IP326. Lecture 9. Thursday, Jan. 31, 2019

In the model of 1-d coupled harmonic oscillators introduced earlier, we derived the
following expression for the normalized velocity autocorrelation function of the central
heavy particle:
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The time dependence of C_, (t) in this expression is still only implicit; to determine how
it depends on time explicitly, the Laplace inverse of the function
G(s) = sq3(s) /[1+Qsz¢3(s)] must be calculated. To carry out this calculation, we need an
expression for the function @(s), which at the moment is known only through its
definition in terms of the following integral:
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As it turns out, an exact evaluation of this integral is possible. The evaluation begins with
the change of variable -1 /N = x, producing
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An indefinite integral of this form is known, and is given by
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That this result is indeed correct can be verified by differentiating the right hand side, and
showing that the original integrand is exactly recovered. The demonstration proceeds as
follows:
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If Eq. (4) is now used in Eqg. (3), along with the formulas tan'(0)=0 and
tan " (o0) = /2, we find that
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Substitution of the above expression into Eq. (1) leads to
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Unfortunately, for arbitrary values of the parameter Q, it doesn’t seem possible to find an
analytical expression for the Laplace inverse in Eq. (6). But there are two special cases
for which such an expression is known: one is Q =0, corresponding to M =m, and the

other is Q =1, corresponding to M =2m. We’ll consider only the second case for now;
for this case it can shown that
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where J,(z) is a special function called the Bessel function of order 1; it is a solution to
the following differential equation
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For our purposes, it’s enough to know how J, varies as a function of its argument, which
is as shown below.
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This means that as a function of the reduced time t/~/m/4b =t, C,(t) itself varies as
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This time-dependence shares many similarities with the decay profile of the
corresponding velocity autocorrelation function of realistically simulated liquids, as the

figure below, taken from a paper by Levesque and Verlet [Phys. Rev. A 2, 2514 (1970)],
illustrates.

FIG. 2. Normalized velocity autocorrelation function
f(#) for density p =0.85. Solid line: T =4.70; dashed
line: T'=0.76. The time units are equal to 0. 128 re-
duced units, i.e., 4.107! sec for argon.



The shapes of these curves in different regions of the graph can be plausibly explained as
follows: at times less than or on the order of the characteristic collision time (which
corresponds roughly to when the correlation function first vanishes) a particle’s velocity
at time t retains some memory of its velocity at time 0, causing the product of initial and
final velocities to be positive on average. At later times, when particles have begun to
experience the effects of collisions, the chances are greater that a significant number of
the collisions reverse a particle’s trajectory, causing its initial and final velocities to be of
opposite sign, and their product to be negative on average. Repeated inter-particle
collisions at still later times lead eventually to complete decorrelation of these velocities,
and the velocity correlation function then vanishes. But these effects depend on the state
of the liquid; at high temperatures, for instance (see the figure above), or low density, the
correlation function can remain positive at all times. Indeed, this is the case for gases at
ambient conditions. So the local environment around a particle and the strength of their
mutual interactions plays a key role in how the particle’s velocities are correlated from
instant to instant.

e Time correlation functions, transport coefficients and linear response

As indicated at the outset of these lectures, the importance of time correlation
functions lies in the fact that they are related to a set of physical quantities called
transport coefficients. Broadly speaking, transport coefficients measure the response of a
system in equilibrium to the effects of an external force. As a specific example, consider
a system consisting of a length of metallic wire. If a voltage difference is applied to the
ends of the wire, electrons from the metal are transported from one end to the other,
generating an electric current. The strength of this current is controlled by the wire’s
electrical conductivity, which is one type of transport coefficient; its value is unique to
the kind of material carrying the current. Another type of transport coefficient — also
system-specific — is associated with the response of a fluid, initially in thermal
equilibrium, to a temperature gradient. The response in this case is a flow of heat, the
extent of which is controlled by a transport coefficient called the thermal conductivity. In
the same way, all absorption spectroscopy measurements are essentially probes of the
response of a system to weak electromagnetic fields, the nature of the response
(manifested as an attenuation of the transmitted light intensity) again being dictated by a
parameter — the extinction coefficient in this instance — intrinsic to the perturbed system.

