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IP326. Lecture 8. Tuesday, Jan. 29, 2019 

 

 

       In the model of linked 1-d harmonic oscillators introduced in the last lecture, we 

found that the dynamics of the 2N light particles and the single heavy one that defined the 

model could be described by the following equation 
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where, as we’d stated earlier, M is the mass of the heavy particle, m the mass of the light 

particles, b the stiffness of the springs connecting adjacent particles, and )(txi  the 

position of the ith particle at time t.  

 

      As the first step in the solution of this equation (which is actually a set of coupled 

equations), we’ll introduce a new variable jq , called a normal mode or a collective 

coordinate, that will allow us to decouple these equations. This variable is defined 

through the relation: 
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where i now refers to 1  (and not to a particle label.) Equation (2) is the discrete 

representation of a Fourier integral.  

 

The next step in the solution of Eq. (1) is to rewrite it in terms of this new variable. But to 

do so, we first need to invert Eq. (2), i.e., to express jq as a function of the s'kx . This can 

be done exactly, but the necessary algebra  – though fairly routine – is somewhat 

involved. It turns out, however,  that one can get to essentially the same final result much 

more simply by making a few approximations, of which the key is to assume that because 

N is large (it could be on the order of Avogadro’s number, for instance), the discrete 

variable j can be regarded as continuous, and that the sum over this variable in Eq. (2) can 

therefore be replaced by an integral. If we do this, we get 
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Now multiply both sides of this equation by )/exp( Nikl  (l being another variable that 

can take on values from N  to N ), and integrate over k (which like j – and l  – we’ll 

treat for the moment as continuous.) This leads to 
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By symmetry, there is no contribution to the above integral from the sine term, so after 

noting that the cosine term is an even function of k, Eq. (4)  becomes 
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When the sine function on the right hand side of Eq. (5) is evaluated at 0k (the lower 

limit), the result is 0; when it is evaluated at Nk  (the upper limit), the result is 

))(sin( jl  . Now we’d said that l and j were to be treated as continuous variables, but if 

we revert temporarily to their original meaning and consider them again as integers, then 

))(sin( jl   will vanish whenever jl  . But what if jl  ? Ordinarily, the function 

would be 0 in this limit too, but in Eq. (5) the function is also divided by jl  , which 

also vanishes. So the ratio of ))(sin( jl   to jl   is indefinite, and its value must be 

determined by a limiting procedure, either by l’Hospital’s rule, or by first expanding the 

sine in series, and only then setting l to j. Either way the result is unity. This means we 

can write 
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Therefore, 
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After substituting Eq. (6a) into (5), and carrying out the trivial integral over jq , we end 

up with 
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which, formally, is the inverse of the expression in Eq. (3). Had we carried out these 

operations exactly, by treating j, k and l as discrete variables from the outset, we would 

have found that  
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        We can now return to Eq. (1), and we proceed to find its solution by multiplying 

both sides by )/exp(
2

1
Nkli

N
 and integrating over k. The left hand side of the 

equation then becomes   
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As for the right hand side of Eq. (1), we’ll treat the terms there one by one, starting with 

the term involving 1kx , which after carrying out the indicated steps becomes 
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In the same way, for the term in 1kx , we have 
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while for the term in kx , we have already derived the relevant result: it is given in Eq. 

(7a).   So putting Eqs. (7a), (8) – (10) together, we find the following equation for the 

variable lq : 
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If we substitute the definitions mmMQ /)(  and )]/cos(1[
22 Nl
m

b
l    into the 

above equation, we’re finally left with 
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This is now truly a single equation in the variable )(tql  and )(0 tx , and the way we’ll 

treat it is by a technique known as Laplace transformation. The Laplace transform of a 

function )(tf is, by definition, a new function )(ˆ sf  that is obtained from the old by 

multiplying it by ste  and then integrating the product over t from 0 to  . That is 
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The great utility of Laplace transforms lies in what they do when they’re applied to the 

derivative of a function. So consider the Laplace transform of  22 /)( dttfd , which by 

definition is the integral 
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which is a function of the Laplace variable s. Suppose we integrate )(ˆ sI   by parts twice; 

the result is 
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The variable s is actually complex, but so long as 0)Re( s  and )(tf  and its derivatives 

are finite at  ,  the surface terms in Eq. (15) vanish at the upper limit. So we’re left with  
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which is an algebraic function of )(ˆ sf  and of two initial conditions, )0(f  and )0(f , 

both of which, typically, are known or can be specified; the derivative has been 

eliminated. Thus, when a Laplace transform is applied to a differential equation, it leads 

to an algebraic equation in the Laplace transformed function, which is usually easily 
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solved. But then to recover the original function, the solution to this algebraic equation 

must be Laplace inverted; that step – about which more later – can sometimes be hard.  

