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IP326. Lecture 27. Thursday, April 4, 2019  

 

 

● The first passage time formalism    

 

        Another approach to the calculation of barrier crossing rates is based on the notion 

of first passage times. The first passage time refers in general to the time it takes some 

random event to happen for the first time. Consider, for example, a particle moving 

stochastically in the double well potential of the previous section under the action of 

thermal fluctuations, as in the figure below 
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The very first time the particle reaches the top of the barrier is when a chemical reaction 

can be said to occur. The time it takes for this to happen – the first passage time, as it is 

called – is a random variable, since the particle will in general follow different 

trajectories to reach the barrier top from even the same initial starting point. Because the 

first passage time is a random variable, its possible values are spread across a 

distribution, which is referred to as the first passage time distribution. The first moment 

of this distribution – its average, in other words – is referred to as the mean first passage 

time (MFPT), and its reciprocal provides a measure of the average rate of the reaction 

(again, assuming that the reaction occurs as soon as the summit of the barrier is reached). 

In this section, we’ll calculate the MFPT for a particle moving in the above potential in 

the presence of white noise and in the high friction (i.e., overdamped) limit, and compare 

the results to Kramers theory in the same high friction limit.  

 

          The equation of motion for a particle moving in one dimension under these 

conditions is 
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Here, 0)( t  and )(2)()( ttTktt B
  . At time t, the distribution of the 

particle’s position, ),( txP , is defined as  
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so 
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where /TkD B  and xxUxU  /)()( .  

 

       To model a chemical reaction, we introduce an absorbing boundary at the top of the 

barrier. As soon as the particle reaches this boundary during the course of its random 

motion along the potential energy surface, it is removed from the system, and a chemical 

reaction can be said to have taken place. Schematically, the situation is as depicted 

below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                         Absorbing boundary 

                                                                                    ( bx   ) 

 

In this scenario, the particle will be located between  and b for some time before 

eventually disappearing. The probability that the particle is at the point x in this region at 
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time t given that it started out from the point 0x  at time 0t  can be denoted ),|,( 00 txtxP . 

This probability is the solution to Eq. (3) under the initial condition 
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The probability that the particle is somewhere between  and b at time t, having started 

off at 0x , can be interpreted as the probability that it survives till that time without being 

absorbed. Denoting this probability as );( 0xtS , with 0t  chosen to be 0, we can write  
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);( 0xtS  can also be interpreted as the fraction of particles in an ensemble that start out 

from 0x  at the same time and survive up to time t. In the same way, );( 0xdttS   can be 

interpreted as the fraction of such particles that survive up to time dtt  . This means that 

);();( 00 xdttSxtS   represents the fraction of particles that have been absorbed in the 

interval between t and dtt  . If dt is sufficiently small, this difference can be 

approximated as  
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The derivative txtSxtf  /);();( 00  can therefore be thought of as the fraction of 

particles per unit of time that have the survival time t. In other words, );( 0xtf  is the first 

passage time distribution. This in turn means that it’s now possible to define a mean first 

passage time, or MFPT, as  
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By partial integration, Eq. (7) can be rewritten as  

 

                                         







 




0

0000 );();()( xtSdtxtStxt                                       (8) 

 

Now, at long times, we expect that all particles in the ensemble will have been absorbed, 

and so );( 0xS   can be set to 0. At 0t , on the other hand, we expect that no particles 
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will have been absorbed, and so 1);0( 0 xS . Thus, in Eq. (8) the contribution of the 

surface terms to )( 0xt  is 0, and the equation reduces to 

 

                                                    



0

00 );()( xtSdtxt                                                      (9)  

 

Replacing  );( 0xtS  in the above expression by its definition in terms of )|,( 0xtxP  [see 

Eq. (5)], we can rewrite Eq. (9) as 
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So, in general, in order to calculate the MFPT we need the solution to a diffusion (i.e., 

Fokker-Planck) equation. But it turns out that for certain special kinds of stochastic 

processes, the MFPT can be calculated without actually having to first find )|,( 0xtxP .  

