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IP326. Lecture 5. Thursday, Jan. 17, 2019 

 

 

            

● Phase space averages of dynamical variables 

 

         We showed in the last lecture that a dynamical variable, say B, evolves in time from 

some initial microstate  )0(  according to the following Liouville-like equation    
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whose formal solution is 
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where );()(  tBtB  and )()0(  BB . With this solution in hand, we’re in a position to 

construct the ensemble average of B, which by definition is  
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Note that this expression is not the equilibrium ensemble average we introduced earlier; 

that average involved the equilibrium probability density function )(P , which )(f  can 

be equated to only when the system of interest is in fact in equilibrium. We’ll explore this 

equilibrium limit soon. Using Eq. (1b) in Eq. (2), we see that 
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This is actually not the only way we could have defined the ensemble average of B at 

time t. Instead of following B as it evolves for a time t along a trajectory determined by 

the phase point  , which at time 0 occurs with the weight )(f , we could instead have 

located ourselves at   (where B has the value ))(B  and then tracked how the density 

distribution of   itself changed over the course of the time interval t. In that scenario, we 

can define )(tB  as 
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If  Eq. (4) is indeed an acceptable alternative definition of )(tB , we should be able to 

show rigorously that Eqs. (3) and (4) are equivalent. We’ll now demonstrate that we can 

in fact do this.  

  

 

Proof 

 

Start from Eq. (3), and introduce the series representation of the exponential operator: 
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The right hand side of Eq. (5) is a complex expression involving integrations and 

differentiations over all the components of N positions and momenta, but if we ignore the 

multi-dimensional character of   for the moment and take the view (which we’ll have to 

justify later) that we can treat it as though it were just a single variable, we can carry out 

these operations fairly simply. So as a first step, let’s integrate (5) by parts. The result is  
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The first term in the square brackets (the integrated term) must be evaluated at the upper 

and lower limits of the integration variables, which means evaluating it at }{ N
q  and 

}{ N
p . We can safely assume that there will be no microstates with infinite 

momenta, so )(f  in this limit vanishes, and the surface term can therefore be discarded, 

leaving us with  
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Again, viewing   as a single variable, we can use the product rule to differentiate the last 

term in parentheses, obtaining: 
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The last term in (8) also vanishes; this follows from the definition of    and Hamilton’s 

equations: 
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Substituting this result into (7), we get 
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We now repeat these steps,  first writing Eq. (10) as 
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then integrating by parts. After discarding the surface term, and using (8) and (9), we find 

that 
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After carrying out these operations another 2n times, we’re finally left with 
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And so, in the end  
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● Equilibrium Averages 

 

         Recall that the probability density function of phase points, f, is governed by the 

Liouville equation, viz.: 
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If it so happens that  
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we refer to the associated distribution function as the equilibrium density distribution, and 

denote it 0f . It is the time-independent probability density that a system under a given set 

of external constraints (such as constant T, V and N) is in the microstate  , and it is the 

same as the quantity introduced earlier as )(P . We’ve learnt what the functional forms 

of these distributions are from equilibrium statistical mechanics. They are recapitulated  

in the table below: 
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------------------------------------------------------------------------------------------------------------ 

Macrostate      )()(0  Pf          Thermodynamics                  Partition Function 

------------------------------------------------------------------------------------------------------------ 
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Some points to note: 

 

●   is an abbreviation for TkB/1 . 

 

● h stands for Planck’s constant. Its appearance in the above formulas reflects the fact 

that phase space is not infinitely divisible, and cannot occupy a volume smaller than the 

scale set by h. The existence of this smallest volume is ultimately a consequence of 

Heisenberg’s uncertainty principle, which places limits on the precision with which the 

position and momentum of a particle can be measured. The presence of factors of h also 

ensures that the partition functions are properly dimensionless since h has the units of a 

position times a momentum. (In the case of the isothermal-isobaric partition function, a 

reference volume RV  is included to ensure that  is dimensionless. In the case of the 

microcanonical partition function, a similar reference energy, say, 
RU , must be 

understood to multiply the right hand side, since the delta function has units of  -1Energy  

[which is a consequence of the following property of the delta function: 

)(
||

1
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a
ax   .] Both RV  and RU  will drop out when calculating averages of physical 

quantities.)  

 

● The factors of !N  in the various formulas account approximately for the 

indistinguishability of particles. In classical mechanics, it’s possible, in principle, to 

distinguish particles by their positions and momenta, but at a fundamental quantum 

mechanical level, particles can’t be so distinguished even in principle (again, because of 

the uncertainty principle.) The factors of !N  correct for this fundamental 

indistinguishability, but they only work for systems at high temperatures. If temperatures 

are sufficiently low that the thermal de Broglie wavelength of the particles is comparable 
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to their linear dimensions, this correction factor no longer works, and the particle must be 

treated quantum mechanically.  

 

 

Some properties of the equilibrium density distribution          

 

● Consider a system at constant T, V and N, where )(0 f  is given by 
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with C standing for QNh N !/1 3 . Apply the Liouville operator to this function: 
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Introducing Hamilton’s equations into the above expression, we get 
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This implies that 
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So the canonical distribution is time-independent (as are the other density distributions in 

the table above) , just as equilibrium density distributions are expected to be. In other 

words 
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● The use of equilibrium density distributions to construct an ensemble average of the 

dynamical variable B has the immediate implication that )(tB  is stationary, i.e., that 
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)(tB  is a constant, independent of time, or that 0/)(  ttB . This result can be 

proved rigorously. 

 

 

Proof 

 

By definition  
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Differentiating this expression with respect to t,  we get               
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Partial integration and elimination of the surface terms leads to 
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So )(tB  is indeed stationary.  

                                         

 

        


