_{5}(11)$ |
| $\nu_{75}$ | 494.3 | 2.642 | 489.6 | ( 480.0) |  | 483.2 | $\rho(2)(25)+\tau_{1}(17)+\tau_{9}(15)+\tau_{6}(14)$ |
| $\nu_{76}$ | 422.5 | 0.540 | 409.4 | ( 411.0) |  | 411.1 | $\tau_{6}(44)+\tau_{3}(12)$ |
| $\nu_{77}$ | 358.7 | 0.999 | 341.3 | ( 344.0) |  | 344.6 | $\tau_{\text {ring }}(43)+\tau_{7}(13)$ |
| $\nu_{78}$ | 331.4 | 0.460 | 337.1 | ( 319.0) |  | 317.4 | $\tau_{\text {ring }}(31)+\tau_{6}(16)+\gamma_{1}^{\prime}(12)+\tau_{8}(11)$ |
| $\nu_{79}$ | 233.1 | 0.910 | 233.4 | ( 224.0) |  | 224.9 | $\tau_{1}(22)+\tau_{9}(15)+\tau_{6}(12)+\tau_{4}(12)$ |
| $\nu_{80}$ | 189.5 | 2.366 | 187.5 | ( 183.0) |  | 182.6 | $\tau_{1}(34)+\rho(2)(10)$ |
| $\nu_{81}$ | 180.0 | 0.345 | 177.3 | ( 174.0) |  | 174.9 | $\gamma_{1}^{\prime}(15)+\tau_{7}(14)+\tau_{4}(13)$ |
| $\nu_{82}$ | 79.4 | 0.007 | 64.4 | ( 76.0) |  | 76.5 | $\tau_{\text {ring }}(32)+\tau_{3}(17)+\tau_{8}(13)+\tau_{7}(11)$ |
| $\nu_{83}$ | 67.7 | 0.418 | 55.3 | (65.0) |  | 64.5 | $\tau_{\text {ring }}(40)+\tau_{3}(16)$ |
| $\nu_{84}$ | -11.6 | 0.001 | -95.5 | ( 15.0) |  | nan | $\tau_{\text {ring }}(41)+\tau_{3}(12)+\gamma_{10}(11)$ |

Since the fitting algorithm required all the experimental frequencies, the numbers in parenthesis are introduced as good guesses for $2,4-D M P$ and do not have any other significance. RMS error is $2.4226 \mathrm{~cm}^{-1}$ for the fitting of experimental frequencies.

Table 5.5(c): Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-31 G^{*}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of $3,9-D M P$.

| Sym | B3LYP/6-31G ${ }^{*}$ |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| $A^{\prime}$ |  |  |  |  |  |  |  |
| $\nu_{1}$ | 3223.3 | 21.701 | 3077.0 | 3085.7 | 19.159 | 3085.7 | $r_{5}(96)$ |
| $\nu_{2}$ | 3217.4 | 32.672 | 3081.7 | 3062.5 | 13.063 | 3062.5 | $r_{8}(92)$ |
| $\nu_{3}$ | 3202.4 | 7.123 | 3058.7 | 3029.1 | 10.757 | 3029.4 | $r_{1}(49)+r_{7}(44)$ |
| $\nu_{4}$ | 3196.4 | 12.566 | 3045.9 | (3029.0) |  | 3028.7 | $r_{1}(47)+r_{7}(46)$ |
| $\nu_{5}$ | 3190.8 | 43.623 | 3059.5 | 2978.9 | 10.668 | 2978.9 | $r_{6}(93)$ |
| $\nu_{6}$ | 3184.2 | 2.660 | 3041.5 | (2978.0) |  | 2978.1 | $r_{3}(77)+r_{2}(19)$ |
| $\nu_{7}$ | 3173.5 | 21.030 | 3026.2 | 2956.3 | 5.660 | 2957.0 | $r_{4}(49)+r_{2}(43)$ |
| $\nu_{8}$ | 3170.2 | 7.174 | 3026.9 | (2956.0) |  | 2955.2 | $r_{4}(48)+r_{2}(36)+r_{3}(14)$ |
| $\nu_{9}$ | 3127.7 | 17.218 | 2982.7 | 2933.5 | 51.838 | 2936.5 | $r_{12}^{\prime}(75)+r_{11}^{\prime}(22)$ |
| $\nu_{10}$ | 3124.3 | 15.728 | 2976.8 | (2933.0) |  | 2936.2 | $r_{10}^{\prime}(75)+r_{9}^{\prime}(24)$ |
| $\nu_{11}$ | 3039.6 | 37.050 | 2991.6 | 2875.0 | 19.377 | 2865.5 | $r_{11}^{\prime}(65)+r_{12}^{\prime}(19)+r_{9}^{\prime}(12)$ |
| $\nu_{12}$ | 3038.0 | 46.760 | 2980.2 | (2875.0) |  | 2865.1 | $r_{9}^{\prime}(64)+r_{10}^{\prime}(20)+r_{11}^{\prime}(12)$ |
| $\nu_{13}$ | 1680.4 | 0.288 | 1642.0 | (1632.0) |  | 1632.1 | $R_{10}(43)+\beta_{3}(10)$ |
| $\nu_{14}$ | 1675.4 | 15.146 | 1635.6 | 1620.8 | 24.167 | 1623.5 | $R_{4}$ ( 18) |
| $\nu_{15}$ | 1666.0 | 6.173 | 1625.3 | (1614.2) |  | 1615.2 | $R_{15}(17)+R_{13}(16)$ |
| $\nu_{16}$ | 1620.2 | 0.454 | 1580.9 | (1574.0) |  | 1574.2 | $R_{6}(12)+R_{14}(12)$ |
| $\nu_{17}$ | 1578.3 | 0.623 | 1538.8 | (1530.0) |  | 1531.3 | $R_{3}(16)+R_{14}(13)$ |
| $\nu_{18}$ | 1556.4 | 17.345 | 1521.6 | 1508.8 | 20.030 | 1509.1 | $\beta_{7}(10)$ |
| $\nu_{19}$ | 1531.6 | 2.139 | 1469.4 | (1476.0) |  | 1475.9 | $\delta_{s}(2)(77)$ |
| $\nu_{20}$ | 1522.8 | 15.292 | 1479.8 | 1460.6 | 34.618 | 1460.8 | $\delta_{s}(1)(63)$ |
| $\nu_{21}$ | 1496.4 | 5.066 | 1466.9 | (1437.0) |  | 1440.8 | $\beta_{6}^{\prime}$ (17) |
| $\nu_{22}$ | 1477.1 | 4.294 | 1444.9 | (1431.0) |  | 1427.8 | $\beta_{8}(18)+\beta_{5}(11)$ |
| $\nu_{23}$ | 1461.0 | 1.702 | 1430.6 | (1417.0) |  | 1411.4 | $R_{1}(17)+\delta_{s}(1)(13)$ |
| $\nu_{24}$ | 1442.1 | 1.179 | 1431.7 | 1388.3 | 12.410 | 1391.8 | $R_{9}(20)+\rho(1)(14)+\beta_{3}(12)$ |
| $\nu_{25}$ | 1441.7 | 2.979 | 1431.0 | (1387.0) |  | 1387.0 | $\delta_{8}(86)$ |
| $\nu_{26}$ | 1432.3 | 2.922 | 1403.8 | (1385.0) |  | 1384.5 | $\rho(1)$ (72) |
| $\nu_{27}$ | 1398.0 | 1.220 | 1363.8 | (1349.0) |  | 1350.7 | $R_{6}(20)+R_{2}(17)+R_{4}(15)$ |
| $\nu_{28}$ | 1373.2 | 1.350 | 1345.5 | 1327.6 | 0.870 | 1330.1 | $\begin{aligned} & R_{8}(25)+R_{13}(12)+R_{16} \\ & +R_{15}(10) \end{aligned}$ |
| $\nu_{29}$ | 1337.5 | 1.189 | 1315.1 | 1296.3 | 1.088 | 1297.6 | $\beta_{9}(14)+\beta_{1}(12)+R_{11}(12)$ |
| $\nu_{30}$ | 1318.5 | 0.032 | 1297.4 | (1260.0) |  | 1266.2 | $\delta_{2}(19)+\beta_{5}(15)+\beta_{8}(11)$ |
| $\nu_{31}$ | 1282.5 | 1.930 | 1264.0 | (1244.0) |  | 1241.4 | $\beta_{3}(15)+R_{16}(14)+\beta_{8}(13)$ |
| $\nu_{32}$ | 1258.2 | 1.388 | 1234.8 | 1215.2 | 0.653 | 1216.3 | $R_{1}(18)+R_{11}(13)$ |
| $\nu_{33}$ | 1244.7 | 0.986 | 1226.3 | (1207.0) |  | 1205.8 | $\beta_{3}(28)+R_{5}(16)$ |
| $\nu_{34}$ | 1220.5 | 2.387 | 1196.5 | 1185.0 | 0.653 | 1186.0 | $R_{17}^{\prime}(19)+R_{7}(13)+r_{13}^{\prime}(13)$ |
| $\nu_{35}$ | 1201.8 | 1.052 | 1185.5 | 1166.5 | 1.306 | 1166.2 | $\beta_{7}(37)+\beta_{6}^{\prime}(11)$ |
| $\nu_{36}$ | 1185.2 | 2.603 | 1170.4 | 1150.0 | 1.524 | 1146.5 | $\beta_{6}^{\prime}(20)+\beta_{2}(16)+\beta_{1}(14)+\beta_{5}(12)$ |
| $\nu_{37}$ | 1146.2 | 0.079 | 1129.3 | (1116.0) |  | 1116.8 | $\beta_{6}^{\prime}$ ( 12) |
| $\nu_{38}$ | 1097.0 | 0.180 | 1078.0 | (1066.0) |  | 1065.2 | $\delta_{5}(19)+\delta_{a}(2)(16)+R_{18}^{\prime}(14)$ |
| $\nu_{39}$ | 1071.5 | 4.170 | 1058.4 | 1040.4 | 9.797 | 1040.5 | $R_{14}(41)+\delta_{5}(14)$ |
| $\nu_{40}$ | 1061.7 | 5.500 | 1047.9 | (1036.0) |  | 1034.6 | $\beta_{9}(29)+\delta_{5}(13)$ |
| $\nu_{41}$ | 1025.1 | 6.228 | 1012.0 | 999.6 | 3.701 | 999.4 | $\begin{aligned} & \delta_{a}(2)(31)+\delta_{5}(12)+\rho(1)(10) \\ & +R_{18}^{\prime}(10) \end{aligned}$ |
| $\nu_{42}$ | 1012.4 | 1.024 | 996.5 | ( 982.0) |  | 981.6 | $\delta_{a}(1)(38)+\delta_{9}(12)+R_{3}(11)$ |
| $\nu_{43}$ | 913.0 | 1.800 | 901.3 | ( 892.0) |  | 891.6 | $\delta_{1}(14)+\delta_{5}(12)$ |
| $\nu_{44}$ | 845.2 | 0.028 | 835.5 | ( 826.0) |  | 826.5 | $\beta_{9}(16)+\delta_{2}(13)$ |

Table 5.5(c): (Continued)Calculated harmonic, anharmonic frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ) at $B 3 L Y P / 6-31 G^{*}$, observed frequencies (in $\mathrm{cm}^{-1}$ ) and intensities (in $\mathrm{km} / \mathrm{mol}$ ), fitted frequencies (in $\mathrm{cm}^{-1}$ ) and PED of $3,9-D M P$.

| Sym | B3LYP/6-31G* |  |  | Observed |  | Force field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode | Harm. | Int. | Anharm. | Freq. | Int. | Fitted | PED |
| $\nu_{45}$ | 766.2 | 0.983 | 754.0 | ( 750.0) |  | 749.6 | $\delta_{7}(23)+R_{9}(12)+\delta_{2}(10)$ |
| $\nu_{46}$ | 722.3 | 0.245 | 714.3 | ( 707.0) |  | 706.9 | $\beta_{10}(33)+\delta_{6}(16)$ |
| $\nu_{47}$ | 641.7 | 3.798 | 635.5 | 629.1 | 2.394 | 629.5 | $\delta_{6}(44)+\beta_{10}(19)$ |
| $\nu_{48}$ | 608.1 | 1.718 | 602.9 | ( 596.0) |  | 595.6 | $\delta_{2}(21)+R_{18}^{\prime}(11)+\beta_{10}(10)$ |
| $\nu_{49}$ | 544.5 | 0.605 | 543.1 | ( 534.0) |  | 533.4 | $\delta_{1}(25)+\delta_{7}(25)+\beta_{4}(23)$ |
| $\nu_{50}$ | 505.6 | 0.560 | 499.1 | ( 495.0) |  | 494.0 | $\delta_{4}(31)$ |
| $\nu_{51}$ | 437.1 | 1.295 | 433.1 | ( 429.0) |  | 429.1 | $\delta_{3}(40)+r_{14}^{\prime}(18)+\delta_{4}(13)$ |
| $\nu_{52}$ | 399.0 | 0.203 | 395.8 | ( 390.0) |  | 389.8 | $\delta_{4}(23)+\beta_{10}(14)+R_{7}(13)$ |
| $\nu_{53}$ | 340.6 | 0.475 | 343.6 | ( 333.0) |  | 332.9 | $r_{14}^{\prime}(39)+\delta_{1}(19)+\delta_{3}(10)$ |
| $\nu_{54}$ | 288.6 | 0.501 | 286.8 | ( 281.0) |  | 281.1 | $\beta_{4}(62)+\delta_{7}(10)$ |
| $\nu_{55}$ $A^{\prime \prime}$ | 192.6 | 0.444 | 195.1 | ( 188.0) |  | 188.2 | $r_{14}^{\prime}(33)$ |
| $\nu_{56}$ | 3089.5 | 21.865 | 2925.4 | 2908.2 | 7.838 | 2915.3 | $r_{11}^{\prime}(98)$ |
| $\nu_{57}$ | 3087.0 | 20.419 | 2927.8 | (2908.0) |  | 2915.1 | $r_{9}^{\prime}$ ( 98 ) |
| $\nu_{58}$ | 1513.5 | 4.711 | 1525.2 | (1453.5) |  | 1453.3 | $\delta_{s}(1)(92)$ |
| $\nu_{59}$ | 1513.4 | 7.105 | 1529.0 | (1453.0) |  | 1452.9 | $\delta_{s}(2)(93)$ |
| $\nu_{60}$ | 1078.4 | 1.352 | 1055.6 | (1042.0) |  | 1043.3 | $\rho(1)(53)+\delta_{a}(2)(19)$ |
| $\nu_{61}$ | 1074.9 | 4.802 | 1048.4 | (1039.0) |  | 1040.8 | $\delta_{9}(50)+\delta_{a}(1)(17)+\rho(2)(10)$ |
| $\nu_{62}$ | 981.8 | 0.002 | 972.8 | ( 970.0) |  | 969.6 | $\gamma_{7}(33)+\gamma_{6}^{\prime}(30)+\gamma_{8}(19)$ |
| $\nu_{63}$ | 962.4 | 0.972 | 960.1 | 948.7 | 0.879 | 946.3 | $\gamma_{2}^{\prime}(55)+\gamma_{1}(30)$ |
| $\nu_{64}$ | 943.6 | 1.650 | 947.0 | ( 935.0) |  | 933.5 | $\gamma_{8}(37)+\gamma_{6}^{\prime}(30)+\gamma_{5}(16)$ |
| $\nu_{65}$ | 904.9 | 15.499 | 895.1 | 879.1 | 33.094 | 879.2 | $\rho(2)(36)+\gamma_{3}(31)$ |
| $\nu_{66}$ | 883.3 | 7.322 | 880.6 | ( 871.7) |  | 870.7 | $\gamma_{3}(45)+\rho(2)(34)$ |
| $\nu_{67}$ | 876.4 | 0.009 | 874.3 | ( 856.0) |  | 856.8 | $\begin{aligned} & \gamma_{5}(32)+\gamma_{8}(14)+\tau_{5}(14)+\tau_{2}(12) \\ & +\gamma_{7}(12) \end{aligned}$ |
| $\nu_{68}$ | 822.3 | 11.194 | 814.1 | 801.8 | 16.982 | 805.5 | $\gamma_{1}(43)+\gamma_{2}^{\prime}(29)$ |
| $\nu_{69}$ | 796.7 | 4.090 | 787.1 | ( 779.0) |  | 780.0 | $\tau_{2}(30)+\tau_{5}(23)+\gamma_{7}(15)+\gamma_{9}(14)$ |
| $\nu_{70}$ | 772.0 | 35.830 | 766.8 | 753.9 | 62.487 | 754.5 | $\gamma_{6}^{\prime}(25)+\gamma_{5}(24)+\gamma_{8}(11)+\gamma_{7}(10)$ |
| $\nu_{70}$ | 738.0 | 5.947 | 735.5 | 723.6 | 8.055 | 725.5 | $\gamma_{9}(44)+\tau_{5}(26)$ |
| $\nu_{72}$ | 611.5 | 0.719 | 603.3 | 602.1 | 4.572 | 600.2 | $\tau_{5}(23)+\tau_{2}(15)+\gamma_{9}(13)+\rho(2)(12)$ |
| $\nu_{73}$ | 591.3 | 4.534 | 584.5 | 573.6 | 6.749 | 570.3 | $\gamma_{4}(23)+\tau_{4}(13)+\gamma_{10}(11)+\rho(2)(10)$ |
| $\nu_{74}$ | 526.8 | 1.569 | 517.4 | ( 511.0) |  | 511.2 | $\begin{aligned} & \tau_{3}(18)+\tau_{7}(18)+\tau_{1}(15)+\tau_{8}(14) \\ & +\rho(2)(11) \end{aligned}$ |
| $\nu_{75}$ | 448.1 | 1.043 | 442.0 | ( 435.0) |  | 435.5 | $\tau_{6}(23)+\tau_{1}(21), \gamma_{10}(18)+\tau_{8}(13)$ |
| $\nu_{76}$ | 425.8 | 0.523 | 419.6 | ( 414.0) |  | 413.8 | $\tau_{6}(38)+\tau_{9}(11)+\gamma_{4}(10)$ |
| $\nu_{77}$ | 359.3 | 1.246 | 355.7 | ( 350.0) |  | 349.2 | $\rho(2)(23)+\gamma_{4}(16)+\tau_{1}(13)$ |
| $\nu_{78}$ | 249.1 | 0.255 | 241.9 | ( 241.0) |  | 241.1 | $\tau_{6}(24)+\gamma_{10}(23)+\tau_{9}(15)$ |
| $\nu_{79}$ | 226.0 | 0.246 | 185.3 | ( 215.0) |  | 214.8 | $\tau_{\text {ring }}(62)$ |
| $\nu_{80}$ | 197.1 | 0.007 | 173.3 | ( 189.0) |  | 189.5 | $\tau_{\text {ring }}(26)+\tau_{1}(16)+\tau_{3}(13)$ |
| $\nu_{81}$ | 137.6 | 1.599 | 138.8 | ( 132.0) |  | 132.3 | $\tau_{7}(19)+\gamma_{4}(15)+\tau_{9}(13)+\tau_{2}(11)$ |
| $\nu_{82}$ | 98.5 | 0.104 | 92.9 | ( 94.0) |  | 94.3 | $\tau_{4}(26)+\tau_{9}(15)+\tau_{7}(13)+\tau_{3}(12)$ |
| $\nu_{83}$ | 79.6 | 0.243 | -44.6 | ( 77.0) |  | 77.0 | $\tau_{\text {ring }}(72)$ |
| $\nu_{84}$ | 63.8 | 0.323 | 62.6 | (61.0) |  | 60.9 | $\tau_{3}(25)+\tau_{4}(13)+\tau_{1}(12)$ |

Since the fitting algorithm required all the experimental frequencies, the numbers in parenthesis are introduced as good guesses for $3,9-D M P$ and do not have any other significance. RMS error is $2.5541 \mathrm{~cm}^{-1}$ for the fitting of experimental frequencies.
2866.0, 2884.9, and $2867.0 \mathrm{~cm}^{-1}$ in the three DMPs. This band is of low intensity in 1,9-DMP and of moderate intensity in the other two isomers. From tables it is clear that the anharmonic frequencies of the antisymmetric/symmetric methyl $\mathrm{C}-\mathrm{H}$ vibrations are overestimated /underestimated in the DFT calculations by about 20 and $30 \mathrm{~cm}^{-1}$ for $6-31 \mathrm{G}^{*}$ and $6-311 \mathrm{G}^{* *}$ basis sets, respectively. It is also found that the absolute intensities of the C-H stretching bands do not match well with the calculated band intensities since the bands are not well resolved.

### 5.4.2 Spectral region $1700-2800 \mathrm{~cm}^{-1}$ : Non-fundamental bands

A limited number of bands is observed in this region which do not correspond to any calculated fundamentals (see Table 5.6). Initially, non-fundamental bands are tentatively assigned using calculated anharmonic frequencies obtained at the B3LYP/6-311G** level since the calculated frequencies at the B3LYP/6-31G* level of theory deviate from the frequencies at the B3LYP/6-311G** level by more than $100 \mathrm{~cm}^{-1}$ in some instances (see Table 5.3). The assignment is then confirmed by force field fitted frequencies. There are many possibilities for the assignment of the observed non-fundamental bands with the calculated ones. However, we have assigned these bands by correlating with the fundamental bands that are intense.

The band observed at $1915.5 \mathrm{~cm}^{-1}$ in 1,9-DMP, $1912.5 \mathrm{~cm}^{-1}$ in 2,4-DMP and $1913.8 \mathrm{~cm}^{-1}$ in 3,9-DMP can be correlated with the calculated anharmonic band at $1922.4 \mathrm{~cm}^{-1}$ in $1,9-\mathrm{DMP}$, $1952.9 \mathrm{~cm}^{-1}$ in 2,4-DMP, and $1931.5 \mathrm{~cm}^{-1}$ in 3,9-DMP, respectively. Their respective scaled force field fitted frequencies are $1908.0,1916.9$, and $1919.9 \mathrm{~cm}^{-1}$. This band is assigned to a combination of $\left(v_{66}+v_{40}\right)$ for 1,9-DMP, $\left(v_{66}+v_{38}\right)$ for 2,4 -DMP and $\left(v_{65}+v_{39}\right)$ for 3,9 -DMP. The next band observed at $1944.8,1943.1$, and $1942.9 \mathrm{~cm}^{-1}$ for $1,9-, 2,4-$ and $3,9-D M P$,
respectively, is assigned as the first overtone of $v_{40}, v_{41}$ and $v_{39}$ in 1,9-, 2,4- and 3,9-DMP, respectively.