The general framework in which we’ll relate these kinds of coefficients to time
correlation functions is called linear response theory, the qualifying adjective ‘linear’
referring to a regime in which the applied forces are sufficiently weak that their effects
are only manifested at linear order in the force. Before we apply this formalism to the
calculation of specific transport coefficients, we’ll set down a set of general criteria that
we believe a system should satisfy to fall within the ambit of the linear response
framework.




e General aspects of linear response

Consider a system that when perturbed by an external time-dependent force F(t)
responds by producing a time-dependent signal S(t). Let’s require that F(t) be such that
S(t) has these characteristic features:

() S(t)=0, vt when F(t) =0 (meaning, the system produces no signal if it’s left
alone.)

(i) S(t) is produced only after F(t) is applied (meaning, the response of the system is
causal.)

(iii) (a) The magnitude of S(t) is changed by A when F(t) is changed by A (meaning, a
system’s response is proportional to the applied force.)

(b) If two separate forces, F, (t) and F,(t), produce separate signals S,(t) and S,(t),
then F,(t) + F,(t) produces S, (t) + S,(t) (meaning, the system’s response is linear.)

(iv) The magnitude of the signal is independent of the time at which the force is applied
(meaning, if F(t) produces S(t), then F(t—t") produces S(t—t'); i.e., the response of the

system is stationary.)

For a system whose response to an external force has the above characteristics, i.e., it
is linear, causal and stationary, the relation between S(t) and F(t) is given, very generally

by
t
S(t) = [dtz(t—t)F(t) ®)
where y(t) is called a response function. It is systems with these general features that
we’ll henceforth restrict our attention to.
It’s immediately obvious that Eq. (8) satisfies properties (i) — (iii); to show that it also

satisfies property (iv), imagine changing F(t) to F'(t), where F'(t)=F(t—t). Let S'(t)
be the new signal that’s produced. From Eq. (8), we have

S'(t) = jdt’;g(t —t)F('-t) 9)

Change variables from t’ to x =t"—t,. Eq. (9) then becomes
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The right hand side of this expression is the definition of S(t—t,), so the new signal is

“time advanced” by exactly the same amount as the applied for is, and (8) therefore
fulfills the stationarity condition of the system’s response.

e Determination of the response function y(t)

The foregoing considerations tell us nothing about the structure of the function
x(t), but if F(t) is weak, as we’ll assume, it can only depend on properties that are

intrinsic to the system alone, properties the system has, in other words, when it is
unperturbed by the force. We would now like to obtain an expression for y(t) in terms

of these properties.

For this purpose, consider a system initially in thermal equilibrium at temperature
T. At some arbitrary time t =0, imagine applying a weak time-dependent field to it, and
then measuring the value of some property A of the system at a later time t. A can be
identified with the signal S of the previous section. Repeat this process many times and

average the measured values of A; the result is the value Rxp , which we’ll assume can be

obtained from statistical mechanics by calculating the ensemble average of A according
to the prescription

<Aa»==jdrAajf(r¢) (10)

where f(I',t) is the density of microstates at time t that have evolved from the
microstate " at time t = 0; it is not the equilibrium density distribution f,(I"). However,

because the field is weak we expect that the two will not be all that different from each
other. Accordingly, it should be reasonable to write

f(0,t) ~ f, (D) + Af (t) (12)

where Af(t) is some as yet unknown time-dependent correction factor. Now the
evolution of f(I',t) — its time-dependence, that is — is governed by the system’s
Hamiltonian H , which we’ll also assume is not very different from its field-free value
H,, and can therefore be approximated as

H(T', 1) = Ho(I') - B(N)F (1) (12)

where B(I") is some other property of the unperturbed system that F(t) couples to when

it interacts with the system. What we’ll now do is use Egs. (11) and (12) in the Liouville
equation, solve for Af(t), use the result to determine f(I',t), and then use f(I',t) to

calculate <A(t)>, and thereby, hopefully, identify the structure of y(t) .



