IP326. Lecture 25. Thursday, March 28, 2019

e Solution of the diffusion equation under absorbing boundary conditions

In the example discussed in the last lecture of a particle constrained to move along a
line segment with end points at 0 and L, the barriers located at these points were assumed
to be reflecting. This meant that there was no probability current through 0 and L. But if
the barriers there are such that a particle encountering them for the first time is
immediately annihilated, then they constitute what are referred to as absorbing
boundaries, and the conditions they impose on the solution of the diffusion equation that
governs the particle’s motion are different. These conditions are now given by the
relations

P(0,t) =P(L,t)=0 1)

The diffusion equation remains the same, viz., oP(x,t)/ ot = DO*P(x,t)/ox*, and it is
solved as before by the method of separation of variables, which leads to the equations

? = —k°DT (t) (2a)
and
T _ g @)
whose solutions are
T(t) ce ™t | (3a)
and
#(X) = Asin kx + B cos kx (3b)

But the new boundary conditions now lead to new constraints on ¢(x), specifically the
constraint ¢(0) = ¢(L) =0, which requires that B =0 and that Asin kL=0. The latter is
satisfied by k =nz/L, n=12,3,..., which means that ¢(x) is now given by

B(x) oc sin(nzx / L) 4

The complete solution to the diffusion equation therefore takes the form



P(x,t) = > B, sin(nax/L)e™ " " (5)

n=1

where the B, are expansion coefficients, which are determined, as before, by application
of the initial condition P(x,0) = o(x—X,). This leads to

S5(x— %)= Y B, sin(nax/ L) (6)

n=1

After multiplying both sides of this equation by sin mzx/L, and integrating the result
over x between the limits 0 and L, we find that

B, = %sin( mzx, /L) (7)
and so finally

P(xt) = %Zsin( nax, I L)sin(nzx / L)e™ = 2V ()

n=1

It’s evident from this equation that P(x,t — «) =0, which was not the case when the

L
boundary conditions were reflecting. Nor is the integral .[deP(x,t) a non-zero constant;

in fact, it has an interesting interpretation — it can be regarded as the probability density
that a particle starting from some point between 0 and L survives up to a time t without
being absorbed by either of the end-points. Denoting this probability S(t), we see from
Eq. (8) that it is given by

S(t) = —2§Sin( nzx, / L) m e,nzﬁth,Lz (9)
¥4

n=1

It’s clear from this relation that as time passes the chances of the particle remaining
unabsorbed become smaller and smaller, meaning that sooner or later it will be absorbed.

o A model of chemical reaction rates

Density distributions play an important role in the theory of reaction dynamics in
the condensed phase, a field that arguably began with the publication of H. A. Kramers’
seminal paper, “Brownian motion in a field of force and the diffusion model of chemical
reactions”, Physica 7, 284 (1940). Kramers’ interest was in chemical transformations of
the kind A— B that occurred in solution at ambient temperatures. Empirically, such
transformations are governed by a mass action law of the form



diA] _ _
o - KAl (10)

where [A] stands for the concentration of A and k is a rate constant that at this level of
description is purely phenomenological, meaning its dependence on details of the system
(such as the viscosity of the solvent, temperature, inter-molecular interaction parameters,
etc.) is not known a priori but must be determined experimentally. Kramers’ objective
was to derive an expression for k in which these dependences were explicit.

For this purpose, he began with a model of what a chemical reaction at the
molecular level might conceivably look like. He assumed that in a dense fluid at constant
temperature, a reactive species like A experiences a constantly fluctuating set of forces
from its surroundings. As a result, it occasionally acquires sufficient energy to be
transformed to B. The transformation can be assumed to proceed along what is now
referred to as a reaction coordinate, a somewhat ill-defined parameter that corresponds to
some degree of freedom of A (or a combination of degrees of freedom) that changes
continuously during the course of the change A — B. A reaction coordinate could be an
angle of rotation, for instance, or a bond length, or even a combination of the two. In any
case, Kramers thought of this coordinate as the position of a particle that evolved
stochastically along a potential surface with this general form:

Here the left well corresponds to the energy of A and the right well to that of B, the hump
in the middle representing the barrier A has to overcome to change to B. Most of the time
the particle moves around in the neighborhood of the reactant potential minimum, but
every now and then it gets enough energy to surmount the barrier and to cross over into
the product potential minimum. When this happens, A is imagined to have been
transformed to B.

Accepting this picture of the reaction process, we can assert that the reaction’s
dynamics are governed by these equations:

X(t) = v(t) (11a)



U(X(W) |,

mv(t) = —gu(t) - X

(t) (11b)

where U is the potential energy profile depicted above. All the other terms in these two
equations have their usual definitions. The idea now is to use these equations to say
something about k.

As a starting point, Eg. (10) can be rearranged to

__d[A]/dt (12)
[A]

The RHS of this relation can be interpreted as the ratio of a flux of A (over the barrier) to

the population of A (in the reactant well.) Now, in general, a flux can be thought of as a

mean velocity (since velocities are what lead to physical transport of matter from one

place to another), so one can write,

flux ~ .[dxj dvvP(x,v,t — o0) (13)
Along the same lines one can write
population ~ J' dx J' dvP(X,V,t — ) (14)

where P(x,v,t) is the probability density of finding the particle at position x with a

velocity v at time t. In taking the limit t — oo in these expressions the assumption is that it
is only after the system has had a long enough time to evolve that the rate constant
actually attains a steady constant value. But this limit imposes some constraints on how
we interpret the details of the reaction mechanism. For instance, it requires that we
imagine that whenever a particle crosses the barrier, the potential well from which it left
is replenished by another molecule of A so that its distribution is essentially in
equilibrium. It also requires the barrier to be relatively high so that barrier crossing events
take place relatively infrequently, again allowing time for the system to settle into
equilibrium.

To evaluate Egs. (13) and (14), we need an expression for P(x,v,t), which must

be obtained from the solution of the equation that describes its phase space evolution. For
a system whose stochastic dynamics takes place on a potential energy surface U, this
equation, using the functional calculus methods of the earlier sections, is easily shown to
be
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(15)



The only difference between this equation and the earlier phase space diffusion equation
is the additional term involving the force from the potential.

In the long time limit of this equation that we’re interested in, the system is
assumed to have achieved a “steady state”, where things don’t change with time. In other
words in this limit, oP/ot=0. You can show by direct substitution that the resulting
equation, viz.,

2
—V@+£2VP+1Q@+$—BZTQZO (16)
OX mov mox ov. m° ov

is satisfied by the thermal equilibrium distribution, i.e., the distribution
P,(x,v) = Cexp|- gmv? /12— pU]] (17)

where C is a normalization constant, and g =1/k;T .