Table 5.6: Comparison of the observed, anharmonic and force field fitted nonfundamental frequencies (in $\mathrm{cm}^{-1}$ ).

| Compound | Observed |  | Anharmonic |  | Fitted | Assignment |  |
| :--- | :---: | :---: | :--- | :--- | :--- | :--- | :--- |
|  | Freq. | Int. | $6-311 \mathrm{G}^{* *}$ | $6-31 G^{*}$ | $6-311 G^{* *}$ | Overtone | Combination |
| 1,9-DMP | 1915.5 | 2.37 | 1922.4 | 1943.7 | 1908.0 |  | $v_{66}+v_{40}$ |
|  | 1944.8 | 1.18 | 2078.8 | 2099.4 | 2073.0 | $2 v_{40}$ |  |
|  | 2745.5 | 1.18 | 2751.0 | 2817.3 | 2781.2 | $2 v_{24}$ |  |
| 2,4-DMP | 1912.5 | 2.05 | 1952.9 | 1965.7 | 1916.9 |  | $v_{66}+v_{38}$ |
|  | 1943.1 | 1.66 | 1989.0 | 1997.3 | 1990.2 | $2 v_{41}$ |  |
|  | 2744.4 | 1.56 | 2896.6 | 2930.0 | 2908.8 | $2 v_{21}$ |  |
| 3,9-DMP | 1913.8 | 3.91 | 1931.5 | 2159.2 | 1919.9 |  | $v_{65}+v_{39}$ |
|  | 1942.9 | 2.61 | 2096.0 | 2115.3 | 2081.6 | $2 v_{39}$ |  |
|  | 2743.5 | 2.39 | 2774.7 | 2836.4 | 2781.6 | $2 v_{24}$ |  |

In the $5^{\text {th }}$ column, $v_{i}$ is the frequency of the $i$-th fundamental vibration. For description see Tables 5.4 and 5.5. All intensities are in $\mathrm{km} \mathrm{mol}^{-1}$.

DFT calculated non-fundamental anharmonic band at 2078.8, 1989.0, and $2096.0 \mathrm{~cm}^{-1}$ is correlated with the observed ones. This band can also be correlated with the force field fitted frequencies at $2073.0 \mathrm{~cm}^{-1}$ in 1,9-DMP, $1990.2 \mathrm{~cm}^{-1}$ in 2,4-DMP, and $2081.6 \mathrm{~cm}^{-1}$ in 3,9-DMP. Another band found at $2745.5 \mathrm{~cm}^{-1}$ in 1,9-DMP, $2744.4 \mathrm{~cm}^{-1}$ in 2,4-DMP, and $2743.5 \mathrm{~cm}^{-1}$ in 3,9-DMP corresponds to the calculated anharmonic band at $2751.0 \mathrm{~cm}^{-1}$ in 1,9-DMP, 2896.6 $\mathrm{cm}^{-1}$ in 2,4-DMP, and $2774.7 \mathrm{~cm}^{-1}$ in 3,9-DMP which is also a first overtone of $v_{24}$ for $1,9-$

DMP, $v_{21}$ for 2,4-DMP, and $v_{24}$ for 3,9-DMP, respectively. Their respective force field fitted frequency is $2781.2 \mathrm{~cm}^{-1}$ in 1,9-DMP, $2908.8 \mathrm{~cm}^{-1}$ in 2,4-DMP and $2781.6 \mathrm{~cm}^{-1}$ in $3,9-$ DMP. The deviation between observed non-fundamental frequencies and force field fitted frequencies calculated with $6-311 \mathrm{G}^{* *}$ basis set is found to be $63 \mathrm{~cm}^{-1}$ in the worse case. On the otherhand calculated anharmonic frequencies differ by $65 \mathrm{~cm}^{-1}$ from the experimental frequencies (see Table 5.3). Therefore, it is clear that for the assignment of non-fundamental bands either scaled force fields or anharmonic calculation can be used.


Figure 5.3. Expanded gas phase IR spectra of 1,9-, 2,4- and 3,9-DMPs from 1200 to $2000 \mathrm{~cm}^{-1}$ at $0.5 \mathrm{~cm}^{-1}$ resolution.

### 5.4.3 Spectral region $1200-1700 \mathrm{~cm}^{-1}$

Several bands have been identified in this region and they belong to $\mathrm{A}^{\prime}$ irreducible representation. Assignment in the $1400-1700 \mathrm{~cm}^{-1}$ region is difficult because of the presence
$\overline{\text { of } \mathrm{H}_{2} \mathrm{O} \text { bands. However, we could assign a few bands in this region after subtracting the } \mathrm{H}_{2} \mathrm{O}}$ spectrum. Bands observed at 1626.5 and $1604.6 \mathrm{~cm}^{-1}$ in 1,9-DMP; 1621.4 and $1609.1 \mathrm{~cm}^{-1}$ in 2,4-DMP; 1620.8 and $1614.2 \mathrm{~cm}^{-1}$ in 3,9-DMP are assigned to aromatic $\mathrm{C}-\mathrm{C}$ stretching vibrations. Their respective force field fitted frequencies are 1626.9 and $1604.9 \mathrm{~cm}^{-1}$ in $1,9-$ DMP; 1624.0 and $1609.9 \mathrm{~cm}^{-1}$ in 2,4-DMP; 1623.6 and $1614.6 \mathrm{~cm}^{-1}$ in 3,9-DMP. These bands have low intensity in 1,9-DMP and moderate intensities in 2,4- and 3,9-DMP although they are not well resolved.

Another low intensity band found at $1495.4 \mathrm{~cm}^{-1}$ in 1,9-DMP is correlated with the force field fitted frequency at $1495.3 \mathrm{~cm}^{-1}$ whereas in 3,9-DMP, another moderate intensity band seen at $1508.8 \mathrm{~cm}^{-1}$ corresponds to the force field fitted frequencies at $1507.9 \mathrm{~cm}^{-1}$. This band is assigned to aromatic C-C stretching vibration (R) in 1,9-DMP and aromatic C-H in-plane bending $(\beta)$ vibrations in 3,9-DMP. A pair of bands seen at 1471.2 and $1456.0 \mathrm{~cm}^{-1}$ in $1,9-$ DMP; 1470.9 and $1457.4 \mathrm{~cm}^{-1}$ in 2,4-DMP; 1460.6 and $1453.5 \mathrm{~cm}^{-1}$ in 3,9-DMP have been assigned to methyl C-H asymmetric deformation vibrations $\left(\delta_{\mathrm{s}}\right)$ by comparing with the force field fitted frequencies at 1473.9 and $1455.7 \mathrm{~cm}^{-1}$ in 1,9-DMP; 1471.5 and $1460.2 \mathrm{~cm}^{-1}$ in 2,4DMP; 1460.8 and $1453.2 \mathrm{~cm}^{-1}$ in 3,9-DMP, respectively. We could not measure individual band intensity in this region since bands are not well separated in the recorded spectra (see Figure 5.3). However, the total intensity of the observed bands is comparable with the sum of the calculated individual band intensity. In 2,4-DMP calculated anharmonic frequency corresponds to observed band at $1470.9 \mathrm{~cm}^{-1}$ is underestimated by $60 \mathrm{~cm}^{-1}$ with $6-311 \mathrm{G}^{* *}$ basis set whereas it is overestimated by $25 \mathrm{~cm}^{-1}$ with $6-31 \mathrm{G}^{*}$ basis set (see Tables 5.4 b and 5.5b). A low intensity band observed at $1412.4 \mathrm{~cm}^{-1}$ in 1,9-DMP and at $1384.4 \mathrm{~cm}^{-1}$ in $2,4-$ DMP has been assigned to aromatic C-H in-plane bending vibration ( $\beta$ ) by comparing with
the scaled force field fitted frequencies at $1413.5 \mathrm{~cm}^{-1}$ in 1,9-DMP and $1429.6 \mathrm{~cm}^{-1}$ in $2,4-$ DMP, respectively. This band is not observed in 3,9-DMP, perhaps, it has been masked by the strong band at $1460.6 \mathrm{~cm}^{-1}$.

The next low intensity band observed at $1389.5,1384.4$, and $1388.3 \mathrm{~cm}^{-1}$ for $1,9-$ DMP, 2,4-DMP and 3,9-DMP, respectively, corresponds to the force field fitted frequencies at 1390.6, 1384.4, and $1390.8 \mathrm{~cm}^{-1}$ for 1,9-, 2,4-, and 3,9-DMP. This band is unique for different isomers of DMP and is assigned to a mixture of in-plane aromatic ring deformation ( $\delta$ ) and out-of-plane methyl rocking vibration ( $\rho$ ) in 1,9-DMP, out-of-plane methyl rocking vibration $(\rho)$ in 2,4-DMP and a mixture of out-of-plane methyl rocking $(\rho)$ and aromatic C-C stretching vibrations (R) in 3,9-DMP.

Another low intensity band observed at $1296.1 \mathrm{~cm}^{-1}$ in $1,9-\mathrm{DMP} ; 1300.0 \mathrm{~cm}^{-1}$ in $2,4-$ DMP; $1296.0 \mathrm{~cm}^{-1}$ in 3,9-DMP is correlated with the force field fitted frequencies at 1295.2 $\mathrm{cm}^{-1}$ in 1,9-DMP, $1298.6 \mathrm{~cm}^{-1}$ in 2,4-DMP, and $1296.6 \mathrm{~cm}^{-1}$ in $3,9-$ DMP. This band is assigned to aromatic $\mathrm{C}-\mathrm{C}$ stretching ( R ) vibration in 1,9- and 2,4-DMP and aromatic $\mathrm{C}-\mathrm{H}$ inplane bending $(\beta)$ vibration in 3,9-DMP. A low intensity band found at 1213.0, 1217.4, and $1215.2 \mathrm{~cm}^{-1}$ for $1,9-, 2,4-$, and 3,9-DMP, respectively, is assigned to aromatic C-C stretching vibration (R) in 1,9- and 3,9-DMP and aromatic C-H in-plane bending vibration ( $\beta$ ) in 2,4DMP by comparing with the force field fitted frequency at $1213.4,1218.2$, and $1215.9 \mathrm{~cm}^{-1}$ for 1,9-, 2,4-, and 3,9-DMP, respectively. The calculated anharmonic frequencies deviates by about 15 and $10 \mathrm{~cm}^{-1}$ with the $6-31 \mathrm{G}^{*}$ and $6-311 \mathrm{G}^{* *}$ basis sets, respectively (see Tables 5.4 a and 5.5 a ). On the other hand, the force field fitted frequencies match well within $2 \mathrm{~cm}^{-1}$ with the observed frequencies in this region.

### 5.4.4 Spectral region $500-1200 \mathrm{~cm}^{-1}$

Bands observed in this region belong to both the $\mathrm{A}^{\prime}$ and $\mathrm{A}^{\prime \prime}$ irreducible representations. The band observed at $1185.0 \mathrm{~cm}^{-1}$ in 3,9-DMP is assigned to a mixture of aromatic-methyl CC stretching ( $\mathrm{R}^{\prime}$ ) and aromatic C-C stretching (R) vibrations by comparing with the force field fitted frequency at $1184.9 \mathrm{~cm}^{-1}$ and DFT predicted anharmonic frequency at $1183.8 \mathrm{~cm}^{-1}$. This band is of low intensity and is not observed in the rest of the isomers of DMP.


Figure 5.4. Expanded gas phase IR spectra of 1,9-, 2,4- and 3,9-DMPs from 500 to $1200 \mathrm{~cm}^{-1}$ at $0.5 \mathrm{~cm}^{-1}$ resolution.

A low intensity band observed at $1170.6 \mathrm{~cm}^{-1}$ in 2,4-DMP and $1166.5 \mathrm{~cm}^{-1}$ in $3,9-$ DMP corresponds to aromatic $\mathrm{C}-\mathrm{H}$ in-plane bending vibration ( $\beta$ ) by comparing with the scaled force fitted frequency at $1169.8 \mathrm{~cm}^{-1}$ in 2,4-DMP and $1167.0 \mathrm{~cm}^{-1}$ in 1,9-DMP, respectively.

The next band observed at $1152.7 \mathrm{~cm}^{-1}$ in 1,9-DMP at $1148.6 \mathrm{~cm}^{-1}$ in 2,4-DMP, and at $1150.0 \mathrm{~cm}^{-1}$ in $3,9-$ DMP is of low intensity and corresponds to the force field fitted frequencies at $1151.7 \mathrm{~cm}^{-1}$ in 1,9-DMP, $1150.3 \mathrm{~cm}^{-1}$ in 2,4-DMP and $1146.2 \mathrm{~cm}^{-1}$ in 3,9-DMP, respectively. It is assigned to the aromatic $\mathrm{C}-\mathrm{C}$ stretching vibration ( R ) in $1,9-\mathrm{DMP}$, the aromatic C-H in-plane bending vibrations ( $\beta$ ) in 2,4-DMP and a mixture of aromatic methyl CC stretching ( $\mathrm{R}^{\prime}$ ) and aromatic C-H in-plane-bending vibration ( $\beta$ ) in 3,9-DMP. Another weak band observed at $1036.4 \mathrm{~cm}^{-1}$ in 1,9-DMP, $1053.2 \mathrm{~cm}^{-1}$ in 2,4-DMP and $1040.4 \mathrm{~cm}^{-1}$ in $3,9-$ DMP is correlated with the scaled force fitted frequency at $1036.5 \mathrm{~cm}^{-1}$ in $1,9-\mathrm{DMP}, 1053.9$ $\mathrm{cm}^{-1}$ in 2,4-DMP and $1040.8 \mathrm{~cm}^{-1}$ in 3,9-DMP, respectively. This band is assigned as an aromatic C - C stretching vibration in $1,9-$ and $2,4-\mathrm{DMP}$ and a mixture of aromatic $\mathrm{C}-\mathrm{C}$ stretching $(\mathrm{R})$ and aromatic ring deformation vibrations ( $\delta$ ) in 3,9-DMP.

The next one set of low intensity band observed at $995.3,996.4$ and $999.6 \mathrm{~cm}^{-1}$ for $1,9-$, 2,4- and 3,9-DMP, respectively, is assigned to methyl $\mathrm{C}-\mathrm{H}$ symmetric deformation $\operatorname{vibration}\left(\delta_{\mathrm{a}}\right)$ for 1,9 - and $3,9-$ DMP whereas in 2,4 -DMP it is assigned to an aromatic C-H inplane bending vibration $(\beta)$. The respective scaled force field fitted frequency is $993.6,995.1$ and $999.4 \mathrm{~cm}^{-1}$ in 1,9-, 2,4- and 3,9-DMP. This band belongs to $\mathrm{A}^{\prime}$ irreducible representation.

A band of low intensity observed at $885.3 \mathrm{~cm}^{-1}$ in 2,4-DMP is assigned to a mixture of methyl rocking $(\rho)$ and aromatic C-H out-of-plane $(\gamma)$ vibration by comparing with the scaled force field fitted frequency at $885.3 \mathrm{~cm}^{-1}$. A moderately intense band observed at $871.4 \mathrm{~cm}^{-1}$ in $1,9-$ DMP is assigned to aromatic C-H in-plane bending vibration $(\beta)$. On the other hand, in 2,4- and 3,9-DMP this band appears as a doublet, at 864.2 and $855.0 \mathrm{~cm}^{-1}$ and 879.1 and 871.7 $\mathrm{cm}^{-1}$, respectively, due to a mixture of local coordinate vibrations of aromatic C-H out-ofplane $(\gamma)$ and methyl rocking $(\rho)$. A band observed at $803.5 \mathrm{~cm}^{-1}$ in $1,9-\mathrm{DMP}, 806.4 \mathrm{~cm}^{-1}$ in

2,4-DMP and $801.8 \mathrm{~cm}^{-1}$ in 3,9-DMP corresponds to the force field fitted frequencies at 801.9 $\mathrm{cm}^{-1}$ in 1,9-DMP, $808.5 \mathrm{~cm}^{-1}$ in 2,4-DMP and $801.7 \mathrm{~cm}^{-1}$ for $3,9-\mathrm{DMP}$. This band is of moderate intensity and is assigned to the aromatic C-H out-of-plane bending vibration in 1,9DMP and a mixture of local coordinate vibrations of aromatic-methyl C-C stretching (R) and aromatic C-H out-plane-bending $(\gamma)$ in 2,4- and 3,9-DMP. A highly intense band observed at $748.3 / 746.0 \mathrm{~cm}^{-1}$ in 1,9-DMP, $742.7 \mathrm{~cm}^{-1}$ in 2,4-DMP and $753.9 \mathrm{~cm}^{-1}$ in $3,9-$ DMP corresponds to the force field fitted band at $749.0 / 746.7 \mathrm{~cm}^{-1}$ in 1,9-DMP, $741.4 \mathrm{~cm}^{-1}$ in 2,4-DMP and $753.4 \mathrm{~cm}^{-1}$ in 3,9-DMP, respectively, which is assigned to the aromatic C-H out-of-plane bending vibration $(\gamma)$. A band observed at $708.7 \mathrm{~cm}^{-1}$ in 2,4-DMP and at $723.6 \mathrm{~cm}^{-1}$ in $3,9-$ DMP is of low intensity and match well with the force field fitted frequency at $708.0 \mathrm{~cm}^{-1}$ in 2,4-DMP and $724.1 \mathrm{~cm}^{-1}$ in 3,9-DMP, respectively. This band is assigned to a mixture of local coordinate vibrations of torsion around $\mathrm{C}-\mathrm{C}$ bond $(\tau)$ and an aromatic $\mathrm{C}-\mathrm{H}$ out-of-plane bending $(\gamma)$.

Next a low intensity band observed at $698.5 \mathrm{~cm}^{-1}$ in $1,9-\mathrm{DMP}, 688.7 \mathrm{~cm}^{-1}$ in 2,4-DMP, and $629.1 \mathrm{~cm}^{-1}$ in 3,9-DMP is correlated with the force field fitted frequency at $697.8 \mathrm{~cm}^{-1}$ in 1,9-DMP, $688.1 \mathrm{~cm}^{-1}$ in 2,4-DMP, and $629.2 \mathrm{~cm}^{-1}$ in 3,9-DMP, respectively. This band is assigned to in-plane aromatic ring deformation vibration ( $\delta$ ). A band observed in the lower frequency region such as $603.2 \mathrm{~cm}^{-1}$ in 2,4-DMP and $602.1 \mathrm{~cm}^{-1}$ in $3,9-\mathrm{DMP}$ is assigned to a mixture of torsion around $\mathrm{C}-\mathrm{C}$ bond $(\tau)$ and aromatic $\mathrm{C}-\mathrm{H}$ out-of-plane bending $(\gamma)$ vibration. In this region the fundamental anharmonic frequencies calculated with $6-311 \mathrm{G}^{* *}$ basis set deviate by about $10 \mathrm{~cm}^{-1}$ from the observed ones whereas force field fitted frequencies match within $3 \mathrm{~cm}^{-1}$.

Table 5.7: Comparison of observed aromatic C-H out-of-plane bending, methyl C-H symmetric $^{\text {a }}$ and asymmetric ${ }^{\text {b }}$ stretching and aromatic $\mathrm{C}-\mathrm{H}$ stretching vibrations in DMPs.

| Mode of vibration | 1,9-DMP | 2,4-DMP | 3,9-DMP |
| :--- | :---: | :---: | :---: |
| Aromatic C-H out-of-plane | $748.3^{(1.000)}$ | $742.7(1.000)$ | $754.0(1.000)$ |
| Methyl C-H stretching | $2875.3^{\mathrm{a}}(0.277)$ | $2882.3^{\mathrm{a}}(0.397)$ | $2875.0^{\mathrm{a}}(0.310)$ |
|  | $2905.0^{\mathrm{b}}(0.067)$ | $2930.8^{\mathrm{b}}(0.639)$ | $2908.2^{\mathrm{b}}(0.125)$ |
|  | $2933.5^{\mathrm{b}}(0.652)$ | $2976.7^{\mathrm{b}}(0.425)$ | $2933.5^{\mathrm{b}}(0.829)$ |
| Aromatic C-H stretching | $3069.7(0.608)$ | $3057.2(0.880)$ | $3085.7(0.307)$ |

a, ${ }^{b}$ methyl C-H symmetric and antisymmetric stretching vibrations, respectively. The band positions are given in $\mathrm{cm}^{-1}$ and the intensities in $\mathrm{km} \mathrm{mol}^{-1}$.

In Table 5.7, I have listed four characteristic bands of DMPs which may help identification of DMPs in a mixture. The aromatic C-H out-of-plane bending vibration $(\gamma)$ is a highly intense band in the DMPs and is easy to identify around $750 \mathrm{~cm}^{-1}$. The DMPs are clearly distinguishable from this band. A moderately intense band observed in 2885-2870 $\mathrm{cm}^{-}$ ${ }^{1}$ region is assigned to methyl C-H symmetric stretching vibration in DMPs. Another set of methyl C-H antisymmetric stretching bands observed in the spectral range of (2930 - 2980) $\mathrm{cm}^{-1}$ and $(2900-2930) \mathrm{cm}^{-1}$, respectively can also help to identify a particular DMP in a mixture. With respect to this vibration, 2,4-DMP isomer is clearly distinguishable from the other two isomers. DMPs are clearly distinguishable with respect to intense aromatic C-H stretching band observed at $3069.7 \mathrm{~cm}^{-1}$ in 2,4-DMP, at $3057.2 \mathrm{~cm}^{-1}$ in 2,6-DMP, and at $3085.7 \mathrm{~cm}^{-1}$ in 2,7-DMP.

### 5.5 Conclusion

I have reported the gas phase vibrational spectra of $1,9-\mathrm{DMP}, 2,4-\mathrm{DMP}$, and $3,9-\mathrm{DMP}$ at $0.5 \mathrm{~cm}^{-1}$ resolution and assigned the spectra using scaled force field frequencies and their PEDs at the B3LYP/6-31G* and B3LYP/6-311G** levels of theory. The anharmonic frequencies, even calculated with an extended basis set, are less accurate for the assignment of the aromatic $\mathrm{C}-\mathrm{H}$ and methyl $\mathrm{C}-\mathrm{H}$ stretching fundamental vibrations. But the error in fitting is within $3 \mathrm{~cm}^{-1}$ between the observed fundamental vibrations and the scaled force field fitted frequencies emphasizing the need for such calculations in the assignment of the vibrational spectra. I have shown that it is possible to distinguish different isomers of DMPs with the help of the observed intense bands.

