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IP326. Lecture 6. Tuesday, Jan. 22, 2019 

 

 

● Equilibrium Time Correlation Functions 

 

In Lecture 2, we introduced a few of the kinds of experiments that we were interested in 

interpreting in statistical mechanical terms. One of these, we said, is carried out according 

to the following recipe:  

 

– Prepare the system in some specific way. 

– Allow the system to equilibrate. 

– When the system has equilibrated, set the time to 0. 

– Allow the system to evolve for a time t and measure A at this time; denote its value is 

)(tA . 

– Allow the system to evolve to time t  and measure another property, say B, at this time, 

denoting it )(tB  . 

– Multiply the two measured values together. 

– Repeat these steps a number of times and average the data. The result is exp)()( tBtA  .  

We’ve asserted that the theoretical analogue of this result is the equilibrium time 

correlation function of A and B.  That is, 

 

                               )()()()( exp tBtAtBtA             

                                                     )();();( PtBtAd   

 

or  equivalently, using 0f  to denote the equilibrium phase space density distribution, 

 

                                  );();()()()( 0 tBtAfdtBtA .                                             (1) 

 

The functional form of 0f  will usually be known from equilibrium statistical mechanics; 

it is determined by the nature of the external constraints on the system (such as constant 

T, V, N.) 

 

       Although it hasn’t been said so explicitly, A and B in Eq. (1) need not be real, and if 

they happen to be complex (as they often are – we’ll consider specific examples later), 

their time correlation functions have to be defined more generally. This more general 

definition is based on a mathematical object in quantum mechanics called the scalar 

product, and it represents the dynamical variable )(* tA  as a “bra” vector )(tA , and the 

variable )(tB   as a “ket” vector )(tB  . So from now on, we’ll write the equilibrium 

ensemble average of  these two variables as )(|)( tBtA  , and understand it to mean  

                               

                                   );();()()(|)( *

0 tBtAfdtBtA                                         (2) 
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where the asterisk on A denotes complex conjugation. By defining the TCF in this way, 

we ensure that when AB   and tt  , the TCF is real, just as the corresponding 

experimental quantity is. As we’ll see, the above bra-ket notation makes it easy to derive 

various results for TCFs by manipulations of the kind common in quantum mechanics.   

 

 

● Various Operator Identities  

 

1. Because iL is real, it immediately follows that  

 

                                                              iLiL *)(  

 

and  

 

                                                             itLitL ee  
*

 

 

Now consider the average LBA | , where A and B are both measured at the initial time 

0t . By definition 

 

                                          )()()(| *

0 LBAfdLBA                                               (3) 

 

Since  /iL , it follows that  /iL , and so 

 

                                        



 )()()(| *

0 BAfdiLBA                               

 

If we integrate this expression by parts, and discard the surface terms, we get  

 

      )()()(| *

0 



  AfBdiLBA     
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



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                   )()()( *

0 LAfBd                                                                                (4) 

 

Now because iL is real, L is purely imaginary,  which means LL *
, so we can write 

Eq. (4) as  
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                                             )()]()[(| *

0 BLAfdLBA  

 

                                                        BLA |                                                                   (5) 

 

So L acts like a Hermitian operator: it can be interchanged between the bra and ket in 

much the same way as the corresponding operator in quantum mechanics is moved 

around in the scalar product.   

 

At the same time, because d  and )(0 f  are both real, we can also write Eq. (4) as  

 

                                           **

0 )()()(|   LABfdLBA  

 

                                                       
*

| LAB  

 

Therefore, 

 

                                         LABLBA ||
*
                                                                   (6) 

 

which expresses what happens when a time correlation function is complex conjugated.  

 

 

2. Similarly, consider the average )(tBA . Written out in full this is 

 

                                             )()()()( *

0 BeAfdtBA itL  

 

Expanding out the exponential in series form, we get 

 

                                       
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Using the Hermitian property of L, we can write Eq. (7) as  
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and then as 

 

                                      
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until eventually, after 2n  additional repetitions of the above steps, we’re left with 

 

                                      

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which, when re-expressed as a phase space integral, translates to 

 

                                      



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Recall that L is purely imaginary, so nnn LL )1()( *  . When this result is substituted into 

Eq. (8), we find that 

 

                                    )()()()( *

0 BAefdtBA itL    

 

                                                  )()()(
*

0 BAefd itL                  

 

Reverting to bra-ket notation again, we finally arrive at 

 

                                        BAeBeAtBA itLitL )(                                            (9a) 

 

or, alternatively,  

  

                                             BtAtBA )()(                                                          (9b) 

 

 

3. The above identity has some interesting implications for a special time correlation 

function of  the dynamical variable A called its norm, and defined as  
2

)(tA . What we 

mean by this definition is 

 

                                            )()()(
2

tAtAtA   

 

