IP326. Lecture 5. Thursday, Jan. 17, 2019

e Phase space averages of dynamical variables

We showed in the last lecture that a dynamical variable, say B, evolves in time from
some initial microstate I'(0) = I' according to the following Liouville-like equation

oB .
— =iLB, la
- (1a)

whose formal solution is
B(t) = e"B(0) (1b)

where B(t) = B(t;I") and B(0) = B(I'). With this solution in hand, we’re in a position to
construct the ensemble average of B, which by definition is

(B(t)) = j dIB(t;T) f (I) )

Note that this expression is not the equilibrium ensemble average we introduced earlier;
that average involved the equilibrium probability density function P(I") , which f(I") can

be equated to only when the system of interest is in fact in equilibrium. We’ll explore this
equilibrium limit soon. Using Eq. (1b) in Eq. (2), we see that

(B(t)) = j drf (Ne™'B(I) (3)

This is actually not the only way we could have defined the ensemble average of B at
time t. Instead of following B as it evolves for a time t along a trajectory determined by
the phase point I", which at time 0 occurs with the weight f (I"), we could instead have

located ourselves at T" (where B has the value B(I")) and then tracked how the density
distribution of T" itself changed over the course of the time interval t. In that scenario, we
can define (B(t)) as

(B(t)) = [drB(N) f (t;T)

= [drB(r)e ™ f(I) (4)



If Eqg. (4) is indeed an acceptable alternative definition of <B(t)>, we should be able to

show rigorously that Egs. (3) and (4) are equivalent. We’ll now demonstrate that we can
in fact do this.

Proof

Start from Eq. (3), and introduce the series representation of the exponential operator:

(B(t)) :i nll j drf (M)(iLt)" B(I')
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The right hand side of Eq. (5) is a complex expression involving integrations and
differentiations over all the components of N positions and momenta, but if we ignore the
multi-dimensional character of T" for the moment and take the view (which we’ll have to
justify later) that we can treat it as though it were just a single variable, we can carry out
these operations fairly simply. So as a first step, let’s integrate (5) by parts. The result is
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The first term in the square brackets (the integrated term) must be evaluated at the upper
and lower limits of the integration variables, which means evaluating it at {g"} — o and
{p"}—> 0. We can safely assume that there will be no microstates with infinite
momenta, so f(I') in this limit vanishes, and the surface term can therefore be discarded,
leaving us with
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Again, viewing T' as a single variable, we can use the product rule to differentiate the last
term in parentheses, obtaining:
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The last term in (8) also vanishes; this follows from the definition of T" and Hamilton’s

equations:
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Substituting this result into (7), we get
= g .o\ .0
(B(t)) = Z;‘_.f Hr.gj B(F)}[F-gf(r)j (10)
We now repeat these steps, first writing Eg. (10) as
“ t" L0 (s 0\ . 0
(B(t)) = ZO—| j dr{r.a—r(r-a—rj B(r)}(r-a—r f(r)j

then integrating by parts. After discarding the surface term, and using (8) and (9), we find

that
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After carrying out these operations another n — 2 times, we’re finally left with
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And so, in the end

[drf (NB(&T) = [drB(r) f (1;T) (11)

e Equilibrium Averages

Recall that the probability density function of phase points, f, is governed by the
Liouville equation, viz.:
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we refer to the associated distribution function as the equilibrium density distribution, and
denote it f,. It is the time-independent probability density that a system under a given set
of external constraints (such as constant T, V and N) is in the microstate I'", and it is the
same as the quantity introduced earlier as P(I") . We’ve learnt what the functional forms

of these distributions are from equilibrium statistical mechanics. They are recapitulated
in the table below:
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Some points to note:

e S is an abbreviation for 1/kgT .

e h stands for Planck’s constant. Its appearance in the above formulas reflects the fact
that phase space is not infinitely divisible, and cannot occupy a volume smaller than the
scale set by h. The existence of this smallest volume is ultimately a consequence of
Heisenberg’s uncertainty principle, which places limits on the precision with which the
position and momentum of a particle can be measured. The presence of factors of h also
ensures that the partition functions are properly dimensionless since h has the units of a
position times a momentum. (In the case of the isothermal-isobaric partition function, a
reference volume V, is included to ensure that A is dimensionless. In the case of the

microcanonical partition function, a similar reference energy, say, U,, must be

understood to multiply the right hand side, since the delta function has units of Energy ™
[which is a consequence of the following property of the delta function:

o(ax) = ﬁ&(x) .] Both V, and U will drop out when calculating averages of physical

quantities.)

e The factors of N! in the various formulas account approximately for the
indistinguishability of particles. In classical mechanics, it’s possible, in principle, to
distinguish particles by their positions and momenta, but at a fundamental quantum
mechanical level, particles can’t be so distinguished even in principle (again, because of
the uncertainty principle.) The factors of N! correct for this fundamental
indistinguishability, but they only work for systems at high temperatures. If temperatures
are sufficiently low that the thermal de Broglie wavelength of the particles is comparable



to their linear dimensions, this correction factor no longer works, and the particle must be
treated quantum mechanically.

Some properties of the equilibrium density distribution

e Consider a system at constant T, V and N, where f,(I") is given by
f,(I') = Ce MO

with C standing for 1/h*'N!Q . Apply the Liouville operator to this function:
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Introducing Hamilton’s equations into the above expression, we get
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This implies that
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So the canonical distribution is time-independent (as are the other density distributions in

the table above) , just as equilibrium density distributions are expected to be. In other
words

fO(o) = fO (tl) ESRRRR = fO(tn) — Ry

e The use of equilibrium density distributions to construct an ensemble average of the
dynamical variable B has the immediate implication that <B(t)> is stationary, i.e., that



(B(t)) is a constant, independent of time, or that o(B(t))/ot=0. This result can be
proved rigorously.

Proof
By definition
(B(1)) = [ dIf,(T)B(5;T)
= j drf, (M)e"™B(I)

Differentiating this expression with respect to t, we get

a<Bat(t)> = [ drfy (D)iLe™B(T)
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Partial integration and elimination of the surface terms leads to
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So (B(t)) is indeed stationary.