### 5.6 References

[1] (a) Das, P.; Arunan, E.; Das, P. K. Vibr. Spectrosc., 2008, 47, 1. (b) Das, P.; Manogoran, S.; Arunan, E.; Das, P. K. J. Phys. Chem. A. 2010, 114, 8351.
[2] Kovalenko, L. J.; Maechling, C. R.; Clemett, S. J.; Philipoz, J. M.; Zare, R. N. Anal. Chem. 1992, 64, 682.
[3] Clemett, S. J.; Maechling, C. R.; Zare, R. N.; Swan, P. D.; Walker, R. M. Science 1993, 262, 721.
[4] Williams, P. T.; Bartle, K. D.; Andrews, G. E. Fuel 1986, 65, 1150.
[5] Nelson, P. F. Fuel 1989, 68, 283.
[6] Zamperlini, G. C. M.; Silva, M. R. S.; Vilegas, W. Chromatographia 1997, 46, 655.
[7] Yu, M. L.; Hites, R. A. Anal. Chem. 1981, 53, 951.
[8] Benner, Jr., B A.; Gordon, G. E.; Wise, S. A. Environ. Sci. Technol.1989, 23, 1269.
[9] Benner, Jr., B. A.; Wise, S. A.; Currie, L. A.; Klouda, G. A.; Klinedinst, D. B.; Zweidinger, R. B.; Stevens, R. K.; Lewis, C. W. Environ. Sci. Technol. 1995, 29, 2382.
[10] Rhead, M. M.; Hardy, S. A. Fuel 2003, 82, 385.
[11] Barras, E.; Tortajada-Genaro, L. A.; Vazquez, M.; Zielinska, B. Atmos. Environ. 2009, 43, 5944.
[12] LaVoie, E. J.; Tulley-Freiler, L.; Bedenko, V.; Hoffman, D. Cancer Res. (a) 1981, 41, 3441; (b) 1982, 42, 4045.
[13] (a) Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R. Astrophys. J. Suppl. Series 1989, 71, 733 (b) Muizon, M. D.; Geballe, T. R.; Bass, F. Astrophys. J. 1986, 306, L105 (c) Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R. Astrophys. J. Supple. Series 1989, 71,

733 (d) Cook, D. J.; Schlemmer, S.; Wagner, D. R.; Steiner, B.; Saykally, R. J. Nature 1996, 380, 270.
[14] Pakdel, H.; Roy, C.; Energy \& Fuels 1991, 5, 427.
[15] (a) Cane, E.; Miani, A.; Palmieri, P.; Tarroni, R.; Trombetti, A. J. Chem. Phys. 1997, 106, 9004 (b) Cane, E.; Miani, A.; Palmieri, P.; Tarroni, R.; Trombetti, A. Spectrochim. Acta Part A 1997, 53, 1839.
[16] Sonnefeld, W. J.; Zoller, W. H.; May, W. E. Anal. Chem.1983, 55, 275.
[17] Calculated using Advanced Chemistry Development (ACD/Labs) software.
[18] Frisch M. J.; et al. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
[19] (a) Reddy, K. V.; Heller, D. F.; Berry, M. J. J. Chem. Phys. 1982, 76, 2814 (b) McKean, D. C. Spectrochim. Acta, 1973, 29A, 1559.

## Chapter-6

## Is there Intramolecular Hydrogen Bonding in Diols?

## An FT-IR and DFT investigation

### 6.1 Introduction

In the introduction chapter, I have discussed that diols exist in a mixture of conformers with various possibility of intermolecular and intramolecular interaction between two hydroxyl groups. Electron density topological analysis has not shown a bond critical point (BCP) and atomic bond path corresponding to intramolecular hydrogen bonding (IHB) in 1,2 EG. ${ }^{\text {1a, b }}$ Further, this has been corroborated by X-ray and neutron diffraction studies in the liquid phase ${ }^{2}$, NMR spectroscopic study in solution ${ }^{3}$, and X-ray study in crystalline form. ${ }^{4}$ From the small red-shift in the $\mathrm{O}-\mathrm{H}$ stretching frequency in the observed mid-IR and their overtone spectrum of $1,2-E G$ in the gas phase, several author concluded that gauche conformers are stabilized by the weak IHB.

An interesting question which arises is that of the extent to which the intramolecular hydrogen bond is found between vicinal hydroxyl groups in 1,2-EG in the gas phase. Infrared red-shifts for the $\mathrm{O}-\mathrm{H}$ stretching vibration, ranging from a few tens of wavenumbers to many hundred wavenumbers, are frequently used by spectroscopists as an evidence for hydrogen bonding. ${ }^{5}$ Combination of theoretical and FT-IR spectroscopic studies of 1,2-EG and 1,4-BD in the gas phase is very limited. A few reports are available in the literature on IR spectroscopic studies of 1,2-EG and 1,4-BD in the gas phase. ${ }^{6-9}$ However, experimentally most of these studies are silent about intensity changes which are expected to be there due to intramolecular interaction or IHB formation.

Therefore, my goal of this work is (1) to record the IR spectra of 1,2 -EG and $1,4-\mathrm{BD}$ at lowest possible concentrations in the gas phase where intermolecular interaction is minimum/does not exist, (2) to calculate the equilibrium population of each conformers of 1,2EG and $1,4-\mathrm{BD}$ at experimental temperatures, (3) to identify the conformers of 1,2-EG and

1,4-BD with the help of the simulated population weighted spectrum and the observed spectrum at a particular temperature, and (4) to answer whether intramolecular hydrogen bond (IHB) exist in diols or not by looking at the red-shifts and intensities of the $\mathrm{O}-\mathrm{H}$ stretching bands in the observed and calculated spectra of $1,2-\mathrm{EG}$ and $1,4-\mathrm{BD}$. This study is a valuable complement to the computational work which is carried out by Klein for the series of diols. ${ }^{10}$

### 6.2 Experimental section

The sample 1,2-ethylene glycol ( $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, LR grade, Ranbaxy) and 1,4-butanediol $\left(\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, 98 \%\right.$, Merck) were used for this study. Details of the experimental set-up have been described in section 2.3 .1 of chapter 2 . The sample was placed in a $\sim 2 \mathrm{ml}$ bulb mounted on gas cell and degassed by several freeze-pump-thaw cycles, and subsequently pumped on the vacuum line for an hour to remove dissolved gases. The vacuum was then closed and the sample vapor was allowed to equilibrate throughout the vacuum line and gas cell at 303 K and 313 K for 1,2-EG and 1,4-BD, respectively. The sample vapor was then diluted with 100 mmHg Ar (buffer gas) in order to minimize intermolecular interaction. All spectra were recorded with spectral resolution of $0.5 \mathrm{~cm}^{-1}$ and averaged over 2048 scans. The spectra were recorded at three different temperatures with the increments of 10 degree Celsius in each stage from the starting temperature to check for existence of intermolecular interaction.

### 6.3 Computational methods

EG is a typical rotor molecule that can exist in one of the $3^{3}=27$ conformation. Some of the structures are degenerate due to symmetry, and the number of unique conformations is 10 . The 10 conformers are shown in Figure 6.1. In case of $1,4-\mathrm{BD}$, there are five intramolecular
rotational degrees of freedom with three of them characterizing the backbone structure (OCCC, CCCC and CCCO) and the remaining two are related to the orientation of the two OH groups (HOCC).


Figure 6.1. The 10 unique conformers of 1,2-EG. The structural degeneracy of each conformer is indicated in parentheses.

The existence of three-fold axis around each of the five dihedral angles can result in a total $3^{5}=$ 243 conformation that complicates the structural studies of $1,4-\mathrm{BD}$. However, symmetry considerations reduce this number to 70 unique conformations. Out of these, 10 conformers were chosen based on the backbone family as shown in Figure 6.2. The conformers are defined according to the following rule: assuming three possible minima per torsion, i.e., trans $\left(180^{\circ} \pm\right.$ $30^{\circ}$ ), + gauche $\left(60^{\circ} \pm 30^{\circ}\right)$, and -gauche $\left(-60^{\circ} \pm 30^{\circ}\right)$ abbreviated by t or $T$, $g$ or $G$ and $g^{\prime}$ or $\mathrm{G}^{\prime}$. Capital letters refer to the backbone structure while the lower case letters refer to the OH orientation and superscript 'prime' indicates the sense of internal rotation corresponding to the negative dihedral angle.

Geometry optimization and frequency calculations on 10 conformers of 1,2-EG and 1,4BD were carried out at the B3LYP/6-311++G** level of theory. We have carried out
frequency calculations on 10 conformers of 1,2-EG and 1,4-BD to ensure that we were dealing with the true minima and not the transition states or saddle points. In case of the $\mathrm{g}^{\prime} \mathrm{Gg}^{\prime}$ conformer, however, one imaginary frequency at $75.1 \mathrm{~cm}^{-1}$ indicated the presence of a firstorder transition point and not a true minimum. This has been pointed by earlier as well. ${ }^{10}$ Graphical examination of the DFT calculated vibrational frequencies using Gauss View 3.0, showed that the single imaginary frequency corresponded to a wagging mode vibration for the pendant OH groups. It has been found that geometry optimization of conformer tGt led to another conformer $g^{\prime} \mathrm{Gg}^{\prime}$. Therefore conformer tGt is not a true minimum at this level of theory and, thus, we don't consider for the population analysis. All computations were carried out using the Gaussian 03 set of programs. ${ }^{11}$


Figure 6.2. Geometries of the most populated conformers of each of the backbone families of 1,4-BDO. The structural degeneracy of each conformer is indicated in parentheses.

I have performed a statistical thermodynamic population analysis with 9 and 10 conformers of 1,2-EG and 1,4-BD, respectively, at experimental temperatures. The purpose of the theoretical population analysis is to predict which conformers contribute to the vibrational
spectra at that temperature. Standard statistical mechanical relationships were used to calculate the free energies and thus the relative populations of the 9 and 10 conformers of 1,2-EG and $1,4-\mathrm{BD}$, respectively, in a manner similar to that performed by Cramer and Howard. ${ }^{8,12}$ In brief, the electronic energy values obtained after geometry optimization were corrected with the zero-point vibrational energy giving total energy at $0 \mathrm{~K}\left(\mathrm{E}_{\mathrm{o}}=\mathrm{E}_{\text {elc }}+\right.$ ZPE $)$. Translational, rotational and vibrational thermal energies were added to this value in order to obtain the enthalpy ( $\mathrm{H}=\mathrm{E}+\mathrm{RT}$, where $\left.\mathrm{E}=\mathrm{E}_{\mathrm{o}}+\mathrm{E}_{\text {vib }}+\mathrm{E}_{\text {rot }}+\mathrm{E}_{\text {trans }}\right)$ at 298 K for $1,2-\mathrm{EG}$ and $1,4-\mathrm{BD}$, respectively. From this quantity and that calculated for the entropy, the Gibbs energy ( $\mathrm{G}=\mathrm{H}$ TS) was determined. The relative weight of each conformer in the gas phase was obtained from Boltzmann distribution based on the Gibbs energy.

### 6.4 Results and discussion

### 6.4.1 Gas phase infrared spectra of 1,2-EG and 1,4-BD

Figure 6.3 shows the experimental IR absorption spectra of 1,2 -EG and $1,4-\mathrm{BD}$ at three different temperatures. Frequencies, FWHM and band areas of the O-H stretching vibrations for $1,2-\mathrm{EG}$ and $1,4-\mathrm{BD}$ as a function of temperature are listed in Table 6.1. We note that in the gas phase both the in/free $\mathrm{O}-\mathrm{H}$ and the out/bound $\mathrm{O}-\mathrm{H}$ stretching frequencies can be seen at experimental temperatures (in and out abbreviation used for two OH groups in 1,2-EG whereas in $1,4-\mathrm{BD}$ it is free and bound). The frequencies of both of these bands are entirely independent of temperature since the red-shift ( $\Delta v$ in $\mathrm{cm}^{-1}$ ) in $\mathrm{O}-\mathrm{H}$ stretching frequency is constant as the temperature is increased (see Figure 6.3 and Table 6.1). This implies that there is no intermolecular interaction. If intermolecular interaction is there the interacted $\mathrm{O}-\mathrm{H}$
stretching frequency as well as intensity expected to be changed as function of temperature because this interaction is a concentration dependent phenomenon.


Figure 6.3. Gas phase IR spectra of 1,2-EG and 1,4-BD at three different temperatures ( $T$ 's). Samples was loaded at the lowest possible temperature, 303 or 313 K for 1,2-EG or 1,4-BD, respectively. Total pressure in the gas cell containing the buffer gas (Ar) and the sample was maintained at $100 \mathbf{~ m m H g}$.

Furthermore, it has been found that the ratio of integrated band area $(\mathrm{R})$ of $\mathrm{O}-\mathrm{H}_{\mathrm{in} / \text { bound }}$ to the $\mathrm{O}-\mathrm{H}_{\text {outfree }}$ at higher temperatures of 323 K and 333 K for 1,2-EG and 1,4-BD, respectively, is slightly smaller than those at lower temperatures 303 K and 313 K . This clearly implies that the conformational equilibrium between bound (hydrogen bonded) and free (non-hydrogen bonded) forms is shifted towards free forms by a small extent at higher temperature. Out of these three sets of spectra, we have chosen one set of spectrum measured at 303 K in 1,2-EG
and 313 K in 1,4-BD for the identification of conformers in the gas phase by comparing with the simulated spectrum and for further discussions.

Table 6.1: Frequency $\left(v, \mathrm{~cm}^{-1}\right)$, $\operatorname{FWHM}\left(v_{1 / 2}, \mathrm{~cm}^{-1}\right)$, integrated band area (S) and ratio of integrated band area ( $\mathrm{R}=\mathrm{S}_{\text {in/bound }} / \mathrm{S}_{\text {out/free }}$ ) of O-H absorption bands for 1,2-EG and 1,4BD observed at three different temperatures.

| System | T/K | $\mathrm{O}-\mathrm{H}_{\text {outfree }}$ |  |  | $\mathrm{O}-\mathrm{H}_{\text {in/bound }}$ |  |  | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $v$ | $v_{1 / 2}$ | S | $v$ | $v_{1 / 2}$ | S |  |
| 1,2-EG | 303 | 3682.8 | 42.3 | 1.947 | 3637.5 | 41.6 | 2.582 | 1.326 |
|  | 313 | 3682.2 | 45.3 | 3.036 | 3637.3 | 41.3 | 3.551 | 1.169 |
|  | 323 | 3681.1 | 41.2 | 3.873 | 3637.7 | 40.3 | 4.959 | 1.280 |
| 1,4-BD* | 313 | 3672.5 | 27.2 | 0.272 | 3606.5 | 8.6 | $8.6 \times 10^{-3}$ | 0.031 |
|  |  |  |  |  | 3548.4 | 24.0 | 0.288 | 1.058 |
|  | 323 | 3672.5 | 27.7 | 0.471 | 3606.1 | 11.3 | $2.2 \times 10^{-2}$ | 0.046 |
|  |  |  |  |  | 3548.7 | 25.0 | 0.475 | 1.008 |
|  | 333 | 3672.5 | 28.6 | 0.859 | 3605.9 | 15.9 | $4.9 \times 10^{-2}$ | 0.057 |
|  |  |  |  |  | 3549.2 | 26.6 | 0.799 | 0.930 |

In 1,2-EG, two $O-H$ stretching vibration is defined as $O-H_{\text {in }}$ and $O-H_{\text {out }}$ whereas in 1,4-BD it is defined as $\mathrm{O}-\mathrm{H}_{\text {bound }}$ and $\mathrm{O}-\mathrm{H}_{\text {free }}$, respectively.
*In 1,4-BD, bands observed at 3606 and $3549 \mathrm{~cm}^{-1}$ for bound O-H group which correspond to two hydrogen bonded conformers (see text for details).

### 6.4.2 Population analysis

The calculated zero point vibrational energy (ZPVE) corrected energies, $\Delta \mathrm{E}_{\mathrm{o}}$ and relative free energies, $\Delta \mathrm{G}$, of the 9 conformers of 1,2-EG and 10 conformers of 1,4-BD are presented
in Tables 6.2 and 6.3, respectively. Each conformer has a contribution to its free energy of $-R T$ $\ln \omega$, where $\omega$ is the structural degeneracy of conformers listed in Figures 6.1 and 6.2 for 1,2EG and 1,4-BD, respectively. The fractional gas-phase equilibrium population $F(M)$ of a conformer M is calculated according to the Boltzmann distribution

$$
F(M)=\frac{\exp \left(-\Delta G_{M}^{0} / R T\right)}{\sum_{i} \exp \left(-\Delta G_{i}^{0} / R T\right)}-------(6.1)
$$

where $i$ spans all the 10 conformers. I have used the $\Delta G^{0}$ values from Tables $6.2-6.3$. In tables, $\mathrm{A}(\%) \equiv 100 \times F(M)$.

Calculated \% population of chosen conformers of 1,2-EG and 1,4-BD are listed in Table 6.2 and 6.3 , respectively. From Table 6.2 it is clear that conformer $\mathrm{tGg}^{\prime}$ in $1,2-\mathrm{EG}$ is most populated one followed by $\mathrm{gGg}^{\prime}$ and $\mathrm{g}^{\prime} \mathrm{Gg}^{\prime}$ conformers at experimental temperature 303 K . Out of three, the conformers tGg ' and gGg ' unlikely to have IHB. The experimental spectra of 1,2EG match well with the simulated spectra (see discussion in next section). It implies that the calculated \% populations at a particular temperature agree well with the experimental populations. On the other hand, in $1,4-\mathrm{BD}$ one hydrogen bonded and three non-hydrogen bonded conformers are most populated at experimental temperature 313 K (see Table 6.3). The gas phase equilibrium population calculated to be 26.8 and $8.0 \%$ for the hydrogen bonded conformer $g^{\prime} G^{\prime} G t$ and $g G^{\prime} G^{\prime} G t$, respectively and for the non-hydrogen bonded conformers tG'TGt, g'TTGt and gGTGt it is $17.8,17.7$ and $14.6 \%$, respectively. The discrepancy between simulated and observed spectra at 313 K has been found in 1,4-BD (see next section) which clearly indicate that calculated \% population of conformers must be different from the experimental one. Therefore, I have varied the calculated $\mathrm{A}(\%)$ to find the experimental $\mathrm{A}(\%)$ which is designated by "fitted A" as shown in Table 6.3. Now experimental population found
to be 17.8, 4.0, 21.8, 20.7, 17.6, and $6.8 \%$ for $g^{\prime} G^{\prime} G t, ~ g G^{\prime} G^{\prime} G t, ~ t G^{\prime} T G t, g^{\prime} T T G t, ~ g G T G t$, and tTTTt, respectively. It implies that in spite of IHB, the hydrogen bonded conformers are less stable than some of the non-hydrogen bonded conformers due to steric hindrance.

Table 6.2: Symmetry point groups, relative energies (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) and equilibrium gas phase populations of the conformers of 1,2-EG at 298 and 303 K at the B3LYP/6311++G** level.

| Conformers <br> of 1,2-EG | Sym <br> $(\omega)$ | $\Delta \mathrm{E}_{0}$ | $\Delta \mathrm{G}$ at <br> 298 K | $\mathrm{A}(\%)$ <br> at 298 K | $\Delta \mathrm{G}$ at <br> 303 K | $\mathrm{A}(\%)$ <br> at 303 K | ${ }^{\mathrm{a}} \mathrm{A}(\%)$ <br> at 298 K |
| :--- | :--- | :--- | :---: | :--- | :---: | :--- | :--- |
| $\mathrm{tGg}^{\prime}$ | $\mathrm{C}_{1}(4)$ | 0.00 | 0.00 | 65.8 | 0.00 | 65.2 | 57.7 |
| $\mathrm{gGg}^{\prime}$ | $\mathrm{C}_{1}(4)$ | 2.34 | 2.83 | 20.9 | 2.84 | 21.1 | 25.7 |
| $\mathrm{~g}^{\prime} \mathrm{Gg}^{\prime}$ | $\mathrm{C}_{2}(2)$ | 3.27 | 5.52 | 7.0 | 5.55 | 7.1 | 10.4 |
| tTt | $\mathrm{C}_{2 \mathrm{~h}}(1)$ | 8.98 | 10.31 | 1.0 | 10.37 | 1.1 | 0.5 |
| tTg | $\mathrm{C}_{1}(4)$ | 10.37 | 8.02 | 2.6 | 8.02 | 2.7 | 2.2 |
| $\mathrm{gTg}^{\prime}$ | $\mathrm{C}_{1}(2)$ | 10.73 | 11.19 | 0.7 | 11.22 | 0.7 | 0.9 |
| $\mathrm{gTg}^{\mathrm{gGg}}$ | $\mathrm{C}_{2}(2)$ | 11.79 | 14.00 | 0.2 | 14.03 | 0.2 | 0.3 |
| tGt | $\mathrm{C}_{2}(2)$ | 10.71 | 11.12 | 0.7 | 11.15 | 0.7 | 0.8 |
| tGg | $\mathrm{C}_{2}(2)$ | --- | --- | --- | --- | --- | 0.8 |

All energies are relative to the most stable conformer tGg'. Each symmetry point group is associated with the conformational degeneracy ( $\omega$ ) given in the parentheses. Gibbs energies at 298 and $303 K$ account for the degeneracy by adding an -RT In( $\omega$ ) term.
${ }^{\text {a }}$ Reported \% populations of conformers were obtained using energy calculated at the CCSD (T)/aug-cc-pVTZ level of theory at 298 K. $^{8}$

[^0]Table 6.3: Symmetry point groups, relative energies (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) and equilibrium gas phase populations of the conformers of $1,4-B D$ at 298 and 313 K at the B3LYP/6311++G** level.

| Conformers of $1,4-\mathrm{BD}$ | Sym <br> ( $\omega$ ) | $\Delta \mathrm{E}_{0}$ | $\Delta \mathrm{G}$ at 298K | $\begin{aligned} & \hline \mathrm{A}(\%) \\ & \text { at 298K } \end{aligned}$ | $\begin{aligned} & \hline \Delta \mathrm{G} \text { at } \\ & 313 \mathrm{~K} \end{aligned}$ | $\begin{aligned} & \hline \text { A (\%) } \\ & \text { at 313K } \end{aligned}$ | $\begin{array}{\|l\|} \hline{ }^{*} \mathrm{~A}(\%) \\ \text { at } 298 \mathrm{~K} \end{array}$ | $\begin{aligned} & \hline \mathrm{A}(\%) \\ & \text { Fitted } \end{aligned}$ | $\Delta \mathrm{G}_{\text {Expt. }}$ <br> at 313 K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{g}^{\prime} \mathrm{GG}^{\prime} \mathrm{Gt}$ | $\mathrm{C}_{1}(4)$ | 0.00 | 0.00 | 27.3 | 0.00 | 26.7 | 30.21 | 17.8 | 0.53 |
| gG'G'Gt | $\mathrm{C}_{1}(4)$ | 3.78 | 3.14 | 7.7 | 3.14 | 8.0 | 17.06 | 4.0 | 4.41 |
| tG'TGt | $\mathrm{C}_{\mathrm{i}}(2)$ | 5.62 | 0.97 | 18.5 | 1.05 | 17.8 | 14.51 | 21.8 | 0.00 |
| g'TTGt | $\mathrm{C}_{1}(4)$ | 7.28 | 1.07 | 17.7 | 1.07 | 17.7 | 15.55 | 20.7 | 0.13 |
| gGTGt | $\mathrm{C}_{1}$ (4) | 7.33 | 1.58 | 14.4 | 1.58 | 14.5 | 7.04 | 17.6 | 0.56 |
| tTTTt | $\mathrm{C}_{2 \mathrm{~h}}(1)$ | 7.39 | 4.92 | 3.7 | 5.09 | 3.7 | 3.54 | 6.8 | 3.03 |
| tGGGt | $\mathrm{C}_{2}(2)$ | 9.15 | 6.90 | 1.7 | 6.98 | 1.8 | 4.38 | 1.8 | 6.49 |
| tTGG't | $\mathrm{C}_{1}$ (4) | 10.79 | 4.18 | 5.0 | 4.18 | 5.3 | 3.45 | 5.4 | 3.63 |
| gTGGt | $\mathrm{C}_{1}$ (4) | 11.51 | 5.75 | 2.7 | 5.75 | 2.9 | 3.32 | 2.9 | 5.24 |
| tTGTt | $\mathrm{C}_{2}(2)$ | 12.00 | 7.90 | 1.1 | 7.99 | 1.2 | 0.94 | 1.2 | 7.54 |

All energies are relative to the most stable conformer g'GGGt. Each symmetry point group is associated with the conformational degeneracy ( $\omega$ ) given in the parentheses. Gibbs energies at 298 and 313 K account for the degeneracy by adding an -RT In( $\omega$ ) term.
*Reported \% populations of conformers were obtained using energy calculated at the MP2/6311G** level of theory at 298 K. ${ }^{13}$ For the fitted $A(\%)$ value see text.
$\Delta G_{\text {Expt. }}$ at 313 K for the chosen 10 conformers were calculated using fitted \% population value and equation 6.1.

