IP326. Lecture 8. Tuesday, Jan. 29, 2019

In the model of linked 1-d harmonic oscillators introduced in the last lecture, we
found that the dynamics of the 2N light particles and the single heavy one that defined the
model could be described by the following equation

[m+ (M —m)s, (1%, (t) = b[x,_; (1) — 2%, (1) + X, (V)] (1)

where, as we’d stated earlier, M is the mass of the heavy particle, m the mass of the light
particles, b the stiffness of the springs connecting adjacent particles, and x;(t) the
position of the ith particle at time t.

As the first step in the solution of this equation (which is actually a set of coupled
equations), we’ll introduce a new variable q;, called a normal mode or a collective

coordinate, that will allow us to decouple these equations. This variable is defined
through the relation:
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where i now refers to v—1 (and not to a particle label.) Equation (2) is the discrete
representation of a Fourier integral.

The next step in the solution of Eq. (1) is to rewrite it in terms of this new variable. But to
do so, we first need to invert Eq. (2), i.e., to express q;as a function of the x,'s. This can
be done exactly, but the necessary algebra — though fairly routine — is somewhat
involved. It turns out, however, that one can get to essentially the same final result much
more simply by making a few approximations, of which the key is to assume that because
N is large (it could be on the order of Avogadro’s number, for instance), the discrete
variable j can be regarded as continuous, and that the sum over this variable in Eq. (2) can
therefore be replaced by an integral. If we do this, we get
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Now multiply both sides of this equation by exp(zikl/N) (I being another variable that

can take on values from — N to + N ), and integrate over k (which like j —and | — we’ll
treat for the moment as continuous.) This leads to
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By symmetry, there is no contribution to the above integral from the sine term, so after
noting that the cosine term is an even function of k, Eq. (4) becomes
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When the sine function on the right hand side of Eq. (5) is evaluated at k =0 (the lower
limit), the result is 0; when it is evaluated at k = N (the upper limit), the result is
sin(z(1 — j)) . Now we’d said that | and j were to be treated as continuous variables, but if
we revert temporarily to their original meaning and consider them again as integers, then
sin(z(1 — j)) will vanish whenever | = j. But what if |1 = j? Ordinarily, the function
would be 0 in this limit too, but in Eq. (5) the function is also divided by | — j, which
also vanishes. So the ratio of sin(z(l — j)) to | — j is indefinite, and its value must be
determined by a limiting procedure, either by ’Hospital’s rule, or by first expanding the

sine in series, and only then setting | to j. Either way the result is unity. This means we
can write

sin(zk(1 = §)/N) v s
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Therefore,
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After substituting Eq. (6a) into (5), and carrying out the trivial integral over g;, we end
up with
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which, formally, is the inverse of the expression in Eq. (3). Had we carried out these
operations exactly, by treating j, k and | as discrete variables from the outset, we would
have found that
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We can now return to Eqg. (1), and we proceed to find its solution by multiplying
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equation then becomes

both sides by exp(izkl/N)and integrating over k. The left hand side of the
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As for the right hand side of Eq. (1), we’ll treat the terms there one by one, starting with
the term involving x, ,, which after carrying out the indicated steps becomes
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In the same way, for the term in x,,,, we have
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while for the term in x,, we have already derived the relevant result: it is given in Eq.

(7a). So putting Egs. (7a), (8) — (10) together, we find the following equation for the
variable q;:
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= 2bq, (t)[cos(7 / N) —1] (11)

If we substitute the definitions Q =(M —m)/mand o’ = %b[l—cos(zzl /N)] into the

above equation, we’re finally left with

. Q. __ 2
G (1) + 2N X)) =-q,t)o (12)

This is now truly a single equation in the variable q,(t) and X,(t), and the way we’ll
treat it is by a technique known as Laplace transformation. The Laplace transform of a
function f(t)is, by definition, a new function f(s) that is obtained from the old by
multiplying it by e~ and then integrating the product over t from 0 to oo . That is

f(s) = T dte ' f (t) (13)

The great utility of Laplace transforms lies in what they do when they’re applied to the
derivative of a function. So consider the Laplace transform of d?f(t)/dt*, which by
definition is the integral

¢ 3d? f(t)

[(s) = j dte (14)

which is a function of the Laplace variable s. Suppose we integrate [(s) by parts twice;
the result is

+ s{e‘“ f (t)\;" + sT dte ' f (t)} (15)

