IP326. Lecture 6. Tuesday, Jan. 22, 2019

e Equilibrium Time Correlation Functions

In Lecture 2, we introduced a few of the kinds of experiments that we were interested in
interpreting in statistical mechanical terms. One of these, we said, is carried out according
to the following recipe:

— Prepare the system in some specific way.

— Allow the system to equilibrate.

— When the system has equilibrated, set the time to 0.

— Allow the system to evolve for a time t and measure A at this time; denote its value is
A(t).

— Allow the system to evolve to time t" and measure another property, say B, at this time,
denoting it B(t').

— Multiply the two measured values together.

— Repeat these steps a number of times and average the data. The result is A(t)B(t'),,, -

We’ve asserted that the theoretical analogue of this result is the equilibrium time
correlation function of A and B. That s,

A()B(t).,, = (A(t)B(t))
= [drA® T)B(; T)P(T)

or equivalently, using f, to denote the equilibrium phase space density distribution,
<A(t)B(t’)> = defO(F)A(t;F)B(t’;F). (1)

The functional form of f; will usually be known from equilibrium statistical mechanics;

it is determined by the nature of the external constraints on the system (such as constant
T,V,N)

Although it hasn’t been said so explicitly, A and B in Eq. (1) need not be real, and if
they happen to be complex (as they often are — we’ll consider specific examples later),
their time correlation functions have to be defined more generally. This more general
definition is based on a mathematical object in quantum mechanics called the scalar

product, and it represents the dynamical variable A"(t) as a “bra” vector (A(t)|, and the
variable B(t') as a “ket” vector |B(t’)>. So from now on, we’ll write the equilibrium

ensemble average of these two variables as <A(t) | B(t’)) , and understand it to mean

(A |B(t)) = [ dIfy (N A’ (T)B(t;T) 2)



where the asterisk on A denotes complex conjugation. By defining the TCF in this way,
we ensure that when B=A and t'=t, the TCF is real, just as the corresponding
experimental quantity is. As we’ll see, the above bra-ket notation makes it easy to derive
various results for TCFs by manipulations of the kind common in quantum mechanics.

e Various Operator ldentities

1. Because iL is real, it immediately follows that
(iL)" =iL
and
(etitL)* _ it

Now consider the average <A| LB), where A and B are both measured at the initial time
t = 0. By definition

(A|LB) = [ dIfy (1) A" (T)LB(T) 3)
Since iL =T"-8/ar, it follows that L = —il"-/0r", and so
(A|LB) = —ijolrfo(r)A*(r)r-i B(I)
or
If we integrate this expression by parts, and discard the surface terms, we get

. o . .
(A|LB) = |jdrB(r)a—r-rfo(r)A )

= ij dFB(F){ f,(T)A"(T) air T+ A (DI % f () + f, (D) air A*(l")}
=i dFB(F){O+ 0+ 1=0(r)r-8iF A*(F)}
= —[ dI'B(T) f,(T)LA™(T) (4)

Now because iL is real, L is purely imaginary, which means L =—L, so we can write
Eqg. (4) as



(A|LB) = [ drf,(D)[LAD)] B(T)

=(LA|B) ()

So L acts like a Hermitian operator: it can be interchanged between the bra and ket in
much the same way as the corresponding operator in quantum mechanics is moved
around in the scalar product.

At the same time, because dI" and f,(I") are both real, we can also write Eq. (4) as
(AILB) = ([ drf,(DB" (OLAD)]
=(B|LA)
Therefore,
(A|LB) =(B|LA) (6)

which expresses what happens when a time correlation function is complex conjugated.

2. Similarly, consider the average (A|B(t)). Written out in full this is
(A[B(t)) = [ dIfy(I)A"(I)e" B(T)

Expanding out the exponential in series form, we get

(A|B(t)) = i (")ln [ drf, (A (LB

n:

& (it)" - 1
zo , j drf, (M)A (I LL"B(I)

_ iﬂw LL™B) (7)

o n

Using the Hermitian property of L, we can write Eq. (7) as

(A|B()) = g%@A L"B)



and then as

S t " 2 n-2
(A|B(t)) :Z.;%<L A|L"?B)

until eventually, after n —2 additional repetitions of the above steps, we’re left with

B)

which, when re-expressed as a phase space integral, translates to

<A|B(t)>:nz_o:%<|_nA

(AlB®) =3O [arr,rwamy B ©

Recall that L is purely imaginary, so (L") = (=1)"L". When this result is substituted into
Eqg. (8), we find that