### 6.4.3 Identification of conformers

The comparison between the experimental and simulated spectra allows us to verify the presence of the most stable conformers in the gas phase. In order to interpret the experimental
spectra, we considered 9 conformers out of 27 in 1,2-EG and 10 conformers out of 243 conformers in $1,4-\mathrm{BD}$. Then we assumed that population of each conformer corresponds to its weight at the experimental temperature. The calculated intensities of the spectra of each conformer were weighted by its population as described in Tables $6.2-6.3$. The calculated frequencies and their intensities of $\mathrm{O}-\mathrm{H}$ stretching region of 1,2-EG and 1,4-BD are listed in Table 6.4 and 6.5, respectively.


Figure 6.4. Experimental IR absorption spectrum of 1,2-EG in the gas phase at $303 \mathrm{~K}(A)$ and stimulated spectrum of a mixture of stable conformers $t G g^{\prime}, g G g^{\prime}$ and $g^{\prime} G g^{\prime}(B)$. The calculated intensities in the individual spectra of conformers were weighted by the population of the respective conformer as described in Table 6.2. The frequencies of the calculated spectra were scaled by two scaling factors: 0.9578 for $\mathrm{O}-\mathrm{H}$ and methyl $\mathrm{C}-\mathrm{H}$ stretching frequencies and 0.9824 for frequencies below $1600 \mathrm{~cm}^{-1}$. The simulated spectrum (B) was obtained using Gaussian functions centered at the scaled frequencies and with a band width at half-height of $35 \mathrm{~cm}^{-1}$.


Figure 6.5. Experimental IR absorption spectrum of 1,4-BD in the gas phase at $313 K(A)$,
 tGGGt, tTGG t, and gTGGt (B). The calculated intensities in the individual spectra of conformers were weighted by the population of the respective conformer as described in Table 6.3. The frequencies of the calculated spectra were scaled by two scaling factors: 0.9578 for $O-H$ and methyl $C-H$ stretching frequencies and 0.9824 for frequencies below $1600 \mathrm{~cm}^{-1}$. The simulated spectrum (B) was obtained using Gaussian functions centered at the scaled frequencies and with a band width at half-height of $35 \mathbf{~ c m}^{-1}$.

The experimental and simulated spectra of $1,2-\mathrm{EG}$ and $1,4-\mathrm{BD}$ are presented in Figures 6.4 and 6.5 , respectively. The stimulated spectrum (at 303 K ) of $1,2-\mathrm{EG}$, a mixture of most stable conformers: $\mathrm{tGg}^{\prime}, \mathrm{gGg}^{\prime}$ and $\mathrm{g}^{\prime} \mathrm{Gg}^{\prime}$ with a contribution of $65.2,21.1$ and $7.1 \%$, respectively, is shown in Figure 4 (B, upper frame). The simulated spectrum (at 313 K ) of 1,4-

BD derived from a mixture of conformers: $\mathrm{g}^{\prime} \mathrm{GG}^{\prime} \mathrm{Gt}, \mathrm{gG}^{\prime} \mathrm{G}^{\prime} \mathrm{Gt}, \mathrm{tG}$ 'TGt, $\mathrm{g}^{\prime} \mathrm{TTGt}$, gGTGt, tTTTt, tGGGt, tTGG't, and gTGGt with weightages of 26.8, 8.0, 17.8, 17.7, 14.6, 3.8, 1.8, 5.4, and 2.9 \%, respectively, is shown in Figure 6.4 ( $\mathrm{B}^{\prime}$, upper frame). The conformer, tTGTt was not considered for the simulation of calculated spectrum of 1,4-BD since \% population is very low compared to other conformers.

In the $\mathrm{O}-\mathrm{H}$ stretching region, the gas phase IR spectra of the 1,2-EG exhibit two distinct bands, whereas 1,4-BD exhibits three bands. The higher frequency band appears at 3682.8 and $3672.5 \mathrm{~cm}^{-1}$ in $1,2-\mathrm{EG}$ and $1,4-\mathrm{BD}$, respectively. This band corresponds to the stretching vibration of the out/free $\mathrm{O}-\mathrm{H}$ group. This absorption band has a contribution of all the conformers which are used for the simulation of the calculated spectra. The second $\mathrm{O}-\mathrm{H}$ stretching band observed at $3637.5 \mathrm{~cm}^{-1}$ in $1,2-\mathrm{EG}$ is assigned to the $\mathrm{O}-\mathrm{H}_{\text {in }}$ stretching vibration. Only two conformers of 1,2-EG ( $\mathrm{tGg}^{\prime}$ and gGg ) are contributed to this band. In 1,4BD two bands are observed in this region at 3548.4 and $3606.5 \mathrm{~cm}^{-1}$. The appearance of two hydrogen bonded $\mathrm{O}-\mathrm{H}$ stretching bands provide evidence for the existence of two differently hydrogen bonded conformers, namely $g^{\prime} \mathrm{G}^{\prime} \mathrm{Gt}$ and $\mathrm{g}^{\prime} \mathrm{GG}^{\prime} \mathrm{Gt}$, respectively. One low intense band observed at 1754.7 and $1820.4 \mathrm{~cm}^{-1}$ for 1,2 -EG and $1,4-\mathrm{BD}$, respectively, in the experimental spectrum which is not corresponding to any calculated frequency. Therefore, this band is assigned as a non-fundamental band such overtone or combination band. Detail of the bands assignments have not done in this work since we are interested only to address the question whether IHB exist in vicinal diols or not.

The experimental spectra of 1,2-EG match well with the simulated spectra. It implies that the calculated \% populations at particular temperature agree well with experiment. From Figure 6.4 and Table 6.2, it is clear that, in case of $1,2-E G$ most stable conformers, $\mathrm{tGg}^{\prime}$, $\mathrm{gGg}^{\prime}$
and $g^{\prime} \mathrm{Gg}^{\prime}$ that the gauche conformers are present in the gas phase. On the other hand, in 1,4BD comparison of the experimental spectrum with the simulated spectra reveals that although frequencies match well, the relative intensities of the bound $\mathrm{O}-\mathrm{H}$ band observed at 3548.4 and $3606.5 \mathrm{~cm}^{-1}$ do not agree well with the simulated spectra (see Figure 6.5). The discrepancy between the observed and calculated relative intensities in 1,4-BD suggests that lowest energy conformers, $g^{\prime} G^{\prime} G t$ and $\mathrm{gG}^{\prime} \mathrm{G}^{\prime} \mathrm{Gt}$ do not exist with 26.8 and 8.0 \% population in the equilibrium mixture, respectively, rather it is less than that of the calculated population. We then varied the $\%$ population of a few conformers having $\Delta \mathrm{E}_{\mathrm{o}}$ value below $8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ to simulate the spectrum of $1,4-\mathrm{BD}$ in a way to reproduce the experimental spectrum.


Figure 6.6. Enlarged view of the $\mathrm{O}-\mathrm{H}$ stretching regions of observed and simulated spectra of 1,2-EG and 1,4-BD. In 1,4-BD, simulated spectra obtained with the calculated and fitted population is shown by solid line (-) and dash line (----), respectively. See text for the details.

The fitted \% population values found by trial and error are 17.8, 4.0, 21.8, 20.7, 17.6, and 6.8 for $g^{\prime} G^{\prime} G t, g G^{\prime} G^{\prime} G t, t G^{\prime} T G t, g^{\prime} T T G t$, gGTGt, and tTTTt, respectively, as reported in Table
6.3 whereas \% population of the rest of the conformers were not changed. The experimental and simulated spectrum in the $\mathrm{O}-\mathrm{H}$ stretching region of $1,2-\mathrm{EG}$ and $1,4-\mathrm{BD}$ are shown in Figure 6.6.

### 6.4.4 Estimation of the hydrogen bond energy

The peak frequency shift, $\Delta v=\left(v_{\text {outfree }}-v_{\text {in/bound }}\right)$ is commonly used to evaluate the strength of the hydrogen bond and a correlation between this and the enthalpy of the hydrogen bond formation has been reported by several groups. The HB formation enthalpy can be estimated using the empirical equations proposed by Iogansen ${ }^{14}$

$$
\Delta H^{I}=-0.3312(\Delta v-40)^{1 / 2}--------(6.2)
$$

with $\Delta H^{I}$ in kcal mol ${ }^{-1}$ and $\Delta v$ in $\mathrm{cm}^{-1}$. This equation is valid only when $\Delta v \geq 40 \mathrm{~cm}^{-1}$. This empirical relation has found a minimum of $40 \mathrm{~cm}^{-1}$ for a hydrogen bond induced red shift.

The red-shift in $\mathrm{O}-\mathrm{H}$ stretching vibration of $1,2-\mathrm{EG}$ found to be $45.3 \mathrm{~cm}^{-1}$ which is slightly higher than previously reported ${ }^{7}$ value, $33.0 \mathrm{~cm}^{-1}$ whereas calculated red-shifts are found to be 47 and $30 \mathrm{~cm}^{-1}$ for $\mathrm{tGg}^{\prime}$ and gGg conformers, respectively (see Table 6.4). In calculation, some of the conformers showed very small red-shift of $\sim 2 \mathrm{~cm}^{-1}$ in such cases coupled vibrations have been observed between $\mathrm{O}-\mathrm{H}_{\text {in }}$ and $\mathrm{O}-\mathrm{H}_{\text {out }}$ groups (see Table 6.4). In $1,4-\mathrm{BD}$ the red-shift of two bands relative to the $\mathrm{O}-\mathrm{H}_{\text {free }}$ stretching band observed at 3672.5 $\mathrm{cm}^{-1}$ are 124.1 and $66.0 \mathrm{~cm}^{-1}$ for the $\mathrm{g}^{\prime} \mathrm{GG}^{\prime} \mathrm{Gt}$ and $\mathrm{gG}^{\prime} \mathrm{G}^{\prime} \mathrm{Gt}$, respectively. The estimated HB formation enthalpy of the 1,2-EG and 1,4-BD are listed in Tables 6.4 and 6.5, respectively. In 1,2-EG, it is difficult to get HB enthalpy for the individual conformer involved in
intramolecular interaction between two hydroxyl groups from experimental spectrum because bands are not well separated for different conformers.

Table 6.4: Calculated (B3LYP/6-311++G**) O-H stretching frequencies and their intensities (in $\mathrm{km} \mathrm{mol}^{-1}$ ), observed (at 303 K ) O-H stretching frequencies (in $\mathrm{cm}^{-1}$ ) and their band areas (in $\mathrm{cm}^{-1}$ ), red shifts (in $\mathrm{cm}^{-1}$ ) between "in" and "out" $\mathrm{O}-\mathrm{H}$ stretching frequencies, and hydrogen-bond enthalpy in 1,2-EG.

| Conformers of 1,2 -EG | $\mathrm{O}-\mathrm{H}_{\text {in }}$ |  | $\mathrm{O}-\mathrm{H}_{\text {out }}$ |  | shift | $-\Delta \mathrm{H}^{\text {I }}$ | Rel. Int. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Freq. | Int. | Freq. | Int. | $\mathrm{cm}^{-1}$ | kcal mol ${ }^{-1}$ |  |
| tGg' | 3647.8 | 42.43 | 3694.8 | 44.65 | 47.0 | 0.8 | 0.95 |
| gGg' | 3634.6 | 44.77 | 3664.0 | 28.99 | 29.4 |  | 1.54 |
| $\mathrm{g}^{\prime} \mathrm{Gg}^{\prime}$ | 3682.2 | 15.68 | 3684.0 | 56.85 |  |  |  |
| tTt | 3692.8 | 0.00 | 3693.2 | 80.16 |  |  |  |
| tTg | 3672.4 | 26.85 | 3690.8 | 38.17 |  |  |  |
| gTg' | 3670.5 | 58.31 | 3671.9 | 0.00 |  |  |  |
| gTg | 3667.3 | 27.26 | 3668.1 | 24.12 |  |  |  |
| gGg | 3664.5 | 42.40 | 3665.4 | 12.02 |  |  |  |
| tGt | 3682.2 | 15.61 | 3684.0 | 56.76 |  |  |  |
| tGg | 3665.7 | 21.19 | 3686.0 | 35.03 |  |  |  |
| Observed | 3637.5 | 2.228* | 3682.8 | 1.680* | 45.3 | 0.7 | 1.3 |
| Reported ${ }^{\text {a }}$ | 3644.0 |  | 3677.0 |  | 33.3 |  |  |
| Reported ${ }^{\text {b }}$ | 3607.0 |  | 3642.8 |  | 35.6 |  |  |
| Reported ${ }^{\text {c }}$ | 3624.1 |  | 3663.2 |  | 39.1 |  |  |

DFT calculated frequencies are scaled by a factor 0.9578 . ${ }^{a}$ Data taken at $47{ }^{\circ} \mathrm{C}$ from ref ${ }^{7}$; Data

*Observed band area weighted by sum of the \% population corresponds to conformer $\mathbf{t G g}$ ' and gGg'.

Table 6.5: Calculated (B3LYP/6-311++G**) O-H stretching frequencies and their intensities (in $\mathrm{km} \mathrm{mol}^{-1}$ ), observed (at 313 K ) $\mathrm{O}-\mathrm{H}$ stretching frequencies (in $\mathrm{cm}^{-1}$ ) and their band areas (in $\mathrm{cm}^{-1}$ ), red shifts (in $\mathrm{cm}^{-1}$ ) between "free" and "bound" $\mathrm{O}-\mathrm{H}$ stretching frequencies, and hydrogen-bond enthalpy in 1,4-BD.

| Conformers of $1,4-\mathrm{BDO}$ | $\mathrm{O}-\mathrm{H}_{\text {bound }}$ |  | $\mathrm{O}-\mathrm{H}_{\text {free }}$ |  | Shift | $-\Delta \mathrm{H}^{\text {I }}$ | Rel. Int. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Freq. | Int. | Freq. | Int. | $\mathrm{cm}^{-1}$ | kcal $\mathrm{mol}^{-1}$ |  |
| g'GG'Gt | 3526.7 | 304.68 | 3678.0 | 41.22 | 151.3 | 3.5 | 7.4 |
| gG' $\mathrm{G}^{\prime} \mathrm{Gt}$ | 3603.1 | 125.31 | 3686.0 | 39.70 | 82.9 | 2.1 | 1.5 |
| tG'TGt | 3685.9 | 64.38 | 3686.0 | 0.00 |  |  |  |
| gGTGt | 3662.8 | 23.05 | 3686.4 | 33.66 |  |  |  |
| g'TTGt | 3666.8 | 22.85 | 3685.6 | 35.51 |  |  |  |
| tTGG't | 3681.7 | 31.51 | 3685.4 | 28.77 |  |  |  |
| tTTTt | 3681.6 | 62.47 | 3681.7 | 0.000 |  |  |  |
| tGGGt | 3685.9 | 37.38 | 3686.0 | 26.13 |  |  |  |
| gTGGt | 3665.3 | 23.26 | 3685.5 | 35.59 |  |  |  |
| tTGTt | 3682.3 | 40.10 | 3682.5 | 22.31 |  |  |  |
| Observed | 3548.4 | 0.288 | 3672.5 | 0.048* | 124.1 | 3.0 | 6.0 |
|  | 3606.5 | $8.6 \times 10^{-3}$ |  | 0.011* | 66.0 | 1.7 | 0. 8 |
| Reported ${ }^{\text {a }}$ |  |  |  |  | 110.0 | 2.7 |  |
| Reported ${ }^{\text {b }}$ | 3474.1 |  | 3634.3 |  | 160.2 | 3.6 |  |

DFT calculated frequencies in the O-H stretching region are scaled by a factor 0.9578. ${ }^{\text {a }}$ Red-shift value taken from reff; ${ }^{\text {b }}$ Data taken from IR spectroscopic study in $\mathrm{CCl}_{4}$. ${ }^{17}$
*Band observed at $3672.5 \mathrm{~cm}^{-1}$ in the experimental spectrum corresponds to the free $\mathrm{O}-\mathrm{H}$ group and its band area has contribution from all the conformers chosen for the calculations. Therefore, observed band area for the hydrogen bonded conformers is obtained by weighted their \% population of the total band area at $3672.5 \mathrm{~cm}^{-1}$.

On the other hand, in $1,4-\mathrm{BD}$, we could calculate the HB enthalpy for two intramolecularly hydrogen bonded conformers since bands are well separated in the experimental spectrum. The HB enthalpy value is more in $1,4-\mathrm{BD}$ compared to that in 1,2 -EG as seen in Tables 6.4 and 6.5 , respectively. In 1,4-BD, a seven member ring results from the formation of the IHB and energy of formation is maximum whereas in 1,2-EG IHB formation leads to a five member ring whose strain energies nearly cancels out the HB stabilization energy. Another contribution to the enhanced stabilization of the $1,4-\mathrm{BD}$ lies in the possibility of closer approach of the two hydroxyl groups to each other, which is, in turn, reflected in the large $\mathrm{O}-\mathrm{H}$ stretching frequency shift. From these data we conclude that the intramolecular interaction or intramolecular hydrogen bonding is a major stabilizing factor in the lowest energy conformers for $1,4-B D$.

### 6.4.5 Nature of hydrogen bond in diols

In general, forming of IHB increases the $\mathrm{O}-\mathrm{H}$ equilibrium distance and thus the magnitude of the electrical transition dipole moment of the $\mathrm{O}-\mathrm{H}$ stretching mode, which is the reason for the intensity enhancement. In Table 6.6, the values calculated for structural characteristics related with the hydrogen-bonding manifestations for the lowest energy conformers of 1,2-EG and 1,4-BD are displayed.

In $1,4-\mathrm{BD}$, the formation of an intramolecular hydrogen-bonded conformation involves the distortion of the carbon chain to a gauche arrangement which helps to bring two hydroxyl groups closer to each other. The $\mathrm{O}-\mathrm{H}$ bond length and H -bonding parameters listed in Table 6.6 clearly show that the calculated shortest HB donor-acceptor distance (H…O), (1.9 - $2.0 \AA$ ) found in $1,4-\mathrm{BD}$ is within the criteria defined for the existence of an intramolecular hydrogen
bond proposed by Desiraju and Steiner. ${ }^{18}$ However, the deviation of $\mathrm{O}_{\mathrm{A}} \cdots \mathrm{H}-\mathrm{O}_{\mathrm{D}}$ angle from the most favorable geometry $\left(180^{\circ}\right)$ turns this bond into a weak one. In 1,2-EG, the calculated $\mathrm{O}_{\mathrm{A}} \cdots \mathrm{H}$ bond distance and $\mathrm{O}_{\mathrm{A}} \cdots \mathrm{H}-\mathrm{O}_{\mathrm{D}}$ bond angle lie around $2.4 \AA$ and $106-110^{\circ}$, respectively, which is below the criteria of IHB. Furthermore, the $\mathrm{O}_{\mathrm{A}} \cdots \mathrm{H}$ distance is less than the sum of van der Walls radii of O and $\mathrm{H}(2.6 \AA)$, it is more than the sum of 'hydrogen bond radii' (2.0 $\AA$ ), appropriate for $\mathrm{OH}(0.7 \AA)$ and $\mathrm{O}(1.3 \AA)$, as proposed by Raghavendra et al. in 2006. ${ }^{19}$

Table 6.6: Calculated (B3LYP/6-311++G**) hydrogen bond parameters of lowest energy conformers in 1,2-EG and 1,4-BD.

| Compound | Conformer | Hydrogen bonding parameters $^{\mathrm{a}}$ |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  | $\mathrm{O}_{\mathrm{A}} \cdots \mathrm{H} / \AA$ | $\mathrm{O}_{\mathrm{D}}-\mathrm{H} / \AA$ | $\angle \mathrm{O}_{\mathrm{A}} \cdots \mathrm{H}-\mathrm{O}_{\mathrm{D}}$ |
| $1,2-\mathrm{EG}$ | $\mathrm{tGg}^{\prime}$ | 2.395 | 0.964 | 106.4 |
|  | $\mathrm{gGg}^{\prime}$ | 2.397 | 0.965 | 109.6 |
|  | tTt |  | 0.961 |  |
| $1,4-\mathrm{BDO}$ | $\mathrm{g}^{\prime} \mathrm{GG}^{\prime} \mathrm{Gt}$ | 1.874 | 0.970 | 155.9 |
|  | $\mathrm{gG}^{\prime} \mathrm{G}^{\prime} \mathrm{Gt}$ | 2.063 | 0.967 | 141.6 |
|  | tTTTt |  | 0.961 |  |

${ }^{a} O_{D}=$ donor oxygen: atom number 4 in 1,2-EG (see Figure 1) and 6 in 1,4-BD (see Figure 2); $O_{A}$ = acceptor oxygen: atom number 3 in 1,2-EG (see Figure 1) and 5 in 1,4-BD (see Figure 2). One of the non-hydrogen bonded conformers, tTt in 1,2-EG and tTTTt in 1,4-BD listed in the table for the comparison of $O_{D}-H$ distance with hydrogen bonded conformers.

