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IP326. Lecture 26. Tuesday, April 2, 2019  

 

 

● Kramers’ reaction rate theory (cont.’d).    

 

        As discussed previously, Kramers’ theory of chemical reactions is based on a  model 

in which a chemical reaction is assumed to take place when a Brownian particle in one 

dimension passes randomly from a potential well on one side of a barrier to a potential 

well on the other side. The rate constant for this barrier-crossing event is the quantity of 

interest in the theory, being identified with the rate constant of the chemical reaction 

itself. It is expressed as the ratio of the steady-state probability current across the top of 

the barrier to the steady-state particle population in the reactant well. We’ve shown that 

these steady-state probabilities are obtained from the solution of the following equation:  
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We’ve also shown that one such solution is just the equilibrium Boltzmann distribution, 

viz.,  
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0 UmvCvxP                                          (2) 

 

where TkB/1 .   

 

         Kramers argued that this solution would not hold at the barrier top, since the 

particle would be in unstable equilibrium there. But he assumed that the system could 

nevertheless exist in a steady state, and that the phase space density at the barrier, 

),( vxPB
, could therefore be written in the form  

 

                                                      ),(),(),( 0 vxGvxPvxPB                                             (3) 

 

where ),( vxG  is an unknown function to be determined. We turn to a determination of 

this function next.   

 

      As a first step we substitute the above expression into the LHS of Eq. (1). The result 

is  

 

            


























































v

G
P

v

P
G

x

U

mv

G
vP

v

vP
G

mx

P
GP

x

G
v 0

0
0

00
0

1
 

 

                                               



























2

2

2

2

0

2
2

v

G

v

P
G

v

P

v

G

m

TkB
 

 

 



 2 

      














































v

G
v

mx

G
vP

v

P

m

Tk

v

P

x

U

m
vP

vmx

P
vG B 

02

0

2

2

0
0

0 1
 

 

                                                 

























2

2

22

)(21

v

G

m

Tk

Tk

mv

v

G

m

Tk

v

G

x

U

m

B

B

B 
               (4) 

 

Because 0P  satisfies Eq. (1), the contribution from the terms in the first set of square 

brackets in Eq. (4) vanishes. At the same time, if Eq. (3) is truly to be a solution of Eq. 

(1) , then the contribution from the terms in the second set of square brackets must vanish 

too. In other words, the function G must satisfy the equation  
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Kramers next assumed that near the barrier top the potential U could be approximated as 

inverted parabola, that is, as  
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where 
BE  is the height of the barrier, 

B  is a frequency (reflecting the curvature at the 

barrier top), and 
Bx  is the location of the barrier maximum. Given this approximation for 

U, it follows that  
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and when this expression is substituted into Eq. (5), the result is  
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In general, there is no systematic procedure for finding the solution to partial differential 

equations, but it’s possible to guess a solution, and in the case of Eq. (8), one solution that 

will satisfy it is constant)( xG , but this would imply that the steady-state solution at 

the barrier top, ),( vxPB  , is just the equilibrium Boltzmann distribution, which as argued 

is not expected to hold when the system is in unstable equilibrium. So the solution 

constant)( xG is not relevant. Kramer then suggested that another solution might be 

one where G is a function not of x and v separately but of a linear combination of the two. 

That is, 
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                                                             )(),( uGvxG                                                     (9a) 

 

where  

 

                                                            )( Bxxvu                                                   (9b) 

 

with   an unknown parameter that is also to be determined. If G has this suggested 

structure then Eq. (8) must now be rewritten in terms of the new variable u. This is 

accomplished by noting that  
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Using these relations in Eq. (8), we find that 
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which, after collecting terms and rearranging, becomes 
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The only way this equation can be a function solely of the variable u is if the following 

condition is satisfied: 
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where   is another unknown to-be-determined parameter. If v in this condition is now 

replaced by its expression in terms of u and x in Eq. (9b), Eq. (11) becomes  
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which can be rearranged to  
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One way to make both sides of this equation equal is to require that 
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and  
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The second of these conditions determines  , and once  is determined, the first 

equation  determines  . Equation (13b) is, of course, satisfied by 
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Substituting Eq. (11) in Eq. (10), and using Eq. (13a) for the parameter  , we now find 

that the function G must satisfy the equation 
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which is solved by 
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where N is a normalization constant. One can confirm that Eq. (16) solves Eq. (15) by 

direct substitution, noting that  
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Therefore, 
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From the structure of Eq. (16), it’s clear that in order for the coefficient of 2z  in the 

argument of the exponential to be negative (which it should be for the function G(u) to be 

well-behaved), the positive root must be selected for   in Eq. (14). In other words, 
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Furthermore, the normalization constant in Eq. (16) can be determined by requiring that 

when x is large and negative (meaning the system is in the reactant well, on the left side 

of the barrier), the phase space distribution ),( vxPB
 should recover the equilibrium 

thermal distribution ),(0 vxP . From the definition of ),( vxPB
, (see Eq. (3)), this in turn 

requires that ),( vxG  be unity. Since large negative x corresponds to large positive u (see 

Eq. (9b)), this requirement becomes  
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which fixes N as 
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We’re now finally in a position to calculate the flux and population, the quantit ies we 

need to derive an expression for the rate constant k.   

 

         Recall that the steady-state flux of probability over the barrier was defined in terms 

of  the mean particle velocity in the neighbourhood of the barrier in the t  limit. In 

other words 
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where   Tkmm B // 2 . Equation (20) can be evaluated by first rewriting it as  
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and then integrating by parts, which yields 
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The factor of m  in the last expression simplifies to 
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So, finally, 
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      Recall also that we had defined the population in the reactant well, AN , as  

 

                                        ),(Population 0 vxPdvdxN A  








  

 

Assuming that the potential energy U of the system in this region can be approximated  

by 
2

0

2

00 ))(2/( xxmEU   , where 0E  is the height of the reactant well at the 

location of the minimum 0x , and 0  is a frequency, which is related to the well’s 

curvature,  we can write AN   as 
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Evaluating the integrals in (23), we arrive at  
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Taking the ratio of Eqs. (22) and (24), we obtain the following expression for the rate 

constant k:  

 

                                              




2

0)( 0
Tk

m
Nek BEEB

 , 

 

which, after the substitution of the definition of N (see Eq. (19)), becomes  
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The parameter   in this relation should now be replaced by its expression from Eq. (17); 

when this is done the factor  /)/( m  becomes 
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Therefore,  
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This is the final expression for the rate constant, but it’s instructive to consider it in 

different limits. For instance, suppose 
Bm  2/ , which can be considered a high 

friction limit. To apply this limit to Eq. (27), rewrite it first as   
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and then expand the radical to lowest non-trivial order: 
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In the opposite limit, viz., 
Bm  2/ , Eq. (27) immediately simplifies to  
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This is the expression that is generally referred to as the transition theory rate, which 

postulates that the rate constant is proportional to two factors, one related to the energy 

barrier, and the other to the frequency ( 0 ) with which the reactants come together. 

Equation (28) incorporates an additional friction dependence, which reflects the nature of 

the bath, as well as a second frequency dependence associated with the curvature at the 

top of the barrier.  