The kinds of processes for which  )|,( 0xtxP  is not needed when calculating )( 0xt  are 

known as Markov processes. The distinguishing property of a Markov process is that it 

satisfies the so-called Chapman-Kolmogorov equation, which is defined by the relation 
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This is a very special restriction that holds only if the stochastic process is such that the 

probability that some property of the process has a certain value in the future is solely 

determined by the corresponding probability at the present time, and not by the 

probabilities at any earlier times.    

 

          If a stochastic process satisfies the Chapman-Kolmogorov equation (and is 

therefore Markovian), it will satisfy another equation called the backward Fokker-Planck 

equation. This latter equation can be used to derive an equation for the MFPT itself, 

which will make it possible to sidestep the problem of having to calculate )|,( 0xtxP  

separately.  

 

          So let’s assume that we’re dealing with a Markov process. Equation  (11) therefore 

holds. Now the LHS of this equation is independent of  s, so if we differentiate both sides 

of the equation with respect to s, we get  
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In the second term on the RHS, we can use a diffusion equation (i.e., a Fokker-Planck 

equation) to substitute for the factor of  sP  / . Now in its most general form, this 

diffusion equation can be written as  
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Substituting this form of the equation in Eq. (12), we get 
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If the second and third terms on the RHS of Eq. (14) are integrated by parts, the result is 
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There are no contributions from the surface terms because the probability distributions 

have been assumed to be well-behaved at the extremes of the variable y.  

 

             Equation (15) can now be rearranged to  
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which can hold only if  
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Equation (17) is the backward Fokker-Planck equation alluded to above. The term 

backward refers to the fact that the evolution of the distribution function is in respect of 

the initial position and time, the final position and time being kept fixed. 

 

          From here, we determine the MFPT as follows: First, let’s assume that the 

probability distribution in Eq. (17) is time homogeneous, meaning it depends only on the 

difference of two times, not on their separate values. (This is not too restrictive an 

assumption.) Under this assumption, and taking t to be greater than s, we can rewrite Eq. 

(17) as  
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If we now change variables from s to  , where   is defined as ts  , Eq. (18) 

becomes 
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A second application of time homogeneity leads to   
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Relabelling  as t and y as 0x , we see that Eq. (20) is equivalent to  
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At this point, we can particularize to the problem we were considering, where the 

relevant Fokker-Planck/diffusion equation is given by Eq. (3). Comparing that equation 

with Eq. (13), we can make the identifications  
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With these identifications, Eq. (21) becomes  
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If we now integrate both sides of this equation with respect to x from  to b, and 

introduce the definition  


b

xtxdxPxtS )0,|,();( 00
, we can transform Eq. (22) to  
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Recalling the definition of )( 0xt  from Eq. (9), we next integrate both sides of Eq. (23) 

with respect to t from 0 to  , obtaining thereby 
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where we have made use of the fact that 0);( 0  xS  and 1);0( 0 xS . We have now 

derived an equation for just )( 0xt  itself. 

        

          As you should be able to confirm, Eq. (24) can be rewritten identically as 
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This equation must be solved subject to the condition that there is an absorbing boundary 

at the point b. The solution is found by first dividing Eq. (25) by )(exp 0xUD  , and then 

integrating both sides of the equation over 0x  from   to some point x; the result is  
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or equivalently,  
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Integrating this equation over z from x to b, we get  
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That is, 
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Now the first integral in this expression (over z) is dominated by the largest values of U, 

which are at the barrier top. So to a reasonable approximation, we can replace U in the 

first integral by 
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The second integral, on the other hand, (over y), is dominated by the smallest values of U, 

which are near the potential minimum. So here, the potential can be approximated as  
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Plugging Eqs. (29) and (30) back into Eq. (28), we see that 
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Given the rapid decay of the Gaussian functions around their mean values in the above 

equation, very little error is introduced by letting the integration variables z and y range 

from  to  . This makes it possible to evaluate both integrals in closed form. The 

result is  
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Assuming that the rate constant k can be identified with the reciprocal of the mean first 

passage time, we finally arrive at the result 
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which is exactly the result derived by Kramers in the high friction limit.  

 

 

       

                                                               

 

                     

 

 

              

 

         

                        

 

                                                 

                                           


