
 1 

IP326. Lecture 9. Thursday, Jan. 31, 2019 

 

 

In the model of 1-d coupled harmonic oscillators introduced earlier,  we derived the 

following expression for the normalized velocity autocorrelation function of the central 

heavy particle: 
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The time dependence of )(tCvv  in this expression is still only implicit; to determine how  

it depends on time explicitly, the Laplace inverse of the function 

)](ˆ1/[)(ˆ)(ˆ 2 sQssssG    must be calculated. To carry out this calculation, we need an 

expression for the function )(ˆ s , which at the moment is known only through its 

definition in terms of the following integral:  
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As it turns out, an exact evaluation of this integral is possible. The evaluation begins with 

the change of variable xNl / , producing  
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An indefinite integral of this form is known, and is given by    
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That this result is indeed correct can be verified by differentiating the right hand side, and 

showing that the original integrand is exactly recovered. The demonstration proceeds as 

follows:  
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If Eq. (4) is now used in Eq. (3), along with the formulas 0)0(tan 1   and 

2/)(tan 1  , we find that 
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Substitution of the above expression into Eq. (1) leads to  
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Unfortunately, for arbitrary values of the parameter Q, it doesn’t seem possible to find an 

analytical expression for the Laplace inverse in Eq. (6). But there are two special cases 

for which such an expression is known: one is 0Q , corresponding to mM  , and the 

other is 1Q , corresponding to mM 2 . We’ll consider only the second case for now; 

for this case it can shown that  
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where )(1 zJ  is a special function called the Bessel function of order 1; it is a solution to 

the following differential equation 
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For our purposes, it’s enough to know how 
1J  varies as a function of its argument, which 

is as shown below. 
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This means that as a function of  the reduced time tbmt 4// ,  )(tCvv  itself varies as 
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This time-dependence shares many similarities with the decay profile of the 

corresponding velocity autocorrelation function of realistically simulated liquids, as the 

figure below, taken from a paper by Levesque and Verlet [Phys. Rev. A 2, 2514 (1970)], 

illustrates. 
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The shapes of these curves in different regions of the graph can be plausibly explained as 

follows: at times less than or on the order of the characteristic collision time (which 

corresponds roughly to when the correlation function first vanishes) a particle’s velocity 

at time t retains some memory of its velocity at time 0, causing the product of initial and 

final velocities to be positive on average. At later times, when particles have begun to 

experience the effects of collisions, the chances are greater that a significant number of 

the collisions reverse a particle’s trajectory, causing its initial and final velocities to be of 

opposite sign, and their product to be negative on average. Repeated inter-particle 

collisions at still later times lead eventually to complete decorrelation of these velocities, 

and the velocity correlation function then vanishes. But these effects depend on the state 

of the liquid; at high temperatures, for instance (see the figure above), or low density, the 

correlation function can remain positive at all times. Indeed, this is the case for gases at 

ambient conditions. So the local environment around a particle and the strength of their 

mutual interactions plays a key role in how the particle’s velocities are correlated from 

instant to instant.  

 

 

● Time correlation functions, transport coefficients and linear response 

 

          As indicated at the outset of these lectures, the importance of time correlation 

functions lies in the fact that they are related to a set of physical quantities called 

transport coefficients. Broadly speaking, transport coefficients measure the response of a 

system in equilibrium to the effects of an external force. As a specific example, consider 

a system consisting of a length of metallic wire. If a voltage difference is applied to the 

ends of the wire, electrons from the metal are transported from one end to the other, 

generating an electric current. The strength of this current is controlled by the wire’s 

electrical conductivity, which is one type of transport coefficient; its value is unique to 

the kind of material carrying the current. Another type of transport coefficient – also 

system-specific – is associated with the response of a fluid, initially in thermal 

equilibrium, to a temperature gradient. The response in this case is a flow of heat, the 

extent of which is controlled by a transport coefficient called the thermal conductivity. In 

the same way, all absorption spectroscopy measurements are essentially probes of the 

response of  a system to weak electromagnetic fields, the nature of the response 

(manifested as an attenuation of the transmitted light intensity) again being dictated by a 

parameter  – the extinction coefficient in this instance – intrinsic to the perturbed system.  