The variable s is actually complex, but so long as Re(s) >0 and f(t) and its derivatives
are finite at «, the surface terms in Eg. (15) vanish at the upper limit. So we’re left with

[(s)=—f(0)—sf (0)+s2f(s),

which is an algebraic function of f(s) and of two initial conditions, f (0) and f(0),
both of which, typically, are known or can be specified; the derivative has been
eliminated. Thus, when a Laplace transform is applied to a differential equation, it leads
to an algebraic equation in the Laplace transformed function, which is usually easily



solved. But then to recover the original function, the solution to this algebraic equation
must be Laplace inverted; that step — about which more later — can sometimes be hard.

With this background, let’s Laplace transform both sides of Eq. (12). This leads to
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which as advertised is an algebraic equation in Laplace transformed functions. But it also
includes terms involving the initial values of the original functions. We’re free to specify
what these values are, and we’ll make the choice Xx,(0)=0 for all I, and
X, (0) =v,(0) =0for all | except | =0. We’re assuming, therefore, that all the particles

start out at the same point, and all of them, except the heavy particle, start out with 0
velocity. If for the moment we revert once again to the discrete representation of the
normal modes (see Eq. (7b)), these conditions mean that
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When these initial conditions are substituted into Eq. (16), we find, after gathering like
terms and rearranging, that
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Since we’re interested in the dynamics of the heavy particle, we’d like to eliminate the
collective coordinates ¢, (s) in the above equation in favour of the coordinate X,(s) of

this particle. The relation between these two is contained in Eq. (3); if we set k to 0 in
that equation, and then Laplace transform both sides, we get

A0S = s [ 616, = [a14.()

So if we multiply Eq. (17) by 1/+/2N and integrate both side over | from —N to N, we
transform the equation to
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where ¢(s) is the function
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Equation (18a) is more usefully rewritten as
8. (s) = M Yo(0)g(s) (19)

M 1+Qsg(s)
In this form, we can make a connection to the velocity of the heavy particle at time ft,
which is what we need to finally obtain an expression for the particle’s velocity

autocorrelation function, the quantity we’re interested in. This connection is made by
taking the Laplace transform of v,(t), an operation we’ll now represent by the symbol

L. Soacting L on v,(t) we get

Ly, (t) = T dte v, (t)
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where the last line follows from our choice of initial condition, viz., x,(0) =0, VI.

It’s possible to formally invert Eq. (20) by acting an inverse Laplace operator, £,
on both sides of the equation; for the moment, we won’t worry about what it actually
means to perform this operation, and simply note that in combination with Eq. (19) it
leads to the following

Vo (1) = L7s8,(5)
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From here it’s a simple matter to derive an expression for the velocity autocorrelation
function — just multiply both sides of Eq. (21) by v,(0) and take the ensemble average.

After dividing the result by <v§(0)>, we obtain the following normalized velocity
autocorrelation function
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This is the result we were after, but we still have to carry out one final step to complete
the calculation and obtain a definite functional form of the autocorrelation function; that
step is to Laplace invert the s-dependent function on the right hand side. What we mean

by Laplace inverting a function F(s)is finding a function F(t) that when Laplace
transformed produces F(s). For some functions of s that’s easy to do. For instance, if

n+1

F (s) were given by F(s)=1/s
you to deduce that

, Where n is, an integer, some guesswork would allow

LF(s) = F(t)=$t”

a result that you can confirm to be correct by taking the Laplace transform of F(t), and
showing that it recovers the given F(s). By similarly working backwards, you could

also figure out that the Laplace inverse of F(s)=1/(s+a) is the function F(t)=e™.

But for complicated functions of s, this approach is clearly not practical. There is,
however, a formula for calculating Laplace inverses, which is

F(t) = %i dse*F (s)

This is a contour integral that must be evaluated along a particular path C. The subject of
contour integration lies outside the scope of this course, we won’t attempt to determine
Laplace inverses using the above formula. Instead we’ll note that many textbooks provide
tables of Laplace transforms and their inverses, and we’ll simply refer to one of them to
get the answer we want.

In the present problem, the function we need to invert is G(s) = s¢3(s) 1+ Qsz(,z?(s)]
(cf. Eq. (22)). To carry out this operation, we have first have to determine the explicit
dependence of G(s) on s, which in turns requires that we know how 413(3) depends on s.
We’ll turn to this calculation next.