In $1,2-E G$, the small red-shift is found to be $45.3 \mathrm{~cm}^{-1}$ (see Table 4). This small red-shift could be due to intramolecular interactions between two hydroxyl groups. It has been predicted by several authors. However, the QCISD/6-311++G** and the B3LYP/6-311G** charge densities of the $\mathrm{tGg}^{\prime}$ and $\mathrm{gGg}{ }^{\prime}$ conformers of 1,2-EG do not present any bond path connecting
$\mathrm{H}_{6}$ and $\mathrm{O}_{3}$ (see Figure 6.1) as suggested by Mandado et al. ${ }^{20}$ This confirms the conclusion obtained by Klein with several DFT levels of calculation that IHB is absent in this compound. ${ }^{10}$

The findings that the crystal structure for 1,2-EG preserves the gauche configuration in the crystalline state and a small red-shift of the bound $\mathrm{O}-\mathrm{H}$ stretching frequencies without changing intensity for intramolecular hydrogen bonding raise its an important question: What is the driving force that maintains the gauche configuration in $1,2-\mathrm{EG}$ in the gas phase if it is not primarily the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interaction as frequently assumed in the literature? As it has been pointed out by numbers of authors, hyper-conjugative effects such as $\mathrm{n}_{0}\left(\mathrm{O}_{\mathrm{A}}-\mathrm{LP}\right.$ electrons $) \Rightarrow$ $\sigma[\mathrm{C}-\mathrm{H}]^{*}$ and $\sigma[\mathrm{C}-\mathrm{H}] \Rightarrow \sigma[\mathrm{O}-\mathrm{H}]^{*}$ are energetically more significant than $\mathrm{n}_{\mathrm{o}} \Rightarrow \sigma\left[\mathrm{O}_{\mathrm{D}}-\mathrm{H}\right]^{*}$ interaction. ${ }^{4,10,22,23}$ This hyper-conjugation effect is likely to be present in molecules containing neighboring $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ moieties, particularly if the $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ bonds are in trans or in nearly trans configurations which is found in $\mathrm{tGg}^{\prime}$ and $\mathrm{gGg}^{\prime}$ conformers of 1,2-EG. The dihedral angle $\left(\mathrm{H}_{6}-\mathrm{O}_{4}-\mathrm{C}_{2}-\mathrm{H}_{9}\right.$, see Figure 6.1) is calculated to be $-173.6^{\circ}$ and $165.9^{\circ}$ in $\mathrm{tGg}^{\prime}$ and $g G g^{\prime}$, respectively.

The frequency change occurs as a result of the $\mathrm{O} \cdots \mathrm{H}-\mathrm{O}$ interaction, obscuring hyperconjugative effects on both $v_{\text {outffree }}$ and $v_{\text {in/bound. }}{ }^{21}$ Using hyper-conjugation method, Howard et al. reported experimental $\Delta v$ red-shifts for the two most stable conformers of 1,2-EG ( tGg ' and gGg ) of 285 and $173 \mathrm{~cm}^{-1}$, respectively, in the fifth overtone vapor-phase spectra ( $\Delta \mathrm{v}_{\mathrm{OH}}=5$ ). ${ }^{8}$ These authors also pointed out that the red-shift within a conformer is not necessarily a measure of hydrogen bonding since the stretching frequency for the 'free' gauche $\mathrm{O}-\mathrm{H}$ in the gGg ' is red-shifted by $208 \mathrm{~cm}^{-1}$ at $\Delta \mathrm{v}_{\mathrm{OH}}=5$ compared to the 'free' trans $\mathrm{O}-\mathrm{H}$ group in the $\mathrm{tGg}^{\prime}$
conformer. Rotation of an open-chain 1,2-diol trans $\mathrm{O}-\mathrm{H}$ group to either the $\mathrm{g}+\mathrm{and}^{-}$(also known as $g$ and $g^{\prime}$ ) configuration with or without the possibility of interaction with the second O-H group, results in a 'gauche' red-shift of up to $30-40 \mathrm{~cm}^{-1}$ for the $\mathrm{O}-\mathrm{H}$ fundamental. This red-shift is paralleled by an increase in the $\sigma^{*}[\mathrm{O}-\mathrm{H}]$ occupancy. Even larger trans $\Rightarrow$ gauche effect found in strained cyclic diols and it gives red-shift of $50 \mathrm{~cm}^{-1}$. This non-hydrogen bond related red-shifts result from $\mathrm{O}-\mathrm{H}$ bond weakening due to $\sigma \Rightarrow \sigma^{*}$ interactions involving $\mathrm{C}-\mathrm{C}$ and C-H bond rather than that from interactions with the oxygen lone-pair electrons. ${ }^{5}$ As Klein pointed out that increasing the $\sigma^{*}$ antibonding orbital occupancy in vicinal diols weakens the $\mathrm{O}-\mathrm{H}$ bond, reducing the stretching force constant and producing a red-shift associated with bond lengthening. ${ }^{22}$

The analysis of the natural bond orbitals demonstrates the HB acceptor oxygen LP electrons to be of the highest energy and lowest energy occupancy for the LP in 1,4-BD with delocalization into the $\mathrm{O}-\mathrm{H}_{\mathrm{D}}$ antibonding orbital. ${ }^{14,22}$ Reduction in occupancy for the oxygen LP associated with the increase in occupancy for the $\mathrm{O}-\mathrm{H}$ antibonding orbital is consistent with the energy stabilization. Increasing stability of the interaction between LP and the $\mathrm{O}-\mathrm{H}$ antibond is associated with increased delocalization and increased occupancy of the $\mathrm{O}-\mathrm{H}$ antibond. The percentage of s-character of the interacting LP electrons increases markedly in line with the $\mathrm{n}_{\mathrm{o}} \Rightarrow \sigma^{*}$ delocalization. Based on these results, the IHB in 1,4-BD with seven member ring is the most stable.

In $1,2-\mathrm{EG}$, the intensity between $\mathrm{O}-\mathrm{H}_{\text {in }}$ and $\mathrm{O}-\mathrm{H}_{\text {out }}$ is enhanced by a factor of 1.3 for a mixture of conformers (see Table 6.4) in the observed spectrum (see Figure 6.6). From the Table 6.4 we note that the most stable hydrogen bonded conformers of $1,2-\mathrm{EG}, \mathrm{tGg}$ has not
shown the intensity enhancement in the $\mathrm{O}-\mathrm{H}_{\mathrm{in}}$ with respect to $\mathrm{O}-\mathrm{H}_{\text {out }}$ stretching vibrations. Although, the second most populated conformer has shown the intensity enhancement by a factor of 1.5 however red-shift value is very small, $\sim 30 \mathrm{~cm}^{-1}$ which is below the criteria of $\geq 40$ $\mathrm{cm}^{-1}$ in order to have hydrogen bond (see equation 6.2). It clearly indicates that intramolecular hydrogen bond interaction does not exist. On the other hand in $1,4-\mathrm{BD}$, experimentally, we found that there is a red-shift more than $65 \mathrm{~cm}^{-1}$ as well as significant intensity enhancement have been observed between $\mathrm{O}-\mathrm{H}_{\text {bound }}$ and $\mathrm{O}-\mathrm{H}_{\text {free }}$ stretching vibration in the intramolecularly hydrogen bonded conformers (see Figure 6.6) which is consistent with the calculations (see Table 6.5).

### 6.5 Conclusions

In this work, I have collected the gas phase IR spectra of $1,2-\mathrm{EG}$ and $1,4-\mathrm{BD}$ at three different temperatures. The conformers of 1,2-EG and 1,4-BD have been investigated by means of DFT calculation and experimental methods. The infrared spectra of 1,2-EG and 1,4BD in the gas phase are found to show a good agreement with a population weighted calculated spectrum. Comparison between the observed and calculated spectra of diols reveals the existence of more than one conformers weighted by the Boltzmann factor in the gas phase. The small red-shift in $\mathrm{O}-\mathrm{H}$ band position and no significant intensity enhancement compared to the 'out' $\mathrm{O}-\mathrm{H}$ peak do not support the idea of an intramolecular hydrogen bonding in 1, 2EG. On the other hand, in $1,4-\mathrm{BD}$, there is a $124.1 \mathrm{~cm}^{-1}$ shift in the $\mathrm{O}-\mathrm{H}$ stretching frequency and intensity enhancement by a factor of 6.0 (Expt.) for the 'bonded' O-H compared to the 'free’ $\mathrm{O}-\mathrm{H}$ which strongly support the existence of an intramolecular hydrogen bonding in the compound.

### 6.7 References

[1] (a) Klein, R. A. J. Comp. Chem. 2002, 23, 585 (b) Klein, R. A. J. Am. Chem. Soc. 2002, 124, 13931.
[2] Bako, I.; Grosz, T.; Palinkas, G.; Bellissent-Funel, M. C. J. Chem. Phys. 2003, 118, 3215.
[3] Petterson, K. A.; Stein, R. S.; Drake, M. D.; Roberts, J. D. Magn. Reson. Chem. 2005, 43, 225.
[4] Chopra, D.; Row, T. N. G.; Arunan, E.; Klein, R. A. J. Mol. Struct. 2010, 964, 126.
[5] Klein, R. A. Chem. Phys. Lett. 2006, 429, 633.
[6] Fishman, E.; Chen, T. L. Spectrochim. Acta 1969, 25A, 1231.
[7] Buckley, P.; Giguere, P. A. Canad. J. Chem. 1967, 45, 397.
[8] Howard, D. L.; Jorgensen, P.; Kjaergaard, H. G. J. Am. Chem. Soc. 2005, 127, 17096.
[9] Howard, D. L.; Kjaergaard, H. G. J. Phys. Chem. A 2006, 110, 10245.
[10] Klein, R. A. J. Comp. Chem. 2002, 23, 585.
[11] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;

Chapter 6: Infrared spectra of Diols
Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B. ; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01; Gaussian Inc.: Pittsburg, PA, 2003.
[12] Cramer, C. J.; Truhlar, D. J. Am. Chem. Soc. 1994, 116, 3892.
[13] Jesus, A. J. L.; Rosado, M. T. S.; Reva, I.; Fausto, R.; Eusebio, M. E.; Redinha, J. S. J. Phys. Chem. A 2008, 112, 4669.
[14] Iogansen, A. V. Spectrochim. Acta Part A 1999, 55, 1585.
[15] Bangal, P. R.; Chakravorti, S. J. Phys. Chem. A 1999, 103, 8585.
[16] Park, C. G.; Tasumi, M. J. Phys. Chem. 1991, 95, 2757.
[17] Jesus, A. J. L.; Rosado, M. T. S.; Leitao, M. L. P.; Redinha, J. S. J. Phys. Chem. A 2003, 107, 3891.
[18] (a) Desiraju, G. R.; Steinner, T. The Weak Hydrogen Bond In Structural Chemistry and Biology; Oxford Univeristy Press: New York, 1999 (b) Steiner, T. Angew. Chem., Int. Ed. 2002, 41, 48
[19] Raghavendra, B.; Mandal, P. K.; Arunan, E. Phys. Chem. Chem. Phys. 2006, 8, 5276.
[20] Mandado, M.; Grana, A. M.; Mosquera, R. A. Phys. Chem. Chem. Phys. 2004, 6, 4391.
[21] Ablabugin, I. V.; Manoharan, M.; Peabody, S.; Weinhold, F. J. Am. Chem. Soc. 2003, 125, 5973.
[22] Klein, R. A. J. Comp. Chem. 2003, 24, 1120.
[23] Bader, R. F. W. J. Phys. Chem. A 1998, 102, 7314.

## Chapter-7

Concluding remarks and future directions

## Chapter 7: Concluding remarks and future direction

### 7.1 Concluding remarks

This work has broadly fulfilled the following objectives: First, it has provided an experimental verification of low concentration (up-to ppm level) IR spectroscopic measurement which is essential for the detection of atmospherically and astronomically important PAHs. The low concentration measurement is essential even for the detection of intramolecular hydrogen bonded conformers in a mixture in the gas phase.

Second, this work has established the potential of the FT-IR spectroscopic technique combined with scaled force field calculations for the identification of different PAHs. We have shown a better agreement between experiment and theory can be achieved by scaling the force fields rather than the frequencies which is a common practice. For assigning the fundamental vibration in aromatic molecules particularly in the aromatic and methyl C-H stretching bands scaled force field methods is absolutely necessary for unambiguous assignment. However, clear identification of Fermi resonances in large molecules such as PAHs is still difficult. It will require selective isotope substitution and careful analysis of the spectra of the substituted compounds.

Third, combined experimental and theoretical IR spectroscopic study on diols evidences that intramolecular hydrogen bonding does not exist in small diols, like 1,2-EG.

### 7.2 Future direction: Photochemistry of PAHs and time-resolved FT-IR

 spectroscopyIn section 7.1, I have discussed about potential of the FT-IR spectroscopic technique for the identification of neutral PAHs in the gas phase. There is another potential application of this technique is the investigation of photochemical reactions of PAHs which is important in
the area of atmospheric photochemistry. IR spectroscopy may be used to identify reaction intermediates in a time resolved manner.


Figure 7.2. Photoionization and some photochemical reactions of PAHs.

Since PAHs cause health hazard it is necessary to destroy them or find some ways to remove them from the atmosphere. There are three effective ways by which PAHs can be removed from the atmosphere: (1) photochemical transformation, (2) photoinduced oxidation (in presence of OH -radicals, $\mathrm{NO}_{3}$ or $\mathrm{O}_{3}$ ) and (3) biological transformation. PAHs can be converted into less toxic materials by any of the above processes.

PAHs have strong UV absorption at $\sim 266 \mathrm{~nm}$ which is present in the solar radiation and many of them are readily photo-oxidized. A few photochemical along with photoionization processes are shown in Figure 7.1. The photochemical degradation and photoinduced oxidation occur mostly in the gas phase in the upper atmosphere and in the aquatic environment. PAHs are expected to be photoionized at low intensity of incident light whereas at higher intensity photodestruction channel opens up. Subsequently, suitable techniques are needed for the identification of products generated in the photoionization or photodestruction

## Chapter 7: Concluding remarks and future direction

of PAHs. The step-scan time-resolved FT-IR spectroscopy is one of the suitable methods to obtain spectral and kinetic information on such chemical reactions. In the near future it will be desirable to couple an UV laser with a step-scan FT-IR spectrometer to study the photochemical reactions of PAHs and to characterize the short lived radical or radical-cation of PAHs in the gas phase in laboratory. The time resolved FT-IR spectroscopy of the PAHs followed by their photochemical degradation under UV irradiation may lead us develop possible scavenging schemes for their removal.

## Appendix

## Symbolic Force constant matrix, unscaled and scaled Force constants in terms

of nonredundant local coordinates

TABLE I1: A symbolic Force constant matrix of 2,4-DMQ

Symbolic F matrix $\mathrm{nf}=1235$ ndim 63


| 1 | 1 | 62 | 63 | 65 | 68 | 72 | 77 | 83 | 90 | 98 | 107 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 62 | 2 | 64 | 66 | 69 | 73 | 78 | 84 | 91 | 99 | 108 |
| 3 | 63 | 64 | 3 | 67 | 70 | 74 | 79 | 85 | 92 | 100 | 109 |
| 4 | 65 | 66 | 67 | 4 | 71 | 75 | 80 | 86 | 93 | 101 | 110 |
| 5 | 68 | 69 | 70 | 71 | 5 | 76 | 81 | 87 | 94 | 102 | 111 |
| 6 | 72 | 73 | 74 | 75 | 76 | 6 | 82 | 88 | 95 | 103 | 112 |
| 7 | 77 | 78 | 79 | 80 | 81 | 82 | 7 | 89 | 96 | 104 | 113 |
| 8 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 8 | 97 | 105 | 114 |
| 9 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 9 | 106 | 115 |
| 10 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 10 | 116 |
| 11 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 11 |
| 12 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 |
| 13 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 |
| 14 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |
| 15 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 |
| 16 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 |
| 17 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 |
| 18 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 |
| 19 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 |
| 20 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 |
| 21 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 |
| 22 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 |
| 23 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 |
| 24 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 |
| 25 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 |
| 26 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 |
| 27 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 |
| 28 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 |
| 29 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 |
| 30 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 | 426 |
| 31 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 | 452 | 453 |
| 32 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 | 480 | 481 |
| 33 | 500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 |
| 34 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 |
| 35 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 |
| 36 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 | 601 | 602 | 603 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 171 |  |  |  |  |  |  |


| 37 | 626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 38 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 |
| 39 | 695 | 696 | 697 | 698 | 699 | 700 | 701 | 702 | 703 | 704 | 705 |
| 40 | 733 | 734 | 735 | 736 | 737 | 738 | 739 | 740 | 741 | 742 | 743 |
| 41 | 772 | 773 | 774 | 775 | 776 | 777 | 778 | 779 | 780 | 781 | 782 |
| 42 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 43 | 814 | 815 | 816 | 817 | 818 | 819 | 820 | 821 | 822 | 823 | 824 |
| 44 | 853 | 854 | 855 | 856 | 857 | 858 | 859 | 860 | 861 | 862 | 863 |
| 45 | 896 | 897 | 898 | 899 | 900 | 901 | 902 | 903 | 904 | 905 | 906 |
| 46 | 939 | 940 | 941 | 942 | 943 | 944 | 945 | 946 | 947 | 948 | 949 |
| 47 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 49 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 51 | 0 | 0 | 0 | 0 | 0 | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 |
| 52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 55 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 56 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 57 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 58 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 59 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 61 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 62 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 63 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| 12 | 12 | 139 | 151 | 164 | 178 | 193 | 209 | 226 | 226 | 245 | 264 |
| 13 | 139 | 13 | 152 | 165 | 179 | 194 | 210 | 227 | 227 | 246 | 265 |
| 14 | 151 | 152 | 14 | 166 | 180 | 195 | 211 | 228 | 228 | 247 | 266 |
| 15 | 164 | 165 | 166 | 15 | 181 | 196 | 212 | 229 | 229 | 248 | 267 |
| 16 | 178 | 179 | 180 | 181 | 16 | 197 | 213 | 230 | 230 | 249 | 268 |
| 17 | 193 | 194 | 195 | 196 | 197 | 17 | 214 | 231 | 231 | 250 | 269 |
| 18 | 209 | 210 | 211 | 212 | 213 | 214 | 18 | 232 | 232 | 251 | 270 |
| 19 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 19 | 233 | 252 | 271 |
| 20 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 19 | 252 | 272 |
| 21 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 252 | 20 | 273 |
| 22 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 21 |
| 23 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 272 | 271 | 273 | 274 |
| 24 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 293 | 294 | 295 |
| 25 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 314 | 315 | 316 |
| 26 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 336 | 337 | 338 |
| 27 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 359 | 360 | 361 |
| 28 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 383 | 384 | 385 |
| 29 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 408 | 409 | 410 |
| 30 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 434 | 435 | 436 |
| 31 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 461 | 462 | 463 |
| 32 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 489 | 490 | 491 |
| 33 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 518 | 519 | 520 |





TABLE I2: The complete force field in terms of unscaled and scaled nonredundant local coordinate force constants of 2,4-DMQ Loc. Force constants according to Symf (unscaled)

| ${ }_{1}^{1}$ | 6.2781 | 2 | 7.9180 | 3 | 6.1247 |  | 4 | 8.6614 |  |  | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6.8128 | 6.8128 |  |  |  |  |  |  | 8.6614 |  |  |  |
| 7.7964 |  |  |  |  |  |  |  |  |  |  |  |
| 11 | 6.4571 | 12 | 4.7106 | 13 | 5.5552 |  | 14 |  | 4.6790 |  | 15 |
| 5.6384 |  |  |  |  |  |  |  |  |  |  |  |
| 16 | 5.6059 | 17 | 5.6068 | 18 | 5.6669 |  | 19 |  | 5.2264 |  | 20 |
| 5.4524 |  |  |  |  |  |  |  |  |  |  |  |
| 21 | 5.2348 | 22 | 5.3579 | 23 | 0.9949 |  | 24 |  | 0.5643 |  | 25 |
| 0.9542 |  |  |  |  |  |  |  |  |  |  |  |
| 26 | 0.5694 | 27 | 0.5568 | 28 | 0.5565 |  | 29 |  | 0.5272 |  | 30 |
| 1.5533 |  |  |  |  |  |  |  |  |  |  |  |
| 31 | 1.4426 | 32 | 1.7053 | 33 | 1.5177 |  | 34 |  | 1.4453 |  | 35 |
| 1.5539 |  |  |  |  |  |  |  |  |  |  |  |
| 36 | 0.5912 | 37 | 0.6574 | 38 | 0.6739 |  | 39 |  | 0.5967 |  | 40 |
| 0.5978 |  |  |  |  |  |  |  |  |  |  |  |
| 41 | 0.5954 | 42 | 0.6686 | 43 | 0.6984 |  | 44 |  | 0.6125 |  | 45 |
| 0.6065 |  |  |  |  |  |  |  |  |  |  |  |
| 46 | 0.5912 | 47 | 0.4569 | 48 | 0.5892 |  | 49 |  | 0.4478 |  | 50 |
| 0.4619 |  |  |  |  |  |  |  |  |  |  |  |
| 51 | 0.4699 | 52 | 0.4749 | 53 | 0.2660 |  | 54 |  | 0.2089 |  | 55 |
| 0.2540 |  |  |  |  |  |  |  |  |  |  |  |
| 56 | 0.3188 | 57 | 0.2715 | 58 | 0.3126 |  | 59 |  | 0.4172 |  | 60 |
| 0.0177 |  |  |  |  |  |  |  |  |  |  |  |
| 61 | 0.0571 | 62 | 0.6588 | 63 | -0.5063 |  | 64 |  | 0.6956 |  | 65 |
| 0.2421 |  |  |  |  |  |  |  |  |  |  |  |
| 66 | -0.4048 | 67 | 0.9636 | 68 | -0.3319 | 69 |  | 0.2595 |  | 70 | - |
| 0.5256 0.0.0.3 |  |  |  |  |  |  |  |  |  |  |  |
| 71 | 0.6727 | 72 | 0.6662 | 73 | -0.3012 | 74 |  | 0.035 |  | 75 | - |
| 0.3336 |  |  |  |  |  |  |  |  |  |  |  |
| 76 | 0.8205 | 77 | 0.7051 | 78 | -0.1671 | 79 |  | 0.0098 |  | 80 | - |
| 0.2013 |  |  |  |  |  |  |  |  |  |  |  |
| 81 | 0.0829 | 82 | 0.6410 | 83 | -0.1587 | 84 |  | 0.1605 |  | 85 | - |
| 0.0866 |  |  |  |  |  |  |  |  |  |  |  |
| 86 | 0.0798 | 87 | -0.2227 | 88 | -0.2895 | 89 |  | 0.665 |  | 90 | - |
| 0.0171 |  |  |  |  |  |  |  |  |  |  |  |
| 91 | -0.0852 | 92 | 0.2281 | 93 | -0.0990 |  | 94 |  | 0.0109 |  | 95 |
| 0.1252 |  |  |  |  |  |  |  |  |  |  |  |
| 96 | -0.4621 | 97 | 0.7390 | 98 | -0.2163 | 99 |  | 0.069 |  | 100 |  |
| 0.0780 |  |  |  |  |  |  |  |  |  |  |  |
| 101 | 0.1828 | 102 | -0.1621 | 103 | -0.3054 | 104 |  | 0.230 |  | 105 | - |
| 0.4124 |  |  |  |  |  |  |  |  |  |  |  |
| 106 | 0.7518 | 107 | 0.0606 | 108 | -0.1965 | 109 |  | 0.023 |  | 110 | - |
| 0.1959 |  |  |  |  |  |  |  |  |  |  |  |
| 111 | 0.9327 | 112 | 0.6357 | 113 | -0.3351 | 114 |  | 0.215 |  | 115 | - |
| 0.4550 0.0327 0.2151 |  |  |  |  |  |  |  |  |  |  |  |
| 116 | 0.6561 | 117 | 0.3259 | 118 | 0.2930 | 119 |  | -0.014 |  | 120 | - |
| 0.0721 |  |  |  |  |  |  |  |  |  |  |  |



