IP326. Lecture 26. Tuesday, April 2, 2019

e Kramers’ reaction rate theory (cont.’d).

As discussed previously, Kramers’ theory of chemical reactions is based on a model
in which a chemical reaction is assumed to take place when a Brownian particle in one
dimension passes randomly from a potential well on one side of a barrier to a potential
well on the other side. The rate constant for this barrier-crossing event is the quantity of
interest in the theory, being identified with the rate constant of the chemical reaction
itself. It is expressed as the ratio of the steady-state probability current across the top of
the barrier to the steady-state particle population in the reactant well. We’ve shown that
these steady-state probabilities are obtained from the solution of the following equation:
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We’ve also shown that one such solution is just the equilibrium Boltzmann distribution,
viz.,

P, (x,v) = Cexp|- mv? /12— pU]] 2)
where g =1/k,T .
Kramers argued that this solution would not hold at the barrier top, since the

particle would be in unstable equilibrium there. But he assumed that the system could
nevertheless exist in a steady state, and that the phase space density at the barrier,

P; (x,V), could therefore be written in the form
Pe (X, V) = R (X, V)G(x,V) 3)

where G(x,V) is an unknown function to be determined. We turn to a determination of
this function next.

As a first step we substitute the above expression into the LHS of Eq. (1). The result
is
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Because P, satisfies Eq. (1), the contribution from the terms in the first set of square

brackets in Eq. (4) vanishes. At the same time, if Eq. (3) is truly to be a solution of Eq.
(1) , then the contribution from the terms in the second set of square brackets must vanish
too. In other words, the function G must satisfy the equation
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Kramers next assumed that near the barrier top the potential U could be approximated as
inverted parabola, that is, as
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U(x) = Eg - (x _XB)2 (6)

where E; is the height of the barrier, w, is a frequency (reflecting the curvature at the
barrier top), and X, is the location of the barrier maximum. Given this approximation for
U, it follows that

oU(x)
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and when this expression is substituted into Eq. (5), the result is

{v@+(§v+ @f (X — xB)jaG ékBTac:} 0 (8)
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In general, there is no systematic procedure for finding the solution to partial differential
equations, but it’s possible to guess a solution, and in the case of Eqg. (8), one solution that
will satisfy it is G(x) = constant , but this would imply that the steady-state solution at
the barrier top, P;(x,V) , is just the equilibrium Boltzmann distribution, which as argued
is not expected to hold when the system is in unstable equilibrium. So the solution
G(x) = constant is not relevant. Kramer then suggested that another solution might be
one where G is a function not of x and v separately but of a linear combination of the two.
That is,



G(x,v) =G(u) (99)
where

U=v-A(X—Xg) (9b)
with A an unknown parameter that is also to be determined. If G has this suggested

structure then Eq. (8) must now be rewritten in terms of the new variable u. This is
accomplished by noting that
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Using these relations in Eq. (8), we find that
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which, after collecting terms and rearranging, becomes

K{z—%}v & (x— XB)JaG ST 826} 0 (10)
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The only way this equation can be a function solely of the variable u is if the following
condition is satisfied:

(ﬂ—g)v—wé(x—xshﬂu (11)
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where u is another unknown to-be-determined parameter. If v in this condition is now
replaced by its expression in terms of u and x in Eq. (9b), Eq. (11) becomes
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which can be rearranged to
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One way to make both sides of this equation equal is to require that



u=7 _% (13a)
and
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The second of these conditions determines A, and once A is determined, the first
equation determines u . Equation (13b) is, of course, satisfied by
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Substituting Eq. (11) in Eq. (10), and using Eq. (13a) for the parameter «, we now find
that the function G must satisfy the equation
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which is solved by

G@U) =N sz exp{— ZéT:T (4 _%}2} (16)

where N is a normalization constant. One can confirm that Eq. (16) solves Eq. (15) by
direct substitution, noting that
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From the structure of Eq. (16), it’s clear that in order for the coefficient of z in the
argument of the exponential to be negative (which it should be for the function G(u) to be
well-behaved), the positive root must be selected for A in Eq. (14). In other words,
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Furthermore, the normalization constant in Eq. (16) can be determined by requiring that
when x is large and negative (meaning the system is in the reactant well, on the left side
of the barrier), the phase space distribution P,(X,v) should recover the equilibrium

thermal distribution P,(x,Vv). From the definition of P,(x,Vv), (see Eq. (3)), this in turn
requires that G(x,v) be unity. Since large negative x corresponds to large positive u (see
Eq. (9b)), this requirement becomes

N sz exp{— 2gn|:2T (/1_%}2} _1 (18)

N = /% (19)

We’re now finally in a position to calculate the flux and population, the quantities we
need to derive an expression for the rate constant k.

which fixes N as

Recall that the steady-state flux of probability over the barrier was defined in terms
of the mean particle velocity in the neighbourhood of the barrier in the t — oo limit. In
other words

Flux = J;(X,v,t > o0) = jdva(x: Xg,V,t — )
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where Q= (1—¢/m)m?/¢k,T . Equation (20) can be evaluated by first rewriting it as

3, J'd (ae ™ IZJIdzexp[—Qz 12]

and then integrating by parts, which yields
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The factor of pm + Q in the last expression simplifies to
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Recall also that we had defined the population in the reactant well, N,

So, finally,

Population =N, = j dx j dvP, (X, V)
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Assuming that the potential energy U of the system in this region can be approximated
by U =E,+(ma;/2)(x—x,)*, where E, is the height of the reactant well at the

location of the minimum X,, and @, is a frequency, which is related to the well’s
curvature, we can write N, as
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Evaluating the integrals in (23), we arrive at
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Taking the ratio of Egs. (22) and (24), we obtain the following expression for the rate

constant k:
k= Ne#&sE) @ |KeT
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which, after the substitution of the definition of N (see Eq. (19)), becomes

k = e #ER) g)_; f@ (25)

The parameter A in this relation should now be replaced by its expression from Eq. (17);

when this is done the factor /(1 —¢/m)/A becomes
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Therefore,
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This is the final expression for the rate constant, but it’s instructive to consider it in
different limits. For instance, suppose ¢&/2m >> w,, which can be considered a high
friction limit. To apply this limit to Eq. (27), rewrite it first as
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and then expand the radical to lowest non-trivial order:
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In the opposite limit, viz., {'/2m << @y, Eq. (27) immediately simplifies to

Kk = &efﬁ(EB—Eo) (29)
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This is the expression that is generally referred to as the transition theory rate, which
postulates that the rate constant is proportional to two factors, one related to the energy

barrier, and the other to the frequency (@,) with which the reactants come together.
Equation (28) incorporates an additional friction dependence, which reflects the nature of

the bath, as well as a second frequency dependence associated with the curvature at the
top of the barrier.