                                                            )()()( *

0 tAtAfd  
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                                                    ))(())()(( *

0   AeAefd itLitL  

                                                     

                                                    AeAe itLitL                                                              (10) 

 

From the identity in Eq. (9a), we can rewrite Eq. (10) as 

 

                                           AAeetA itLitL
2

)(   

 

                                                         AA  

                                                   

                                                           )()()( *

0 AAfd  

 

That is, 

 

                                             
22

)( AtA                                                                   (11) 

 

What this relation says is that the ensemble average of the magnitude of the square of A at 

time t  – in other words, its norm at time t – is unchanged from its norm at time 0. Since it 

is the action of the operator itLe  that takes A from its initial value AA )0( to its final 

value A(t) at time t, we say that itLe  is unitary or norm preserving. So itLe  has the 

character of a rotation operator, in that it leaves a dynamical variable’s “magnitude” 

unchanged but changes its “orientation”. This is illustrated in the figure below: 

 

 

 

 

 

 

 

                                                       )0()( AetA itL  

 

 

                                                                            

                                                                )()0(  AA  

 

 

 

 

The mean square length of the vectors at 0 and t are, respectively, 
2

A  and 
2

)(tA . 
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• Some Identities Involving Time Correlation Functions 

 

As we’ve indicated earlier, TCFs are connected to several different measurable properties 

of equilibrium systems, but before making the nature of these connections precise, we’ll 

first derive a number of exact mathematical relations that all TCFs satisfy by virtue of the 

properties of the Liouville operator.  

 

1. Stationarity   

 

Consider the following TCF: 

 

                           ))())()(()()(),( 21 *

02121 BeAefdtBtAttC
LitLit

AB                  (12) 

 

This can also be written as  

 

                                    )())()((),( *

021
12   AeBefdttC
LitLit

AB                   

 

From the “adjoint” property of itLe  (see Eq. (9a)), we have  

                                                                        

                                   )())()((),( *

021
21  


ABeefdttC

LitLit

AB  

 

                                                     


))()(()( 21*

0 BeeAfd
LitLit        

 

                                                    


))()(()(
)(*

0
12 BeAfd

Ltti  

 

                                                    )( 12 ttBA   

 

                                                     )( 12 ttCAB   

 

This relation establishes mathematically what we’d argued earlier on physical grounds: 

that for systems in equilibrium, the TCF for a property defined by values of the 

dynamical variables A and B at two different times depends only on the difference 

between the two times, and not on their absolute values. So TCFs are stationary. Which 

means that without any loss of generality we can set 1t to 0 and 2t  to t. 

 

 

2. Interchange of Variables  

 

Consider the TCF )()( 21 tBtA  again. From the stationarity of TCFs, we can write this 

immediately as )()( tBAtCAB  . Written out in full, the TCF is defined as  
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                                            )()()()( *

0 BeAfdtC itL

AB
 

 

                                                      **

0 )()()(  BeAfd itL  

 

                                                      **

0 )())()((   BAefd itL  

                                                      

                                                      **

0 )()()(   AeBfd itL  

 

                                                      
*

)( tAB   

 

                                                      )(
*

tCBA   

 

So a TCF evaluated at the time t is equivalent to the complex conjugate of the TCF 

evaluated at the reversed time and at reversed order of the dynamical variables. If A and B 

happen to be real, then the above identity reduces to 

 

                                               )()( tCtC BAAB   

 

 

 

3. Derivatives of Time Correlation Functions 

 

Consider the TCF )(tCAB
, defined as  

 

                                           )()()()( *

0 BeAfdtC itL

AB  

 

Take its derivative with respect to time: 

 

                                  



)()()()(

)( *

0 BiLeAfdtC
t

tC itL

AB
AB     

 

In bra-ket notation this is 

 

                                       )()( tiLBAtCAB    

 

                                                   )(
)(

tBA
t

tB
A 




     

 

That is, )()( tCtC
BAAB 

  . 
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4. The special case of an autocorrelation function 

 

Suppose BA  and A is real. Then from the results derived earlier 

 

                                                         )()( tCtC AAAA   

 

This means that autocorrelation functions are even functions of time (which can be an 

important consideration when constructing models of this quantity.) 

 

Similarly, from the identity above, 

 

                                             )()( tC
t

tC AAAA 



        

 

                                                        
dt

td
tC

t
AA

)(
)(

)(







  

 

                                                        )( tCAA    

 

The dot here denotes the time derivative with respect to the argument of the function, 

which in this case is t . So what the above relation implies is that the time derivative of 

an autocorrelation function is an odd function of the time. 

 

Furthermore, suppose we evaluate this function at 0t . The result is 

 

                                                       )0()0( AAAA CC       

 

which can only be true if )0(AAC  is itself 0.  

        

                                                                                                                            

                           

               

 

        