| 256 | 0.0054 | 257 | -0.0051 | 258 | -0.0001 | 259 | 0.0064 | 260 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0052 |  |  |  |  |  |  |  |  |  |
| 261 | 0.0024 | 262 | 0.0045 | 263 | 0.0013 | 264 | 0.1090 | 265 | - |
| 0.0016 |  |  |  |  |  |  |  |  |  |
| 266 | 0.0005 | 267 | 0.0099 | 268 | 0.0000 | 269 | -0.0001 |  | 270 |
| 0.0000 |  |  |  |  |  |  |  |  |  |
| 271 | 0.0002 | 272 | 0.0000 | 273 | 0.0004 | 274 | 0.0511 | 275 | - |
| 0.0049 |  |  |  |  |  |  |  |  |  |
| 276 | -0.0012 | 277 | 0.0026 | 278 | -0.0014 | 279 | 0.0077 | 280 | - |
| 0.0045 |  |  |  |  |  |  |  |  |  |
| 281 | -0.0095 | 282 | 0.0022 | 283 | 0.0020 | 284 | 0.0010 |  | 285 |
| 0.0007 |  |  |  |  |  |  |  |  |  |
| 286 | 0.0532 | 287 | 0.0132 | 288 | 0.0012 | 289 | -0.0030 |  | 290 |
| 0.0005 |  |  |  |  |  |  |  |  |  |
| 291 | 0.0005 | 292 | 0.0009 | 293 | 0.0004 | 294 | -0.0001 |  | 295 |
| 0.0402 |  |  |  |  |  |  |  |  |  |
| 296 | -0.3937 | 297 | 0.2570 | 298 | 0.0371 | 299 | 0.0572 |  | 300 |
| 0.0086 |  |  |  |  |  |  |  |  |  |
| 301 | -0.0692 | 302 | -0.0640 | 303 | -0.0214 | 304 | 0.0422 |  | 305 |
| 0.0512 |  |  |  |  |  |  |  |  |  |
| 306 | 0.0011 | 307 | 0.0417 | 308 | -0.0320 | 309 | 0.0084 |  | 310 |
| 0.0543 |  |  |  |  |  |  |  |  |  |
| 311 | -0.0006 | 312 | -0.0006 | 313 | -0.0037 | 314 | 0.0002 |  | 315 |
| 0.0025 |  |  |  |  |  |  |  |  |  |
| 316 | 0.0467 | 317 | -0.0664 | 318 | -0.0108 | 319 | -0.2034 |  | 320 |
| 0.1600 |  |  |  |  |  |  |  |  |  |
| 321 | 0.0218 | 322 | -0.0217 | 323 | 0.0187 | 324 | -0.0096 | 325 | - |
| 0.0040 |  |  |  |  |  |  |  |  |  |
| 326 | 0.0057 | 327 | 0.0022 | 328 | 0.0021 | 329 | 0.0173 |  | 330 |
| 0.0043 |  |  |  |  |  |  |  |  |  |
| 331 | -0.0028 | 332 | 0.0001 | 333 | -0.0008 | 334 | 0.0001 | 335 | - |
| 0.0007 |  |  |  |  |  |  |  |  |  |
| 336 | 0.0033 | 337 | -0.0048 | 338 | 0.0011 | 339 | -0.0084 | 340 | - |
| 0.0097 |  |  |  |  |  |  |  |  |  |
| 341 | -0.0374 | 342 | 0.0090 | 343 | -0.2290 | 344 | 0.4550 |  | 345 |
| 0.0345 |  |  |  |  |  |  |  |  |  |
| 346 | -0.0234 | 347 | 0.0078 | 348 | -0.0085 | 349 | 0.0057 | 350 | - |
| 0.0033 |  |  |  |  |  |  |  |  |  |
| 351 | 0.0139 | 352 | -0.0107 | 353 | 0.0103 | 354 | 0.0391 |  | 355 |
| 0.0016 (0.0.0.0 |  |  |  |  |  |  |  |  |  |
| 356 | 0.0000 | 357 | 0.0010 | 358 | 0.0008 | 359 | 0.0422 | 360 | - |
| 0.0864 |  |  |  |  |  |  |  |  |  |
| 361 | -0.0023 | 362 | -0.0005 | 363 | -0.0150 | 364 | 0.0000 |  | 365 |
| 0.0324 (0) 0 |  |  |  |  |  |  |  |  |  |
| 366 | 0.0056 | 367 | -0.0001 | 368 | -0.0185 | 369 | 0.0026 |  | 370 |
| 0.0130 |  |  |  |  |  |  |  |  |  |
| 371 | 0.1833 | 372 | -0.1736 | 373 | -0.0180 | 374 | 0.0074 | 375 | - |
| 0.0205 |  |  |  |  |  |  |  |  |  |
| 376 | 0.0247 | 377 | 0.0003 | 378 | 0.0005 | 379 | -0.0238 |  | 380 |
| 0.0087 |  |  |  |  |  |  |  |  |  |
| 381 | -0.0082 | 382 | -0.0001 | 383 | 0.0003 | 384 | -0.0004 |  | 385 |
| 0.0028 |  |  |  |  |  |  |  |  |  |
| 386 | -0.0023 | 387 | -0.0391 | 388 | 0.0002 | 389 | 0.0013 |  | 390 |
| 0.0082 |  |  |  |  |  |  |  |  |  |


| 391 | 0.0042 | 392 | -0.0053 | 393 | -0.0011 | 394 |  | -0.0024 | 395 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0160 |  |  |  |  |  |  |  |  |  |  |
| 396 | 0.0117 | 397 | 0.1778 | 398 | -0.1710 |  | 399 | -0.0 |  | 400 |
| 0.0181 |  |  |  |  |  |  |  |  |  |  |
| 401 | -0.0001 | 402 | 0.0010 | 403 | 0.0002 | 404 |  | -0.0090 | 405 | - |
| 0.0013 |  |  |  |  |  |  |  |  |  |  |
| 406 | 0.0071 | 407 | -0.0074 | 408 | 0.0000 |  | 409 | 0. |  | 410 |
| 0.0001 |  |  |  |  |  |  |  |  |  |  |
| 411 | 0.0003 | 412 | 0.0000 | 413 | -0.0012 |  | 414 | -0. |  | 415 |
| 0.0079 |  |  |  |  |  |  |  |  |  |  |
| 416 | 0.0022 | 417 | 0.0030 | 418 | 0.0055 | 419 |  | -0.0054 | 420 | - |
| 0.0156 |  |  |  |  |  |  |  |  |  |  |
| 421 | 0.0113 | 422 | -0.0197 | 423 | 0.0136 | 424 |  | 0.1713 | 425 | - |
| 0.1723 |  |  |  |  |  |  |  |  |  |  |
| 426 | -0.0085 | 427 | -0.0012 | 428 | -0.0003 |  | 429 | -0.0 |  | 430 |
| 0.0085 |  |  |  |  |  |  |  |  |  |  |
| 431 | -0.0070 | 432 | 0.0007 | 433 | 0.0074 | 434 |  | -0.0001 | 435 | - |
| 0.0001 |  |  |  |  |  |  |  |  |  |  |
| 436 | -0.0005 | 437 | 0.0001 | 438 | -0.0002 | 439 |  | -0.0002 | 440 | - |
| 0.0012 |  |  |  |  |  |  |  |  |  |  |
| 441 | -0.0125 | 442 | 0.0096 | 443 | -0.0052 | 444 |  | -0.0112 | 445 | - |
| 0.0108 |  |  |  |  |  |  |  |  |  |  |
| 446 | -0.0012 | 447 | 0.0350 | 448 | 0.0199 | 449 |  | 0.0198 | 450 | - |
| 0.0265 |  |  |  |  |  |  |  |  |  |  |
| 451 | -0.0016 | 452 | 0.1656 | 453 | -0.1422 |  | 454 | -0.0 |  | 455 |
| 0.0004 |  |  |  |  |  |  |  |  |  |  |
| 456 | -0.0003 | 457 | 0.0001 | 458 | 0.0079 | 459 |  | -0.0090 | 460 | - |
| 0.0191 |  |  |  |  |  |  |  |  |  |  |
| 461 | 0.0003 | 462 | -0.0003 | 463 | 0.0001 |  | 464 | -0.00 |  | 465 |
| 0.0046 |  |  |  |  |  |  |  |  |  |  |
| 466 | 0.0010 | 467 | 0.0004 | 468 | -0.0020 |  | 469 | -0.01 |  | 470 |
| 0.0088 |  |  |  |  |  |  |  |  |  |  |
| 471 | 0.1817 | 472 | 0.0471 | 473 | -0.0070 | 474 |  | -0.2611 | 475 | - |
| 0.4031 |  |  |  |  |  |  |  |  |  |  |
| 476 | 0.0120 | 477 | 0.2375 | 478 | 0.0972 | 479 |  | 0.0005 | 480 | - |
| 0.0825 |  |  |  |  |  |  |  |  |  |  |
| 481 | -0.2615 | 482 | -0.1799 | 483 | 0.1228 | 484 |  | -0.1822 | 485 | - |
| 0.0199 |  |  |  |  |  |  |  |  |  |  |
| 486 | 0.0076 | 487 | -0.0074 | 488 | 0.0143 | 489 |  | -0.0099 | 490 | - |
| 0.0019 |  |  |  |  |  |  |  |  |  |  |
| 491 | -0.0099 | 492 | -0.0028 | 493 | -0.0630 | 494 |  | 0.0014 | 495 | - |
| 0.0317 |  |  |  |  |  |  |  |  |  |  |
| 496 | 0.0184 | 497 | 0.0132 | 498 | 0.0122 |  | 499 | -0.00 |  | 500 |
| 0.2037 (0.0.0.0 |  |  |  |  |  |  |  |  |  |  |
| 501 | 0.0342 | 502 | -0.2990 | 503 | 0.3485 | 504 |  | 0.5235 | 505 | - |
| 0.0434 |  |  |  |  |  |  |  |  |  |  |
| 506 | 0.1596 | 507 | -0.0459 | 508 | -0.1603 |  | 509 | -0.0 |  | 510 |
| 0.1707 |  |  |  |  |  |  |  |  |  |  |
| 511 | -0.2473 | 512 | 0.0546 | 513 | 0.1093 |  | 514 | -0.010 |  | 515 |
| 0.0073 |  |  |  |  |  |  |  |  |  |  |
| 516 | 0.0064 | 517 | -0.0171 | 518 | 0.0041 | 519 |  | -0.0042 | 520 | - |
| 0.0095 |  |  |  |  |  |  |  |  |  |  |
| 521 | 0.0019 | 522 | -0.0285 | 523 | -0.0758 | 524 |  | 0.0872 | 525 | - |
| 0.0140 |  |  |  |  |  |  |  |  |  |  |


| 526 | 0.0076 | 527 | -0.0073 | 528 | 0.0155 | 529 | -0.0071 |  | 530 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0033 |  |  |  |  |  |  |  |  |  |
| 531 | 0.2797 | 532 | 0.0865 | 533 | -0.2976 | 534 | -0.0183 | 535 | - |
| 0.0818 |  |  |  |  |  |  |  |  |  |
| 536 | 0.2656 | 537 | 0.1049 | 538 | -0.0127 | 539 | -0.0896 | 540 | - |
| 0.3169 |  |  |  |  |  |  |  |  |  |
| 541 | 0.0257 | 542 | -0.0949 | 543 | 0.2166 | 544 | -0.0466 |  | 545 |
| 0.0034 |  |  |  |  |  |  |  |  |  |
| 546 | -0.0071 | 547 | 0.0248 | 548 | 0.0138 | 549 | -0.0080 | 550 | - |
| 0.0079 |  |  |  |  |  |  |  |  |  |
| 551 | -0.0049 | 552 | -0.0352 | 553 | -0.0495 | 554 | 0.0278 |  | 555 |
| 0.0341 |  |  |  |  |  |  |  |  |  |
| 556 | 0.0117 | 557 | 0.0127 | 558 | -0.0122 | 559 | 0.2020 | 560 | - |
| 0.0034 |  |  |  |  |  |  |  |  |  |
| 561 | 0.3114 | 562 | 0.1053 | 563 | -0.0064 | 564 | -0.1094 | 565 | - |
| 0.3799 |  |  |  |  |  |  |  |  |  |
| 566 | -0.0020 | 567 | 0.1646 | 568 | 0.0540 | 569 | -0.0138 | 570 | - |
| 0.0476 |  |  |  |  |  |  |  |  |  |
| 571 | -0.1684 | 572 | 0.0084 | 573 | 0.0067 | 574 | -0.0062 | 575 | - |
| 0.1393 |  |  |  |  |  |  |  |  |  |
| 576 | 0.1081 | 577 | -0.1089 | 578 | 0.1181 | 579 | -0.0018 |  | 580 |
| 0.0001 |  |  |  |  |  |  |  |  |  |
| 581 | -0.0031 | 582 | 0.0011 | 583 | -0.0814 | 584 | -0.0133 | 585 | - |
| 0.0119 |  |  |  |  |  |  |  |  |  |
| 586 | 0.0228 | 587 | 0.0035 | 588 | 0.0032 | 589 | -0.0121 |  | 590 |
| 0.3554 |  |  |  |  |  |  |  |  |  |
| 591 | -0.0199 | 592 | 0.4026 | 593 | 0.2072 | 594 | -0.0528 | 595 | - |
| 0.1904 |  |  |  |  |  |  |  |  |  |
| 596 | -0.0308 | 597 | 0.2733 | 598 | -0.0301 | 599 | 0.2450 |  | 600 |
| 0.0578 |  |  |  |  |  |  |  |  |  |
| 601 | -0.3666 | 602 | 0.0785 | 603 | 0.2257 | 604 | -0.0039 |  | 605 |
| 0.0075 |  |  |  |  |  |  |  |  |  |
| 606 | 0.0086 | 607 | -0.1222 | 608 | 0.0522 | 609 | 0.0508 | 610 | - |
| 0.1095 |  |  |  |  |  |  |  |  |  |
| 611 | 0.0005 | 612 | 0.0021 | 613 | 0.0011 | 614 | -0.0029 | 615 | - |
| 0.0284 |  |  |  |  |  |  |  |  |  |
| 616 | -0.0082 | 617 | 0.0032 | 618 | 0.0077 | 619 | 0.0744 | 620 | - |
| 0.0756 |  |  |  |  |  |  |  |  |  |
| 621 | 0.0129 | 622 | -0.0180 | 623 | 0.2823 | 624 | -0.0267 | 625 | - |
| 0.0115 |  |  |  |  |  |  |  |  |  |
| 626 | -0.3593 | 627 | -0.1102 | 628 | 0.0218 | 629 | 0.1076 |  | 630 |
| 0.3980 |  |  |  |  |  |  |  |  |  |
| 631 | -0.0391 | 632 | 0.0272 | 633 | -0.2696 | 634 | 0.0214 |  | 635 |
| 0.2658 (0.0.0.0 0 |  |  |  |  |  |  |  |  |  |
| 636 | 0.0165 | 637 | -0.0169 | 638 | -0.0030 | 639 | 0.0122 |  | 640 |
| 0.0440 |  |  |  |  |  |  |  |  |  |
| 641 | 0.0854 | 642 | -0.0839 | 643 | -0.0236 | 644 | 0.0026 |  | 645 |
| 0.0002 |  |  |  |  |  |  |  |  |  |
| 646 | 0.0095 | 647 | -0.0009 | 648 | 0.1262 | 649 | 0.0118 |  | 650 |
| 0.0116 |  |  |  |  |  |  |  |  |  |
| 651 | 0.0521 | 652 | -0.0483 | 653 | -0.0486 | 654 | 0.0965 | 655 | - |
| 0.3733 |  |  |  |  |  |  |  |  |  |
| 656 | 0.0283 | 657 | -0.4179 | 658 | -0.2510 | 659 | 0.0138 | 660 | - |
| 0.0008 |  |  |  |  |  |  |  |  |  |


| 661 | 0.0000 | 662 | 0.0263 | 663 | 0.0194 | 664 |  | 0.0200 | 665 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0095 |  |  |  |  |  |  |  |  |  |  |
| 666 | -0.0009 | 667 | 0.0008 | 668 | -0.0040 | 669 |  | 0.0043 | 670 | - |
| 0.0017 |  |  |  |  |  |  |  |  |  |  |
| 671 | 0.0015 | 672 | 0.0064 | 673 | 0.3046 |  | 674 | 0.0004 |  | 675 |
| 0.0001 |  |  |  |  |  |  |  |  |  |  |
| 676 | 0.0005 | 677 | 0.0004 | 678 | -0.0693 |  | 679 | -0.0539 |  | 680 |
| 0.0001 |  |  |  |  |  |  |  |  |  |  |
| 681 | 0.0004 | 682 | 0.0020 | 683 | 0.0029 |  | 684 | -0.0063 |  | 685 |
| 0.0001 |  |  |  |  |  |  |  |  |  |  |
| 686 | 0.0000 | 687 | -0.0001 | 688 | -0.0003 |  | 689 | -0.0251 |  | 690 |
| 0.0166 |  |  |  |  |  |  |  |  |  |  |
| 691 | 0.0205 | 692 | -0.0017 | 693 | 0.0033 |  | 694 | 0.0040 |  | 695 |
| 0.0010 |  |  |  |  |  |  |  |  |  |  |
| 696 | -0.0070 | 697 | -0.0174 | 698 | 0.0282 | 699 |  | 0.0091 | 700 | - |
| 0.0036 |  |  |  |  |  |  |  |  |  |  |
| 701 | -0.0001 | 702 | 0.0001 | 703 | -0.0009 | 704 |  | 0.0019 | 705 | - |
| 0.0003 |  |  |  |  |  |  |  |  |  |  |
| 706 | -0.0015 | 707 | 0.0033 | 708 | -0.0126 |  | 709 | 0.0005 |  | 710 |
| 0.0000 |  |  |  |  |  |  |  |  |  |  |
| 711 | 0.0004 | 712 | 0.0001 | 713 | 0.0946 | 714 |  | -0.0513 | 715 | - |
| 0.0480 |  |  |  |  |  |  |  |  |  |  |
| 716 | -0.0004 | 717 | -0.0005 | 718 | 0.0002 |  | 719 | -0.0028 |  | 720 |
| 0.0021 |  |  |  |  |  |  |  |  |  |  |
| 721 | 0.0713 | 722 | 0.0004 | 723 | -0.0001 |  | 724 | -0.0002 |  | 725 |
| 0.0005 |  |  |  |  |  |  |  |  |  |  |
| 726 | 0.0050 | 727 | 0.0078 | 728 | -0.0049 |  | 729 | -0.0021 |  | 730 |
| 0.0010 |  |  |  |  |  |  |  |  |  |  |
| 731 | 0.0029 | 732 | 0.0010 | 733 | 0.0018 | 734 |  | -0.0121 | 735 | - |
| 0.0302 |  |  |  |  |  |  |  |  |  |  |
| 736 | 0.0488 | 737 | 0.0157 | 738 | -0.0062 |  | 739 | -0.0002 |  | 740 |
| 0.0001 |  |  |  |  |  |  |  |  |  |  |
| 741 | -0.0016 | 742 | 0.0034 | 743 | -0.0006 |  | 744 | -0.0025 |  | 745 |
| 0.0057 |  |  |  |  |  |  |  |  |  |  |
| 746 | -0.0218 | 747 | 0.0008 | 748 | 0.0001 |  | 749 | 0.0006 |  | 750 |
| 0.0001 |  |  |  |  |  |  |  |  |  |  |
| 751 | -0.0046 | 752 | 0.0796 | 753 | -0.0831 | 754 |  | -0.0008 | 755 | - |
| 0.0007 |  |  |  |  |  |  |  |  |  |  |
| 756 | 0.0004 | 757 | -0.0049 | 758 | 0.0036 |  | 759 | 0.1235 |  | 760 |
| 0.0007 |  |  |  |  |  |  |  |  |  |  |
| 761 | -0.0001 | 762 | -0.0003 | 763 | 0.0008 |  | 764 | 0.0087 |  | 765 |
| 0.0134 |  |  |  |  |  |  |  |  |  |  |
| 766 | -0.0085 | 767 | -0.0036 | 768 | 0.0017 |  | 769 | 0.0051 |  | 770 |
| 0.0017 |  |  |  |  |  |  |  |  |  |  |
| 771 | 0.0143 | 772 | 0.0089 | 773 | -0.0118 | 774 |  | 0.0107 | 775 | - |
| 0.0209 |  |  |  |  |  |  |  |  |  |  |
| 776 | -0.0012 | 777 | -0.0016 | 778 | -0.0032 | 779 |  | 0.0021 | 780 | - |
| 0.0030 |  |  |  |  |  |  |  |  |  |  |
| 781 | 0.0025 | 782 | -0.0027 | 783 | -0.0005 | 784 |  | 0.0029 | 785 | - |
| 0.0431 |  |  |  |  |  |  |  |  |  |  |
| 786 | 0.0000 | 787 | -0.0002 | 788 | -0.0001 |  | 789 | -0.0001 |  | 790 |
| 0.0683 |  |  |  |  |  |  |  |  |  |  |
| 791 | -0.1043 | 792 | -0.0002 | 793 | 0.0002 |  | 794 | 0.0000 |  | 795 |
| 0.0036 |  |  |  |  |  |  |  |  |  |  |