(A[B() = [ drf,(D)(e ™A (1) B(T)
= [drf,(r)(e"A(D)) B(T)
Reverting to bra-ket notation again, we finally arrive at
(A[B(D)) =(Ale"B)=(e""A|B) (9a)
or, alternatively,

(A|B()) = (A(-t)|B) (9b)

3. The above identity has some interesting implications for a special time correlation
function of the dynamical variable A called its norm, and defined as <|A(t)|2>. What we

mean by this definition is
<|A(t)|2> = (AM)| A)

= [ drf, (D) A" () A(Y)



= [ drf, (D) (e A(D)" (€™ A(T)

= (e""Ale"A) (10)
From the identity in Eq. (9a), we can rewrite Eq. (10) as
<|A(t)|2> — <e—itLeitLA‘ A>
= (A[A)

= [ drf, (N A" (N AT)

That is,

(|A@1) = (A7) (11)

What this relation says is that the ensemble average of the magnitude of the square of A at
time t — in other words, its norm at time t — is unchanged from its norm at time 0. Since it
is the action of the operator e that takes A from its initial value A(0) = Ato its final
value A(t) at time t, we say that e is unitary or norm preserving. So e has the

character of a rotation operator, in that it leaves a dynamical variable’s “magnitude”
unchanged but changes its “orientation”. This is illustrated in the figure below:

A(0) = A(T) !

v

The mean square length of the vectors at 0 and t are, respectively, <|A|2> and <|A(t)|2>.



» Some Identities Involving Time Correlation Functions

As we’ve indicated earlier, TCFs are connected to several different measurable properties
of equilibrium systems, but before making the nature of these connections precise, we’ll
first derive a number of exact mathematical relations that all TCFs satisfy by virtue of the
properties of the Liouville operator.

1. Stationarity

Consider the following TCF:
Cas(tit,) =(Alt)|B(t,)) = J’ drf, (T) (e A(T)) "e"="B(T)) (12)
This can also be written as
Cpo(ty,t;) = [ dTfo(T)(e™ B(T))e™ A™(T)

itk

From the “adjoint” property of €™~ (see Eq. (9a)), we have

Coa(ty 1) = [ AT, (D) (e €™ B(M))A"(T)
~ [drf, (DA (N)(e ¢ B())
:J'dl_,fo(F)A*(F)(ei(tz—t1)LB(r))

=(A|B(t, -t,))

= CAB (tz - tl)

This relation establishes mathematically what we’d argued earlier on physical grounds:
that for systems in equilibrium, the TCF for a property defined by values of the
dynamical variables A and B at two different times depends only on the difference
between the two times, and not on their absolute values. So TCFs are stationary. Which
means that without any loss of generality we canset t,to O and t, to t.

2. Interchange of Variables

Consider the TCF (A(t,)|B(t,)) again. From the stationarity of TCFs, we can write this
immediately as C 5 (t) = (A|B(t)). Written out in full, the TCF is defined as



Cpo(t) = [ dTF, (M) A"(Ne"B(T)
- qdno(r) AD)e"B" (1))
- (j drf, (I)(e ™ AI)) B*(F))*
- (j dr,(1)B" (Ne ™ AD)|
— (B A(-))

=Con(-1)

So a TCF evaluated at the time t is equivalent to the complex conjugate of the TCF
evaluated at the reversed time and at reversed order of the dynamical variables. If A and B
happen to be real, then the above identity reduces to

CAB (t) = CBA(_t)

3. Derivatives of Time Correlation Functions

Consider the TCF C,;(t), defined as
Cpo(t) = [ dFo (1) A"(T)e" ™ B(T)
Take its derivative with respect to time:

%g_i(t) = €, (1) = [ dIT, (D) A" (D)iLe"B(D)

In bra-ket notation this is

Ce(t) = (A|iLB(1))
oB(t :
= <A‘%> = (A[B())

That is, C,g(t) =C,,(t).



4. The special case of an autocorrelation function

Suppose A= Band A is real. Then from the results derived earlier

Can(t) =Cn(-1)

This means that autocorrelation functions are even functions of time (which can be an
important consideration when constructing models of this quantity.)

Similarly, from the identity above,
Caa(t) = ¢ (-t)
AA at AA

_ 9 ¢ (it
—a(_t)CAA( D=5

= _CAA(_t)
The dot here denotes the time derivative with respect to the argument of the function,
which in this case is —t. So what the above relation implies is that the time derivative of
an autocorrelation function is an odd function of the time.

Furthermore, suppose we evaluate this function at t =0. The result is
CAA(O) = _CAA(O)

which can only be true if C,,(0) is itself 0.



