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IP326. Lecture 25. Thursday, March 28, 2019  

 

 

● Solution of the diffusion equation under absorbing boundary conditions   

 

         In the example discussed in the last lecture of a particle constrained to move along a 

line segment with end points at 0 and L, the barriers located at these points  were assumed 

to be reflecting. This meant that there was no probability current through 0 and L. But if 

the barriers there are such that a particle encountering them for the first time is 

immediately annihilated, then they constitute what are referred to as absorbing 

boundaries, and the conditions they impose on the solution of the diffusion equation that 

governs the particle’s motion are different. These conditions are now given  by the 

relations 
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The diffusion equation remains the same, viz., 22 /),(/),( xtxPDttxP  , and it is 

solved as before by the method of separation of variables, which leads to the equations        
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whose solutions are  
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and 
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But the new boundary conditions now lead to new constraints on )(x , specifically the 

constraint  0)()0(  L ,  which requires that 0B  and that 0sin kLA . The latter is 

satisfied by Lnk / , ...,3,2,1n , which means that )(x  is now given by  
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The complete solution to the diffusion equation therefore takes the form 
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where the nB  are expansion coefficients, which are determined, as before, by application 

of the initial condition )()0,( 0xxxP   . This leads to  

                                         





1

0 )/sin()(
n

n LxnBxx                                                    (6) 

 

After multiplying both sides of this equation by Lxm /sin  , and integrating the result 

over x between the limits 0 and L, we find that  
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and so finally 
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It’s evident from this equation that 0),( txP , which was  not the case when the 

boundary conditions were reflecting. Nor is the integral ),(
0

txPdx
L

  a non-zero constant; 

in fact, it has an interesting interpretation – it can be regarded as the probability density 

that a particle starting from some point between 0 and L survives up to a time t without 

being absorbed by either of the end-points.  Denoting this probability S(t), we see from 

Eq. (8) that it is given by 
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It’s clear from this relation that as time passes the chances of the particle remaining 

unabsorbed become smaller and smaller, meaning that sooner or later it will be absorbed.  

 

  

● A model of chemical reaction rates 

 

         Density distributions play an important role in the theory of reaction dynamics in 

the condensed phase, a field that arguably began  with the publication of H. A. Kramers’ 

seminal paper, “Brownian motion in a field of force and the diffusion model of chemical 

reactions”, Physica 7, 284 (1940). Kramers’ interest was in chemical transformations of 

the kind BA  that occurred in solution at ambient temperatures. Empirically, such 

transformations are governed by a mass action law of the form  
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where [A] stands for the concentration of A and k is a rate constant that at this level of 

description is purely phenomenological, meaning its dependence on details of the system 

(such as the viscosity of the solvent, temperature, inter-molecular interaction parameters, 

etc.) is  not known à priori but must be determined experimentally. Kramers’ objective 

was to derive an expression for k in which these dependences were explicit.  

 

         For this purpose, he began with a model of what a chemical reaction at the 

molecular level might conceivably look like. He assumed that in a dense fluid at constant 

temperature, a reactive species like A experiences a constantly fluctuating set of forces 

from its surroundings. As a result, it occasionally acquires sufficient energy to be 

transformed to B. The transformation can be assumed to proceed along what is now 

referred to as a reaction coordinate, a somewhat ill-defined parameter that corresponds to 

some degree of freedom of A (or a combination of degrees of freedom) that changes 

continuously during the course of the change BA . A reaction coordinate could be an 

angle of rotation, for instance, or a bond length, or even a combination of the two. In any 

case, Kramers thought of this coordinate as the position of a particle that evolved 

stochastically along a potential surface with this general form: 
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Here the left well corresponds to the energy of A and the right well to that of B, the hump 

in the middle representing the barrier A has to overcome to change to B. Most of the time 

the particle moves around in the neighborhood of the reactant potential minimum, but 

every now and then it gets enough energy to surmount the barrier and to cross over into 

the product potential minimum. When this happens, A is imagined to have been 

transformed to B.  

 

         Accepting this picture of the reaction process, we can assert that the reaction’s 

dynamics are governed by these equations: 
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where U is the potential energy profile depicted above. All the other terms in these two 

equations have their usual definitions. The idea now is to use these equations to say 

something about k.  

 

          As a starting point, Eq. (10) can be rearranged to  
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The RHS of this relation can be interpreted as the ratio of a flux of A (over the barrier) to 

the population of A (in the reactant well.) Now, in general, a flux can be thought of as a 

mean velocity (since velocities are what lead to physical transport of matter from one 

place to another), so one can write,  
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Along the same lines one can write  
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where ),,( tvxP  is the probability density of finding the particle at position x with a 

velocity v at time t. In taking the limit t in these expressions the assumption is that it 

is only after the system has had a long enough time to evolve that the rate constant 

actually attains a steady constant value. But this limit imposes some constraints on how 

we interpret the details of the reaction mechanism.  For instance, it requires that we 

imagine that whenever a particle crosses the barrier, the potential well from which it left 

is replenished by another molecule of A so that its distribution is essentially in 

equilibrium. It also requires the barrier to be relatively high so that barrier crossing events 

take place relatively infrequently, again allowing time for the system to settle into 

equilibrium.  

 

             To evaluate Eqs. (13) and (14), we need an expression for ),,( tvxP , which must 

be obtained from the solution of the equation that describes its phase space evolution. For 

a system whose stochastic dynamics takes place on a potential energy surface U, this 

equation, using the functional calculus methods of the earlier sections, is easily shown to 

be  
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The only difference between this equation and the earlier phase space diffusion equation 

is the additional term involving the force from the potential. 

 

             In the long time limit of this equation that we’re interested in, the system is 

assumed to have achieved a “steady state”, where things don’t change with time. In other 

words in this limit, 0/  tP . You can show by direct substitution that the resulting 

equation, viz.,  

 

                             0
1

2

2

2


























v

P

m

Tk

v

P

x

U

m
vP

vmx

P
v B

                                (16) 

 

is satisfied by the thermal equilibrium distribution, i.e., the distribution 
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where C is a normalization constant, and TkB/1 .   

                                                         

 

 

  

 

                                                           

                                    

                                                      

 

  

                                                      

                                                                  

 

 

 

 

 

                      

 

  

 

               

 

                 