| 796 | -0.0373 | 797 | -0.0001 | 798 | 0.0000 | 799 | 0.0000 | 800 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0001 |  |  |  |  |  |  |  |  |  |
| 801 | 0.0029 | 802 | 0.0001 | 803 | -0.0066 | 804 | 0.0002 |  | 805 |
| 0.0007 |  |  |  |  |  |  |  |  |  |
| 806 | 0.0010 | 807 | -0.0054 | 808 | 0.0047 | 809 | 0.0082 | 810 | - |
| 0.1082 |  |  |  |  |  |  |  |  |  |
| 811 | -0.0002 | 812 | 0.0013 | 813 | -0.0007 | 814 | 0.0269 |  | 815 |
| 0.0168 |  |  |  |  |  |  |  |  |  |
| 816 | 0.0060 | 817 | -0.0130 | 818 | -0.0071 | 819 | 0.0052 |  | 820 |
| 0.0116 |  |  |  |  |  |  |  |  |  |
| 821 | 0.0050 | 822 | -0.0062 | 823 | 0.0020 | 824 | -0.0012 |  | 825 |
| 0.3320 |  |  |  |  |  |  |  |  |  |
| 826 | 0.0081 | 827 | 0.0014 | 828 | 0.0011 | 829 | 0.0003 |  | 830 |
| 0.0000 |  |  |  |  |  |  |  |  |  |
| 831 | 0.0005 | 832 | 0.0004 | 833 | 0.0006 | 834 | -0.0708 | 835 | - |
| 0.0711 |  |  |  |  |  |  |  |  |  |
| 836 | 0.0136 | 837 | -0.0038 | 838 | -0.0031 | 839 | 0.0082 |  | 840 |
| 0.0003 |  |  |  |  |  |  |  |  |  |
| 841 | -0.0005 | 842 | -0.0006 | 843 | -0.0228 | 844 | -0.0335 |  | 845 |
| 0.0046 |  |  |  |  |  |  |  |  |  |
| 846 | 0.0044 | 847 | 0.0031 | 848 | -0.0041 | 849 | 0.0004 | 850 | - |
|  |  |  |  |  |  |  |  |  |  |
| 851 | -0.0007 | 852 | -0.0001 | 853 | -0.0041 | 854 | 0.0150 | 855 | - |
| 0.0016 |  |  |  |  |  |  |  |  |  |
| 856 | -0.0061 | 857 | 0.0021 | 858 | 0.0063 | 859 | 0.0161 |  | 860 |
| 0.0021 |  |  |  |  |  |  |  |  |  |
| 861 | -0.0078 | 862 | -0.0032 | 863 | -0.0028 | 864 | -0.0228 | 865 | - |
| 0.0038 |  |  |  |  |  |  |  |  |  |
| 866 | 0.0002 | 867 | -0.0063 | 868 | -0.0002 | 869 | 0.0000 | 870 | - |
| 0.0005 0.0002 |  |  |  |  |  |  |  |  |  |
| 871 | -0.0001 | 872 | 0.0000 | 873 | 0.0005 | 874 | 0.0907 | 875 | - |
| 0.0512 |  |  |  |  |  |  |  |  |  |
| 876 | -0.0409 | 877 | 0.0376 | 878 | 0.0021 | 879 | -0.0023 |  | 880 |
| 0.0060 |  |  |  |  |  |  |  |  |  |
| 881 | -0.0001 | 882 | -0.0001 | 883 | 0.0010 | 884 | 0.0134 |  | 885 |
| 0.0068 |  |  |  |  |  |  |  |  |  |
| 886 | 0.0199 | 887 | 0.0038 | 888 | 0.0062 | 889 | -0.0076 |  | 890 |
| 0.0001 |  |  |  |  |  |  |  |  |  |
| 891 | -0.0011 | 892 | -0.0006 | 893 | -0.0002 | 894 | -0.0007 | 895 |  |
| 0.0070 |  |  |  |  |  |  |  |  |  |
| 896 | -0.0071 | 897 | 0.0259 | 898 | -0.0027 | 899 | -0.0105 |  | 900 |
| 0.0036 |  |  |  |  |  |  |  |  |  |
| 901 | 0.0109 | 902 | 0.0279 | 903 | 0.0037 | 904 | -0.0135 | 905 | - |
| 0.0056 |  |  |  |  |  |  |  |  |  |
| 906 | -0.0048 | 907 | -0.0395 | 908 | -0.0065 | 909 | 0.0004 | 910 | - |
| 0.0108 - 0.0005 |  |  |  |  |  |  |  |  |  |
| 911 | -0.0003 | 912 | 0.0000 | 913 | -0.0010 | 914 | 0.0000 | 915 | - |
| 0.0001 |  |  |  |  |  |  |  |  |  |
| 916 | 0.0009 | 917 | -0.0068 | 918 | 0.0752 | 919 | -0.0708 |  | 920 |
|  |  |  |  |  |  |  |  |  |  |
| 921 | 0.0037 | 922 | -0.0039 | 923 | 0.0103 | 924 | -0.0003 | 925 | - |
|  |  |  |  |  |  |  |  |  |  |
| 926 | 0.0017 | 927 | 0.0233 | 928 | 0.0118 | 929 | 0.0344 |  | 930 |
| 0.0066 |  |  |  |  |  |  |  |  |  |


| 931 | 0.0107 | 932 | －0．0132 | 933 | 0.0001 | 934 | －0．0018 935 | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0004 |  |  |  |  |  |  |  |  |
| 936 | 0.0004 | 937 | －0．0121 | 938 | 0.0259 | 939 | 0.0283940 | － |
| 0.0046 |  |  |  |  |  |  |  |  |
| 941 | －0．0061 | 942 | －0．0102 | 943 | 0.0003 | 944 | 0.0027 | 945 |
| 0.0053 |  |  |  |  |  |  |  |  |
| 946 | 0.0028 | 947 | －0．0097 | 948 | －0．0036 | 949 | －0．0020 950 | － |
| 0.0377 |  |  |  |  |  |  |  |  |
| 951 | 0.0033 | 952 | －0．0013 | 953 | －0．0034 | 954 | －0．0002 955 | － |
| 0.0003 |  |  |  |  |  |  |  |  |
| 956 | 0.0000 | 957 | －0．0001 | 958 | －0．0002 | 959 | 0.0636960 | － |
| 0.1186 |  |  |  |  |  |  |  |  |
| 961 | －0．0416 | 962 | －0．0010 | 963 | 0.0002 | 964 | 0.0102 | 965 |
| 0.0001 |  |  |  |  |  |  |  |  |
| 966 | －0．0005 | 967 | 0.0000 | 968 | 0.0068 | 8969 | －0．0009 | 970 |
| 0.0119 |  |  |  |  |  |  |  |  |
| 971 | 0.0097 | 972 | 0.0077 | 973 | －0．0123 | 3974 | －0．0003 | 975 |
| 0.0000 |  |  |  |  |  |  |  |  |
| 976 | 0.0001 | 977 | 0.0001 | 978 | －0．0014 | 979 | 0.0070 | 980 |
| 0.0121 0．001 0.0014 |  |  |  |  |  |  |  |  |
| 981 | －0．0002 | 982 | －0．1105 | 983 | －0．0001 | 984 | 0.0000985 | － |
| 0.0001 |  |  |  |  |  |  |  |  |
| 986 | －0．0088 | 987 | 0.0051 | 988 | 0.0006 | － 989 | －0．0313 | 990 |
| 0.0033 |  |  |  |  |  |  |  |  |
| 991 | －0．0019 | 992 | 0.0031 | 993 | －0．0994 | 994 | 0.0574995 | － |
| 0.0140 |  |  |  |  |  |  |  |  |
| 996 | 0.0071 | 997 | 0.0067 | 998 | 0.0027 | 7999 | －0．0016 | 1000 |
| 0.0026 |  |  |  |  |  |  |  |  |
| 1001 | 0.0185 | 1002 | －0．0107 | 1003 | －0．0082 | 1004 | －0．1036 1005 | － |
| 0.0309 |  |  |  |  |  |  |  |  |
| 1006 | 0.0007 | 1007 | －0．0927 | 1008 | 0.0535 | 1009 | 0.0001 | 1010 |
| 0.0045 |  |  |  |  |  |  |  |  |
| 1011 | －0．0026 | 1012 | －0．0010 | 1013 | －0．0190 | 1014 | －0．0364 | 1015 |
| 0.0000 |  |  |  |  |  |  |  |  |
| 1016 | 0.0033 | 1017 | －0．0002 | 1018 | 0.0001 | 1019 | －0．0001 | 1020 |
| 0.0040 |  |  |  |  |  |  |  |  |
| 1021 | －0．0023 | 1022 | 0.0096 | 1023 | 0.0071 | 1024 | 0.0074 | 1025 |
| 0.0020 |  |  |  |  |  |  |  |  |
| 1026 | －0．0002 | 1027 | 0.0003 | 1028 | －0．0003 | 1029 | 0.0002 | 1030 |
| 0.0001 |  |  |  |  |  |  |  |  |
| 1031 | －0．0007 | 1032 | 0.0004 | 1033 | －0．0002 1 | 1034 | 0.00521035 |  |
| 0.0010 |  |  |  |  |  |  |  |  |
| 1036 | 0.0011 | 1037 | －0．0872 | 1038 | 0.0001 | 1039 | 0.0003 | 1040 |
| 0.0007 |  |  |  |  |  |  |  |  |
| 1041 | －0．0004 | 1042 | －0．0002 | 1043 | －0．0004 | 1044 | 0.0002 | 1045 |
| 0.0001 0．0．00 |  |  |  |  |  |  |  |  |
| 1046 | 0.0006 | 1047 | 0.0032 | 1048 | －0．0016 1 | 1049 | 0.00511050 |  |
| 0.0530 0．0．0．0 |  |  |  |  |  |  |  |  |
| 1051 | 0.0000 | 1052 | 0.0000 | 1053 | －0．0009 1 | 1054 | 0.00051055 | － |
| 0.0002 退 |  |  |  |  |  |  |  |  |
| 1056 | －0．0006 | 1057 | 0.0003 | 1058 | 0.0000 | 1059 | 0.0028 | 1060 |
| 0.0006 0．0．000 1050 1060 |  |  |  |  |  |  |  |  |
| 1061 | 0.0037 | 1062 | －0．0221 | 1063 | 0.0059 | 91064 | －0．0889 | 1065 |
| 0．0098 |  |  |  |  |  |  |  |  |



| 1201 | 0.0294 | 1202 | -0.0002 | 1203 | 0.0004 | 4204 | 0.0004 | 1205 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0001 |  |  |  |  |  |  |  |  |
| 1206 | -0.0089 | 1207 | 0.0098 | 1208 | -0.0008 | 1209 | -0.0005 1210 | - |
| 0.0008 |  |  |  |  |  |  |  |  |
| 1211 | 0.0004 | 1212 | -0.0033 | 1213 | 0.0001 | 1214 | -0.0253 | 1215 |
| 0.0005 |  |  |  |  |  |  |  |  |
| 1216 | -0.0003 | 1217 | -0.0001 | 1218 | 0.0133 | 1219 | -0.0077 1220 | - |
| 0.0063 |  |  |  |  |  |  |  |  |
| 1221 | 0.0221 | 1222 | -0.0117 | 1223 | -0.0021 | 1224 | 0.01101225 | - |
| 0.0008 |  |  |  |  |  |  |  |  |
| 1226 | -0.0007 | 1227 | -0.0007 | 1228 | -0.0039 | 1229 | 0.0067 | 1230 |
| 0.0045 |  |  |  |  |  |  |  |  |
| 1231 | 0.0077 | 1232 | 0.0076 | 1233 | 0.0005 | 51234 | 0.0093 | 1235 |
| 0.0001 |  |  |  |  |  |  |  |  |

Fitting with nfit= 1(Pulay's method)

Force constants according to Symf 1235 (scaled)

| 1 | 5.8185 | 2 | 7.4194 | 3 | 5.7031 |  | 4 | 7.8897 |  | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6.4993 |  |  |  |  |  |  |  |  |  |  |
| 6 | 5.8089 | 7 | 5.8958 | 8 | 7.5018 |  | 9 | 6.2178 |  | 10 |
| 7.3547 |  |  |  |  |  |  |  |  |  |  |
| 11 | 6.1504 | 12 | 4.4130 | 13 | 4.8871 |  | 14 | 4.6767 |  | 15 |
| 5.1915 |  |  |  |  |  |  |  |  |  |  |
| 16 | 4.8935 | 17 | 5.0700 | 18 | 5.1815 |  | 19 | 4.6878 |  | 20 |
| 4.7713 |  |  |  |  |  |  |  |  |  |  |
| 21 | 4.6815 | 22 | 4.7828 | 23 | 0.9307 |  | 24 | 0.5325 |  | 25 |
| 0.9201 |  |  |  |  |  |  |  |  |  |  |
| 26 | 0.5285 | 27 | 0.5320 | 28 | 0.5139 |  | 29 | 0.4942 |  | 30 |
| 1.5125 |  |  |  |  |  |  |  |  |  |  |
| 31 | 1.3571 | 32 | 1.6062 | 33 | 1.4390 |  | 34 | 1.3914 |  | 35 |
| 1.4324 |  |  |  |  |  |  |  |  |  |  |
| 36 | 0.5454 | 37 | 0.6483 | 38 | 0.6645 |  | 39 | 0.5535 |  | 40 |
| 0.5641 |  |  |  |  |  |  |  |  |  |  |
| 41 | 0.5638 | 42 | 0.6317 | 43 | 0.6599 |  | 44 | 0.5821 |  | 45 |
| 0.5567 |  |  |  |  |  |  |  |  |  |  |
| 46 | 0.5530 | 47 | 0.4285 | 48 | 0.5140 |  | 49 | 0.4409 |  | 50 |
| 0.4413 |  |  |  |  |  |  |  |  |  |  |
| 51 | 0.4185 | 52 | 0.4743 | 53 | 0.2486 |  | 54 | 0.1968 |  | 55 |
| 0.2446 |  |  |  |  |  |  |  |  |  |  |
| 56 | 0.3066 | 57 | 0.2656 | 58 | 0.3025 |  | 59 | 0.3930 |  | 60 |
| 0.0162 |  |  |  |  |  |  |  |  |  |  |
| 61 | 0.0535 | 62 | 0.6140 | 63 | -0.4704 |  | 64 | 0.6497 |  | 65 |
| 0.2224 |  |  |  |  |  |  |  |  |  |  |
| 66 | -0.3740 | 67 | 0.8875 | 68 | -0.3120 | 69 |  | 0.2454 | 70 | - |
| 0.4954 |  |  |  |  |  |  |  |  |  |  |
| 71 | 0.6271 | 72 | 0.6294 | 73 | -0.2861 | 74 |  | 0.0334 | 75 | - |
| 0.3125 |  |  |  |  |  |  |  |  |  |  |
| 76 | 0.7865 | 77 | 0.6512 | 78 | -0.1552 | 79 |  | 0.0091 | 80 | - |
| 0.1843 (0.10 |  |  |  |  |  |  |  |  |  |  |
| 81 | 0.0777 | 82 | 0.6035 | 83 | -0.1504 | 84 |  | 0.1529 | 85 | - |
| 0. 0822 |  |  |  |  |  |  |  |  |  |  |


| 86 | 0.0749 | 87 | -0.2141 | 88 | -0.2796 | 89 | 0.6280 | 90 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0160 |  |  |  |  |  |  |  |  |  |
| 91 | -0.0803 | 92 | 0.2143 | 93 | -0.0920 | 94 | 0.0104 |  | 95 |
| 0.1196 |  |  |  |  |  |  |  |  |  |
| 96 | -0.4316 | 97 | 0.7079 | 98 | -0.2022 | 99 | 0.0655 | 100 | - |
| 0.0731 |  |  |  |  |  |  |  |  |  |
| 101 | 0.1694 | 102 | -0.1538 | 103 | -0.2911 | 104 | 0.2150 | 105 | - |
| 0.3941 |  |  |  |  |  |  |  |  |  |
| 106 | 0.7109 | 107 | 0.0570 | 108 | -0.1857 | 109 | 0.0218 | 110 | - |
| 0.1825 |  |  |  |  |  |  |  |  |  |
| 111 | 0.8891 | 112 | 0.6088 | 113 | -0.3137 | 114 | 0.2065 | 115 | - |
| 0.4323 |  |  |  |  |  |  |  |  |  |
| 116 | 0.6219 | 117 | 0.3037 | 118 | 0.2745 | 119 | -0.0139 | 120 | - |
| 0.0666 |  |  |  |  |  |  |  |  |  |
| 121 | -0.0475 | 122 | -0.0162 | 123 | -0.0046 | 124 | 0.0234 | 125 | - |
| 0.0170 |  |  |  |  |  |  |  |  |  |
| 126 | 0.0040 | 127 | -0.0095 | 128 | -0.0086 | 129 | 0.0892 |  | 130 |
| 0.0767 |  |  |  |  |  |  |  |  |  |
| 131 | -0.0041 | 132 | -0.0152 | 133 | -0.0081 | 134 | 0.0033 |  | 135 |
| 0.0008 |  |  |  |  |  |  |  |  |  |
| 136 | -0.0020 | 137 | 0.0005 | 138 | 0.0019 | 139 | 0.0027 | 140 | - |
| 0.0456 (0.0020 0.0027 |  |  |  |  |  |  |  |  |  |
| 141 | -0.0384 | 142 | 0.3098 | 143 | 0.4812 | 144 | 0.0293 | 145 | - |
| 0.0739 |  |  |  |  |  |  |  |  |  |
| 146 | -0.0101 | 147 | 0.0101 | 148 | -0.0129 | 149 | 0.0140 | 150 | - |
| 0.0066 |  |  |  |  |  |  |  |  |  |
| 151 | 0.0026 | 152 | 0.0076 | 153 | -0.0796 | 154 | -0.0020 |  | 155 |
| 0.0252 |  |  |  |  |  |  |  |  |  |
| 156 | 0.0296 | 157 | 0.0119 | 158 | -0.0563 | 159 | 0.0580 |  | 160 |
| 0.1031 |  |  |  |  |  |  |  |  |  |
| 161 | 0.0169 | 162 | 0.0077 | 163 | -0.0126 | 164 | 0.0023 |  | 165 |
| 0.0019 |  |  |  |  |  |  |  |  |  |
| 166 | 0.0016 | 167 | 0.0046 | 168 | 0.0005 | 169 | -0.0035 | 170 |  |
|  |  |  |  |  |  |  |  |  |  |
| 171 | 0.0033 | 172 | -0.0123 | 173 | -0.0042 | 174 | 0.0984 |  | 175 |
| 0.0917 |  |  |  |  |  |  |  |  |  |
| 176 | -0.0044 | 177 | -0.0154 | 178 | 0.0003 | 179 | 0.0010 |  | 180 |
| 0.0005 |  |  |  |  |  |  |  |  |  |
| 181 | 0.0099 | 182 | 0.0008 | 183 | -0.0018 | 184 | -0.0032 |  | 185 |
| 0.0007 |  |  |  |  |  |  |  |  |  |
| 186 | 0.0137 | 187 | -0.0110 | 188 | -0.0149 | 189 | -0.0051 |  | 190 |
| 0.0931 |  |  |  |  |  |  |  |  |  |
| 191 | 0.1019 | 192 | -0.0083 | 193 | 0.0002 | 194 | 0.0005 |  | 195 |
| 0.0013 |  |  |  |  |  |  |  |  |  |
| 196 | 0.0032 | 197 | 0.0092 | 198 | -0.0019 | 199 | 0.0163 |  | 200 |
| 0.0090 0.0.0.0.0 |  |  |  |  |  |  |  |  |  |
| 201 | 0.0034 | 202 | -0.0224 | 203 | -0.0249 | 204 | -0.0173 2 | 205 |  |
| 0.0038 (0.00, |  |  |  |  |  |  |  |  |  |
| 206 | 0.0026 | 207 | 0.0906 | 208 | 0.0630 | 209 | 0.0012 |  | 210 |
| 0.0002 20. 210 |  |  |  |  |  |  |  |  |  |
| 211 | 0.0011 | 212 | 0.0014 | 213 | 0.0020 | 214 | 0.0091 | 215 | - |
| 0.0113 20.0.00 215 |  |  |  |  |  |  |  |  |  |
| 216 | 0.0090 | 217 | -0.0015 | 218 | 0.0173 | 219 | 0.0064 | 220 | - |
| 0.0022 |  |  |  |  |  |  |  |  |  |


| 221 | 0.0035 | 222 | -0.0028 | 223 | 0.0016 | 224 | -0.0004 |  | 225 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0012 |  |  |  |  |  |  |  |  |  |
| 226 | 0.0009 | 227 | 0.0049 | 228 | 0.0893 | 229 | 0.0005 |  | 230 |
| 0.0001 |  |  |  |  |  |  |  |  |  |
| 231 | 0.0003 | 232 | 0.0002 | 233 | 0.0463 | 234 | 0.0097 | 235 | - |
| 0.0032 |  |  |  |  |  |  |  |  |  |
| 236 | 0.0005 | 237 | -0.0204 | 238 | -0.0009 | 239 | 0.0038 | 240 | - |
| 0.0005 |  |  |  |  |  |  |  |  |  |
| 241 | 0.0008 | 242 | -0.0020 | 243 | 0.0013 | 244 | -0.0001 |  | 245 |
| 0.0016 |  |  |  |  |  |  |  |  |  |
| 246 | -0.0014 | 247 | 0.0394 | 248 | -0.0001 | 249 | 0.0002 |  | 250 |
| 0.0001 |  |  |  |  |  |  |  |  |  |
| 251 | 0.0002 | 252 | 0.0303 | 253 | -0.0207 | 254 | -0.0050 |  | 255 |
| 0.0042 |  |  |  |  |  |  |  |  |  |
| 256 | 0.0049 | 257 | -0.0047 | 258 | -0.0001 | 259 | 0.0058 | 260 | - |
| 0.0048 |  |  |  |  |  |  |  |  |  |
| 261 | 0.0022 | 262 | 0.0041 | 263 | 0.0012 | 264 | 0.0998 | 265 | - |
| 0.0015 |  |  |  |  |  |  |  |  |  |
| 266 | 0.0004 | 267 | 0.0090 | 268 | 0.0000 | 269 | -0.0001 |  | 270 |
| 0.0000 |  |  |  |  |  |  |  |  |  |
| 271 | 0.0001 | 272 | 0.0000 | 273 | 0.0004 | 274 | 0.0457 | 275 | - |
|  |  |  |  |  |  |  |  |  |  |
| 276 | -0.0011 | 277 | 0.0024 | 278 | -0.0012 | 279 | 0.0071 | 280 | - |
| 0.0042 |  |  |  |  |  |  |  |  |  |
| 281 | -0.0086 | 282 | 0.0021 | 283 | 0.0018 | 284 | 0.0009 |  | 285 |
| 0.0006 |  |  |  |  |  |  |  |  |  |
| 286 | 0.0486 | 287 | 0.0117 | 288 | 0.0011 | 289 | -0.0027 |  | 290 |
| 0.0004 |  |  |  |  |  |  |  |  |  |
| 291 | 0.0004 | 292 | 0.0008 | 293 | 0.0004 | 294 | -0.0001 |  | 295 |
| 0.0359 |  |  |  |  |  |  |  |  |  |
| 296 | -0.3666 | 297 | 0.2406 | 298 | 0.0346 | 299 | 0.0528 |  | 300 |
|  |  |  |  |  |  |  |  |  |  |
| 301 | -0.0657 | 302 | -0.0594 | 303 | -0.0204 | 304 | 0.0397 |  | 305 |
| 0.0481 |  |  |  |  |  |  |  |  |  |
| 306 | 0.0010 | 307 | 0.0391 | 308 | -0.0290 | 309 | 0.0081 |  | 310 |
| 0.0504 |  |  |  |  |  |  |  |  |  |
| 311 | -0.0005 | 312 | -0.0005 | 313 | -0.0034 | 314 | 0.0002 |  | 315 |
| 0.0022 |  |  |  |  |  |  |  |  |  |
| 316 | 0.0428 | 317 | -0.0607 | 318 | -0.0101 | 319 | -0.1913 |  | 320 |
| 0.1500 |  |  |  |  |  |  |  |  |  |
| 321 | 0.0202 | 322 | -0.0206 | 323 | 0.0178 | 324 | -0.0089 | 325 | - |
| 0.0038 |  |  |  |  |  |  |  |  |  |
| 326 | 0.0054 | 327 | 0.0021 | 328 | 0.0020 | 329 | 0.0163 |  | 330 |
| 0.0039 |  |  |  |  |  |  |  |  |  |
| 331 | -0.0027 | 332 | 0.0001 | 333 | -0.0008 | 334 | 0.0001 | 335 | - |
| 0.0006 0.0027 |  |  |  |  |  |  |  |  |  |
| 336 | 0.0031 | 337 | -0.0043 | 338 | 0.0011 | 339 | -0.0077 | 340 | - |
| 0.0091 |  |  |  |  |  |  |  |  |  |
| 341 | -0.0354 | 342 | 0.0085 | 343 | -0.2170 | 344 | 0.4264 |  | 345 |
| 0.0331 |  |  |  |  |  |  |  |  |  |
| 346 | -0.0225 | 347 | 0.0074 | 348 | -0.0082 | 349 | 0.0055 | 350 | - |
|  |  |  |  |  |  |  |  |  |  |
| 351 | 0.0133 | 352 | -0.0102 | 353 | 0.0095 | 354 | 0.0384 |  | 355 |
| 0.0015 |  |  |  |  |  |  |  |  |  |