 

        With this background, let’s Laplace transform both sides of Eq. (12). This leads to 
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which as advertised is an algebraic equation in Laplace transformed functions. But it also 

includes terms involving the initial values of the original functions. We’re free to specify 

what these values are, and we’ll make the choice 0)0( lx  for all l, and 

0)0()0(  ll vx for all l except 0l . We’re assuming, therefore, that all the particles 

start out at the same point, and all of them, except the heavy particle, start out with 0 

velocity. If for the moment we revert once again to the discrete representation of the 

normal modes (see Eq. (7b)), these conditions mean that  
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When these initial conditions are substituted into Eq. (16), we find, after gathering like 

terms and rearranging, that 
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Since we’re interested in the dynamics of the heavy particle, we’d like to eliminate the 

collective coordinates )(ˆ sql in the above equation in favour of the coordinate )(ˆ
0 sx  of 

this particle. The relation between these two is contained in Eq. (3); if we set k  to 0 in 

that equation, and then Laplace transform  both sides, we get   
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So if we multiply Eq. (17) by N2/1 and integrate both side over l from N  to N , we 

transform the equation to 
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where )(ˆ s  is the function  
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Equation (18a) is more usefully rewritten as  
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In this form, we can make a connection to the velocity of the heavy particle at time t, 

which is what we need to finally obtain an expression for the particle’s velocity 

autocorrelation function, the quantity we’re interested in. This connection is made by 

taking the Laplace transform of )(0 tv ,  an operation we’ll now represent by the symbol 

L . So acting L  on )(0 tv  we get  
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where the last line follows from our choice of initial condition, viz., lxl  ,0)0( .  

 

        It’s possible to formally invert Eq. (20) by acting an inverse Laplace operator, 
1L , 

on both sides of the equation; for the moment, we won’t worry about what it actually 

means to perform this operation, and simply note that in combination with Eq. (19) it 

leads to the following 
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From here it’s a simple matter to derive an expression for the velocity autocorrelation 

function  – just multiply both sides of Eq. (21) by )0(0v  and take the ensemble average. 

After dividing the result by )0(2

0v , we obtain the following normalized velocity 

autocorrelation function 
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This is the result we were after, but we still have to carry out one final step to complete 

the calculation and obtain a definite functional form of the autocorrelation function; that 

step is to Laplace invert the s-dependent function on the right hand side. What we mean 

by Laplace inverting a function )(ˆ sF is finding a function F(t) that when Laplace 

transformed produces )(ˆ sF . For some functions of s that’s easy to do. For instance, if 

)(ˆ sF were given by ,/1)(ˆ 1 nssF  where  n is, an integer, some guesswork would allow 

you to deduce that 
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a result that you can confirm to be correct by taking the Laplace transform of F(t), and 

showing that it recovers the given )(ˆ sF . By similarly working backwards, you could  

also figure out that the Laplace inverse of  )/(1)(ˆ assF   is the function atetF )( . 

But for complicated functions of s, this approach is clearly not practical. There is, 

however, a formula for calculating Laplace inverses, which is 
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This is a contour integral that must be evaluated along a particular path C. The subject of  

contour integration lies outside the scope of this course, we won’t attempt to determine 

Laplace inverses using the above formula. Instead we’ll note that many textbooks provide 

tables of Laplace transforms and their inverses, and we’ll simply refer to one of them to 

get the answer we want.  

 

       In the present problem, the function we need to invert is  )](ˆ1/[)(ˆ)(ˆ 2 sQssssG    

(cf. Eq. (22)). To carry out this operation, we have first have to determine the explicit 

dependence of )(ˆ sG  on s, which in turns requires that we know how )(ˆ s  depends on s. 

We’ll turn to this calculation next.               