 

          The general framework in which we’ll relate these kinds of coefficients to time 

correlation functions is called linear response theory, the qualifying adjective ‘linear’ 

referring to a regime in which the applied forces are sufficiently weak that their effects 

are only manifested at linear order in the force. Before we apply this formalism to the 

calculation of specific transport coefficients, we’ll set down a set of general criteria that 

we believe a system should satisfy to fall within the ambit of the linear response 

framework.  
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● General aspects of linear response  

  

        Consider a system that when perturbed by an external time-dependent force F(t) 

responds by producing a time-dependent signal S(t). Let’s require that F(t) be such that 

S(t) has these characteristic features: 

 

(i) ttS  ,0)(   when 0)( tF  (meaning, the system produces no signal if it’s left 

alone.) 

(ii) S(t) is produced only after F(t) is applied (meaning, the response of the system is 

causal.) 

(iii) (a) The magnitude of S(t) is changed by   when F(t) is changed by   (meaning, a  

system’s response is proportional to the applied force.) 

(b) If two separate forces, )(1 tF  and )(2 tF , produce separate signals )(1 tS  and  )(2 tS , 

then )()( 21 tFtF   produces )()( 21 tStS   (meaning, the system’s  response is linear.) 

(iv) The magnitude of the signal is independent of the time at which the force is applied 

(meaning, if F(t) produces S(t), then )( ttF   produces )( ttS  ; i.e., the response of the 

system is stationary.) 

 

       For a system whose response to an external force has the above characteristics, i.e., it 

is linear, causal and stationary, the relation between S(t) and F(t) is given, very generally 

by 
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where )(t  is called a response function. It is systems with these general features that  

we’ll henceforth restrict our attention to.  

 

       It’s immediately obvious that Eq. (8) satisfies properties (i) – (iii); to show that it also 

satisfies property (iv), imagine changing F(t) to )(tF  , where )()( 1ttFtF  . Let )(tS   

be the new signal that’s produced. From Eq. (8), we have 
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Change variables from t  to 1ttx  . Eq. (9) then becomes 
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The right hand side of this expression is the definition of )( 1ttS  , so the new signal is 

“time advanced” by exactly the same amount as the applied for is, and (8) therefore 

fulfills the stationarity condition of the system’s response.  

 

 

● Determination of the response function )(t  

 

            The foregoing considerations tell us nothing about the structure of the function 

)(t , but if F(t) is weak, as we’ll assume, it can only depend on properties that are 

intrinsic to the system alone, properties the system has, in other words, when it is 

unperturbed by the force. We would now like to obtain an expression for )(t  in terms 

of these properties.  

 

            For this purpose, consider a system initially in thermal equilibrium at temperature 

T. At some arbitrary time 0t , imagine applying a weak time-dependent field  to it, and 

then measuring the value of some property A of the system at a later time t. A can be 

identified with the signal S of the previous section. Repeat this process many times and 

average the measured values of A; the result is the value expA , which we’ll assume can be 

obtained from statistical mechanics by calculating the ensemble average of A according 

to the prescription 

 

                                                      ),()()( tfAdtA                                             (10) 

 

where ),( tf   is the density of microstates at time t that have evolved from the 

microstate   at time 0t ; it is not the equilibrium density distribution )(0 f . However, 

because the field is weak we expect that the two will not be all that different from each 

other. Accordingly, it should be reasonable to write  

 

                                                     )()(),( 0 tfftf                                                (11) 

 

where )(tf  is some as yet unknown time-dependent correction factor. Now the 

evolution of ),( tf   – its time-dependence, that is  – is governed by the system’s 

Hamiltonian H , which we’ll also assume is not very different from its field-free value 

0H , and can therefore be approximated as  

 

                                                 )()()(),( 0 tFBHtH                                            (12) 

 

where )(B  is some other property of the unperturbed system that F(t) couples to when 

it interacts with the system. What we’ll now do is use Eqs. (11) and (12) in the Liouville 

equation, solve for )(tf , use the result to determine ),( tf  , and then use ),( tf   to 

calculate )(tA , and thereby, hopefully, identify the structure of )(t .  

     