| 356 | 0.0000 | 357 | 0.0009 | 358 | 0.0007 | 359 |  | 0.0392 | 360 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0794 |  |  |  |  |  |  |  |  |  |  |
| 361 | -0.0021 | 362 | -0.0005 | 363 | -0.0143 |  | 364 | 0.0000 |  | 365 |
| 0.0301 |  |  |  |  |  |  |  |  |  |  |
| 366 | 0.0052 | 367 | 0.0000 | 368 | -0.0170 |  | 369 | 0.0024 |  | 370 |
| 0.0123 |  |  |  |  |  |  |  |  |  |  |
| 371 | 0.1694 | 372 | -0.1646 | 373 | -0.0169 | 374 |  | 0.0069 | 375 | - |
| 0.0193 |  |  |  |  |  |  |  |  |  |  |
| 376 | 0.0230 | 377 | 0.0002 | 378 | 0.0005 |  | 379 | -0.0220 |  | 380 |
| 0.0078 |  |  |  |  |  |  |  |  |  |  |
| 381 | -0.0075 | 382 | -0.0001 | 383 | 0.0002 |  | 384 | -0.0003 |  | 385 |
| 0.0026 |  |  |  |  |  |  |  |  |  |  |
| 386 | -0.0021 | 387 | -0.0364 | 388 | 0.0002 |  | 389 | 0.0012 |  | 390 |
| 0.0077 |  |  |  |  |  |  |  |  |  |  |
| 391 | 0.0040 | 392 | -0.0050 | 393 | -0.0010 | 394 |  | -0.0023 | 395 | - |
| 0.0154 |  |  |  |  |  |  |  |  |  |  |
| 396 | 0.0110 | 397 | 0.1710 | 398 | -0.1627 |  | 399 | -0.0121 |  | 400 |
| 0.0172 |  |  |  |  |  |  |  |  |  |  |
| 401 | -0.0001 | 402 | 0.0009 | 403 | 0.0002 | 404 |  | -0.0085 | 405 | - |
| 0.0012 |  |  |  |  |  |  |  |  |  |  |
| 406 | 0.0066 | 407 | -0.0069 | 408 | 0.0000 |  | 409 | 0.0001 |  | 410 |
| 0.0001 |  |  |  |  |  |  |  |  |  |  |
| 411 | 0.0003 | 412 | 0.0000 | 413 | -0.0012 |  | 414 | -0.0002 |  | 415 |
| 0.0074 |  |  |  |  |  |  |  |  |  |  |
| 416 | 0.0021 | 417 | 0.0028 | 418 | 0.0051 | 419 |  | -0.0049 | 420 | - |
| 0.0146 |  |  |  |  |  |  |  |  |  |  |
| 421 | 0.0107 | 422 | -0.0182 | 423 | 0.0129 | 424 |  | 0.1602 | 425 | - |
| 0.1608 (0.010 |  |  |  |  |  |  |  |  |  |  |
| 426 | -0.0079 | 427 | -0.0011 | 428 | -0.0002 |  | 429 | -0.0005 |  | 430 |
| 0.0078 |  |  |  |  |  |  |  |  |  |  |
| 431 | -0.0063 | 432 | 0.0007 | 433 | 0.0068 | 434 |  | -0.0001 | 435 | - |
| 0.0001 |  |  |  |  |  |  |  |  |  |  |
| 436 | -0.0005 | 437 | 0.0001 | 438 | -0.0001 | 439 |  | -0.0002 | 440 | - |
| 0.0011 |  |  |  |  |  |  |  |  |  |  |
| 441 | -0.0116 | 442 | 0.0090 | 443 | -0.0049 | 444 |  | -0.0105 | 445 | - |
| 0.0101 |  |  |  |  |  |  |  |  |  |  |
| 446 | -0.0011 | 447 | 0.0331 | 448 | 0.0189 | 449 |  | 0.0184 | 450 | - |
| 0.0253 |  |  |  |  |  |  |  |  |  |  |
| 451 | -0.0015 | 452 | 0.1558 | 453 | -0.1343 |  | 454 | -0.0020 |  | 455 |
| 0.0004 |  |  |  |  |  |  |  |  |  |  |
| 456 | -0.0003 | 457 | 0.0001 | 458 | 0.0072 | 459 |  | -0.0083 | 460 | - |
| 0.0176 |  |  |  |  |  |  |  |  |  |  |
| 461 | 0.0003 | 462 | -0.0003 | 463 | 0.0001 |  | 464 | -0.0007 |  | 465 |
| 0.0043 |  |  |  |  |  |  |  |  |  |  |
| 466 | 0.0010 | 467 | 0.0004 | 468 | -0.0019 |  | 469 | -0.0115 |  | 470 |
| 0.0082 |  |  |  |  |  |  |  |  |  |  |
| 471 | 0.1726 | 472 | 0.0450 | 473 | -0.0067 | 474 |  | -0.2459 | 475 | - |
| 0.3885 |  |  |  |  |  |  |  |  |  |  |
| 476 | 0.0116 | 477 | 0.2248 | 478 | 0.0943 | 479 |  | 0.0005 | 480 | - |
| 0.0791 |  |  |  |  |  |  |  |  |  |  |
| 481 | -0.2519 | 482 | -0.1718 | 483 | 0.1136 | 484 |  | -0.1797 | 485 | - |
| 0.0188 |  |  |  |  |  |  |  |  |  |  |
| 486 | 0.0070 | 487 | -0.0069 | 488 | 0.0135 | 489 |  | -0.0093 | 490 | - |
| 0.0018 |  |  |  |  |  |  |  |  |  |  |


| 491 | -0.0092 | 492 | -0.0026 | 493 | -0.0601 | 494 |  | 0.0013 | 495 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0307 |  |  |  |  |  |  |  |  |  |  |
| 496 | 0.0175 | 497 | 0.0127 | 498 | 0.0115 |  | 499 | -0. |  | 500 |
| 0.1902 |  |  |  |  |  |  |  |  |  |  |
| 501 | 0.0321 | 502 | -0.2798 | 503 | 0.3226 | 504 |  | 0.4960 | 505 | - |
| 0.0413 |  |  |  |  |  |  |  |  |  |  |
| 506 | 0.1485 | 507 | -0.0438 | 508 | -0.1513 |  | 509 | -0.0 |  | 510 |
| 0.1616 |  |  |  |  |  |  |  |  |  |  |
| 511 | -0.2322 | 512 | 0.0497 | 513 | 0.1060 |  | 514 | -0. |  | 515 |
| 0.0067 |  |  |  |  |  |  |  |  |  |  |
| 516 | 0.0059 | 517 | -0.0159 | 518 | 0.0038 | 519 |  | -0.0038 | 520 | - |
| 0.0087 |  |  |  |  |  |  |  |  |  |  |
| 521 | 0.0017 | 522 | -0.0268 | 523 | -0.0714 | 524 |  | 0.0831 | 525 | - |
| 0.0131 |  |  |  |  |  |  |  |  |  |  |
| 526 | 0.0072 | 527 | -0.0068 | 528 | 0.0146 |  | 529 | -0. |  | 530 |
| 0.0031 |  |  |  |  |  |  |  |  |  |  |
| 531 | 0.2628 | 532 | 0.0810 | 533 | -0.2756 | 534 |  | -0.0173 | 535 | - |
| 0.0779 |  |  |  |  |  |  |  |  |  |  |
| 536 | 0.2473 | 537 | 0.1002 | 538 | -0.0120 | 539 |  | -0.0845 | 540 | - |
| 0.3002 |  |  |  |  |  |  |  |  |  |  |
| 541 | 0.0242 | 542 | -0.0864 | 543 | 0.2102 |  | 544 | -0.0 |  | 545 |
| 0.0030 |  |  |  |  |  |  |  |  |  |  |
| 546 | -0.0065 | 547 | 0.0231 | 548 | 0.0126 | 549 |  | -0.0073 | 550 | - |
| 0.0073 |  |  |  |  |  |  |  |  |  |  |
| 551 | -0.0045 | 552 | -0.0331 | 553 | -0.0467 |  | 554 | 0. |  | 555 |
| 0.0319 |  |  |  |  |  |  |  |  |  |  |
| 556 | 0.0111 | 557 | 0.0119 | 558 | -0.0115 | 559 |  | 0.1934 | 560 | - |
| 0.0032 |  |  |  |  |  |  |  |  |  |  |
| 561 | 0.2919 | 562 | 0.0992 | 563 | -0.0060 | 564 |  | -0.1017 | 565 | - |
| 0.3613 |  |  |  |  |  |  |  |  |  |  |
| 566 | -0.0019 | 567 | 0.1537 | 568 | 0.0517 | 569 |  | -0.0131 | 570 | - |
| 0.0450 |  |  |  |  |  |  |  |  |  |  |
| 571 | -0.1600 | 572 | 0.0079 | 573 | 0.0061 | 574 |  | -0.0060 | 575 | - |
| 0.1301 |  |  |  |  |  |  |  |  |  |  |
| 576 | 0.0983 | 577 | -0.1008 | 578 | 0.1100 |  | 579 | -0. |  | 580 |
| 0.0001 |  |  |  |  |  |  |  |  |  |  |
| 581 | -0.0029 | 582 | 0.0010 | 583 | -0.0767 | 584 |  | -0.0126 | 585 | - |
| 0.0113 |  |  |  |  |  |  |  |  |  |  |
| 586 | 0.0214 | 587 | 0.0034 | 588 | 0.0030 |  | 589 | -0. |  | 590 |
| 0.3415 |  |  |  |  |  |  |  |  |  |  |
| 591 | -0.0188 | 592 | 0.3804 | 593 | 0.1957 | 594 |  | -0.0501 | 595 | - |
| 0.1803 |  |  |  |  |  |  |  |  |  |  |
| 596 | -0.0288 | 597 | 0.2619 | 598 | -0.0289 |  | 599 | 0. |  | 600 |
| 0.0558 |  |  |  |  |  |  |  |  |  |  |
| 601 | -0.3502 | 602 | 0.0748 | 603 | 0.2161 |  | 604 | -0. |  | 605 |
| 0.0069 |  |  |  |  |  |  |  |  |  |  |
| 606 | 0.0085 | 607 | -0.1150 | 608 | 0.0478 | 609 |  | 0.0474 | 610 | - |
| 0.1028 |  |  |  |  |  |  |  |  |  |  |
| 611 | 0.0005 | 612 | 0.0020 | 613 | 0.0010 | 614 |  | -0.0027 | 615 | - |
| 0.0270 |  |  |  |  |  |  |  |  |  |  |
| 616 | -0.0078 | 617 | 0.0031 | 618 | 0.0073 | 619 |  | 0.0714 | 620 | - |
| 0.0713 |  |  |  |  |  |  |  |  |  |  |
| 621 | 0.0123 | 622 | -0.0174 | 623 | 0.2686 | 624 |  | -0.0255 | 625 | - |
| 0.0110 |  |  |  |  |  |  |  |  |  |  |



| 761 | -0.0001 | 762 | -0.0003 | 763 | 0.0008 | 764 | 0.0086 |  | 765 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0129 |  |  |  |  |  |  |  |  |  |
| 766 | -0.0082 | 767 | -0.0035 | 768 | 0.0017 | 769 | 0.0049 |  | 770 |
| 0.0017 |  |  |  |  |  |  |  |  |  |
| 771 | 0.0141 | 772 | 0.0083 | 773 | -0.0110 | 774 | 0.0100 | 775 | - |
| 0.0192 |  |  |  |  |  |  |  |  |  |
| 776 | -0.0011 | 777 | -0.0015 | 778 | -0.0030 | 779 | 0.0020 | 780 | - |
| 0.0028 |  |  |  |  |  |  |  |  |  |
| 781 | 0.0023 | 782 | -0.0025 | 783 | -0.0005 | 784 | 0.0026 | 785 | - |
| 0.0415 |  |  |  |  |  |  |  |  |  |
| 786 | 0.0000 | 787 | -0.0001 | 788 | -0.0001 | 789 | -0.0001 |  | 790 |
| 0.0623 |  |  |  |  |  |  |  |  |  |
| 791 | -0.0940 | 792 | -0.0002 | 793 | 0.0002 | 794 | 0.0000 |  | 795 |
| 0.0033 |  |  |  |  |  |  |  |  |  |
| 796 | -0.0353 | 797 | -0.0001 | 798 | 0.0000 | 799 | 0.0000 | 800 | - |
| 0.0001 |  |  |  |  |  |  |  |  |  |
| 801 | 0.0028 | 802 | 0.0001 | 803 | -0.0062 | 804 | 0.0002 |  | 805 |
| 0.0007 |  |  |  |  |  |  |  |  |  |
| 806 | 0.0009 | 807 | -0.0050 | 808 | 0.0045 | 809 | 0.0078 | 810 | - |
| 0.0996 |  |  |  |  |  |  |  |  |  |
| 811 | -0.0001 | 812 | 0.0012 | 813 | -0.0007 | 814 | 0.0252 |  | 815 |
| 0.0158 |  |  |  |  |  |  |  |  |  |
| 816 | 0.0056 | 817 | -0.0121 | 818 | -0.0067 | 819 | 0.0049 |  | 820 |
| 0.0108 |  |  |  |  |  |  |  |  |  |
| 821 | 0.0048 | 822 | -0.0059 | 823 | 0.0018 | 824 | -0.0012 |  | 825 |
| 0.3128 |  |  |  |  |  |  |  |  |  |
| 826 | 0.0074 | 827 | 0.0013 | 828 | 0.0010 | 829 | 0.0003 |  | 830 |
| 0.0000 |  |  |  |  |  |  |  |  |  |
| 831 | 0.0004 | 832 | 0.0003 | 833 | 0.0005 | 834 | -0.0651 | 835 | - |
| 0.0654 |  |  |  |  |  |  |  |  |  |
| 836 | 0.0128 | 837 | -0.0035 | 838 | -0.0029 | 839 | 0.0077 |  | 840 |
| 0.0003 |  |  |  |  |  |  |  |  |  |
| 841 | -0.0004 | 842 | -0.0006 | 843 | -0.0219 | 844 | -0.0317 |  | 845 |
| 0.0043 |  |  |  |  |  |  |  |  |  |
| 846 | 0.0042 | 847 | 0.0030 | 848 | -0.0038 | 849 | 0.0004 | 850 | - |
| 0.0004 |  |  |  |  |  |  |  |  |  |
| 851 | -0.0007 | 852 | -0.0001 | 853 | -0.0038 | 854 | 0.0141 | 855 | - |
| 0.0015 |  |  |  |  |  |  |  |  |  |
| 856 | -0.0056 | 857 | 0.0020 | 858 | 0.0060 | 859 | 0.0150 |  | 860 |
| 0.0020 |  |  |  |  |  |  |  |  |  |
| 861 | -0.0074 | 862 | -0.0030 | 863 | -0.0026 | 864 | -0.0215 8 | 865 | - |
| 0.0034 |  |  |  |  |  |  |  |  |  |
| 866 | 0.0002 | 867 | -0.0058 | 868 | -0.0001 | 869 | 0.0000 | 870 | - |
| 0.0005 (0.0834 |  |  |  |  |  |  |  |  |  |
| 871 | -0.0001 | 872 | 0.0000 | 873 | 0.0005 | 874 | 0.083487 | 875 | - |
| 0.0471 |  |  |  |  |  |  |  |  |  |
| 876 | -0.0376 | 877 | 0.0354 | 878 | 0.0020 | 879 | -0.0022 |  | 880 |
| 0.0056 |  |  |  |  |  |  |  |  |  |
| 881 | -0.0001 | 882 | 0.0000 | 883 | 0.0009 | 884 | 0.0129 |  | 885 |
| 0.0064 |  |  |  |  |  |  |  |  |  |
| 886 | 0.0187 | 887 | 0.0036 | 888 | 0.0059 | 889 | -0.0071 |  | 890 |
| 0.0000 ( 0 |  |  |  |  |  |  |  |  |  |
| 891 | -0.0011 | 892 | -0.0005 | 893 | -0.0002 | 894 | -0.0007 | 895 | - |
| 0.0066 |  |  |  |  |  |  |  |  |  |




| 1166 | -0.0131 | 1167 | 0.0119 | 1168 | -0.0400 | 01169 | -0.0339 | 1170 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0014 |  |  |  |  |  |  |  |  |
| 1171 | -0.0012 | 1172 | 0.0031 | 1173 | -0.0018 | 81174 | -0.0008 | 1175 |
| 0.0066 |  |  |  |  |  |  |  |  |
| 1176 | -0.0038 | 1177 | 0.0040 | 1178 | -0.0362 1 | 1179 | -0.0204 1180 | - |
| 0.0185 |  |  |  |  |  |  |  |  |
| 1181 | -0.0281 | 1182 | -0.0173 | 1183 | -0.0201 | 1184 | -0.0469 | 1185 |
| 0.0083 |  |  |  |  |  |  |  |  |
| 1186 | 0.0356 | 1187 | -0.0403 | 1188 | 0.0045 | 51189 | -0.0265 | 1190 |
| 0.0540 |  |  |  |  |  |  |  |  |
| 1191 | -0.0130 | 1192 | 0.0003 | 1193 | 0.0141 | 1194 | -0.0081 1195 | - |
| 0.0299 0.0.0141 1194 -0.0081 |  |  |  |  |  |  |  |  |
| 1196 | 0.0009 | 1197 | -0.0005 | 1198 | -0.0001 | 1199 | -0.0032 1200 | - |
| 0.0044 -0.000 1190 |  |  |  |  |  |  |  |  |
| 1201 | 0.0263 | 1202 | -0.0002 | 1203 | 0.0003 | 31204 | 0.0004 | 1205 |
| 0.0001 |  |  |  |  |  |  |  |  |
| 1206 | -0.0083 | 1207 | 0.0091 | 1208 | -0.0007 1 | 1209 | -0.0004 1210 | - |
| 0.0007 |  |  |  |  |  |  |  |  |
| 1211 | 0.0004 | 1212 | -0.0031 | 1213 | 0.0001 | 11214 | -0.0232 | 1215 |
| 0.0005 |  |  |  |  |  |  |  |  |
| 1216 | -0.0003 | 1217 | -0.0001 | 1218 | 0.01251 | 1219 | -0.0072 1220 | - |
| 0.0058 |  |  |  |  |  |  |  |  |
| 1221 | 0.0207 | 1222 | -0.0110 | 1223 | -0.0019 1 | 1224 | 0.01061225 | - |
| 0.0007 0.020 1225 |  |  |  |  |  |  |  |  |
| 1226 | -0.0006 | 1227 | -0.0007 | 1228 | -0.0036 | 1229 | 0.0063 | 1230 |
| 0.0043 (0.0.0. 1220 |  |  |  |  |  |  |  |  |
| 1231 | 0.0074 | 1232 | 0.0073 | 1233 | 0.0005 | 51234 | 0.0087 | 1235 |
| 0.0001 |  |  |  |  |  |  |  |  |

## List of Publications

1. Infrared spectra of dimethyl naphthalenes in gas phase, Prasanta Das, E. Arunan, Puspendu K. Das, Vibr. Spectrosc. 2008, 47, 1-9.
2. Production of paclitaxel by Fusarium solani isolated from Taxus celebica, B.V.S.K Chakravarthi, Prasanta Das, Kalpana Surendranath, Anjali A. Karande and Chelliah Jayabaskaran, J. Biosci. 2008, 32, 259-267.
3. Infrared Spectra of Dimethylquinolines in the Gas Phase: Experiment and Theory, Prasanta Das, S. Manogaran, E. Arunan and Puspendu K. Das, J. Phys .Chem. A 2010, 114, 8351-8358.
4. Isomeric identification of methylated naphthalenes using gas phase infrared spectroscopy, Shubhadip Chakraborty, Prasanta Das, and Puspendu K. Das, Accepted in Ind. J. Phys. 2010.
5. Is there Intramolecular Hydrogen Bonding in Diols? An FT-IR and DFT investigation, Prasanta Das, Puspendu K. Das and E. Arunan, Manuscript ready for submission in J. Phys. Chem. A 2010.
6. An Experimental and Theoretical investigation of IR spectra of dimethylphenanthrenes in the gas phase, Prasanta Das, E. Arunan and Puspendu K. Das, Manuscript under correction.

[^0]:    ${ }^{b}$ Not a stationary point at this level of theory.

