IP326. Lecture 24. Tuesday, March 26, 2019

e The Ornstein-Uhlenbeck distribution

In the previous lecture we showed that the Langevin equation for the velocity v(t) of
a particle in one dimension, viz.,
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could be used to derive the following equation for the probability density that v(t) has the
value v at time t:
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Here and in Eq. (1), m is the mass of the particle, ¢ its friction coefficient, and f(t) a
random variable defined by the correlations ( f (t)) =0 and ( f (t) f (t')) = 2¢k TS (t —t') .

We’d now like to find the solution to this equation as a function of t and the
particle’s initial velocity v,. There are several ways to do this, and the approach we’ll
take is based on the properties of the random variable f(t), which, as we’ve noted before,

is Gaussian. What we mean by this is that the probability that f(t) follows a certain
trajectory in a certain interval of time t is given by a quadratic functional of f; that is
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This particular structure of P[f] guarantees — although we won’t show it — that the mean
of f (t) is 0 and that its two-time correlation is a delta function. From (1), it’s evident that
v(t) is a linear functional of f, meaning, effectively, that it is a sum of Gaussian random
variables. That makes v(t) a Gaussian random variable too, which means that the values
that it can take, at some time t, are Gaussianly distributed. Now a Gaussian distribution of

a random variable, say z, is defined completely by its mean, z(t) and its variance

ol (t) = 2°(t) —ﬁz. Given these two parameters the distribution of z values, P(z,t), is
given by
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So to determine the distribution of velocities, it’s enough to calculate \ﬁ and

o2(t) = v2(t) - v(t)_ . For this purpose, we first solve Eq. (1) for v(t): the solution is
1 t
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This means that
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The average of these two equations over the distribution of f leads to
v(t) = v(0)e " (7)
and
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Thus, if we set the initial value of the velocity, v(0), to v,, we see that the variance of the
velocity is given by
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which is known as the Ornstein-Uhlenbeck distribution. It can be verified by direct
substitution that Eq. (10) satisfies Eq. (2).



The following points about the Ornstein-Uhlenbeck distribution are worth noting:

(i) The peak of the distribution is located at v,e '™, its value at t =0being v,, which
then driftstoOas t »> 0.

(if) The width of the distribution broadens as t increases [see Eq. (9); at t=0, o, =0,

whileat t >, o, =k T/m ]

(iii) In the t — oo limit, the distribution becomes Maxwellian. That is,

P(v, ) = P (v) = (27;‘ TJ exp{— ;;"J (11)

Schematically, the evolution of P(v,t) with t looks something like this:
P(v,t)
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e Solutions of the diffusion equation

In the overdamped limit, when the inertial term in Eq. (1) can be neglected (typically
in dense fluids), the particle’s position is governed by the equation

dx(t)
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which we’ve shown can be transformed to the following equation for the probability
density that the particle is at x at time t:

P _ o 65):2 P(x.1) (13)

where D is the diffusion coefficient, defined as k,T /£ . The usual way of solving this
equation is through Fourier transforms, the Fourier transform of some function f(x)

being defined as f (k) = J'_?jxe‘kx f(x). If we apply this transform to both sides of Eq. (13),
under the assumption that P(x,t) and its derivatives vanish at x = +oo, we get
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which is solved by
P(k,t) = P(k,0)e " (14)

Assuming that the particle starts off at the point x,, we can express the initial condition
on the particle’s distribution as P(X,0) = o(x — X,) , which means that

P(k,0) = e (15)

When this expression is put back into Eq. (14) and the result inverse Fourier transformed
according to the formula

(k) = % Tdke‘kx F (k)

where the factor of 2z is introduced as a matter of convention, we find that

P(x,t) = _x= Xo)z} (16)
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which is the solution to Eg. (13) under the so-called natural boundary conditions
P(foo,t) =0 and for the initial condition P(x,0) = d(X—X,). You can also verify that

P(x,t), as given by Eq. (16), is normalized to unity.

The evolution of P(x,t) as t increases is sketched in the figure below for the case
of a particle starting off at x, =0.



“P(x,t)

The widths of the curves in the above figure increase as t"? (because o, = /2Dt ), while

their heights decrease as t™'* (because P(0,t) =1/~/4zDt ). The area under the curves
remains unity for all t. There is no non-trivial limiting distribution as t — oo; instead
P(x,t > «) — 0 for all x.

e Dynamics of two independent non-interacting particles

If two identical particles labelled 1 and 2, initially located at the origin, move freely
in one dimension according to Eq. (12) without mutual interactions (implying that they
can even pass through each other), we can use Eq. (16) to say something about the
distribution of their center of mass and the distribution of their inter-particle separations.

The center of mass of the two particles, x
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is given by %(x1 + X,), while their spatial

separation, r, is given by x, —x,. From these definitions, the distribution P, (x,,.t) of
X, attime tcan be found from
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Carrying out the simple Gaussian integration in the last relation, we obtain
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The effective diffusion coefficient of the center-of-mass “particle” is therefore D/2.

In the same way, the distribution P.(r,t) of the separation between the two
particles can be calculated from

P.(r,t)
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The effective diffusion coefficient of the inter-particle distance is therefore 2D.

e Solution of the diffusion equation under reflecting boundary conditions

Up to now, we’ve been looking at the dynamics of a particle that was free to move
anywhere. But in many of the systems to which the model of Brownian motion is applied,
there are often restrictions on where the particle can move. One common situation, for
instance, is when the particle is confined to a line segment between the points 0 and L,
where it may be supposed that there exist impenetrable walls that completely reflect the
particle’s motion. The probability density P(x,t) in these circumstances is no longer the
expression given in Eq. (16), but must be found by solving Eq. (13) subject to the given
constraint (and any accompanying initial condition.) This constraint is manifested as a
boundary condition on x. In the present case, because of the impenetrable walls at 0 and



L, there is no flow of probability through them. In other words the “probability current” at
these points is 0. An expression for this current can be found from the diffusion equation
itself [Eq. (13)], which can be written in the form
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where J(x,t) = DOP(x,t)/ox . In this form, the equation has the structure of a continuity
equation, and the function J(x,t) is therefore what we identify as the current. The

vanishing of this current at the end points of the line segment then gives rise to the
boundary conditions

J (x,t)|X:0’L =0, forallt>0 (20)

which must be satisfied by any putative solution of the diffusion equation.

To solve the equation, we can use the method of separation of variables, which
proceeds by writing P(x,t) as

P(x,1) =T(t)¢(x) (21)

where T and ¢ are as yet unknown functions of their arguments. If this expression is used
in Eq. (13), the result is
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where the dot denotes differentiation with respect t and the double prime denotes
differentiation with respect to x. Since the LHS of Eq. (22) is solely a function of t, and
the RHS solely a function of x, it follows that both sides must actually equal a constant,
which we’ll assign the arbitrary value —k?, the negative sign being introduced to ensure
physically meaningful behavior at long times. So now we have the two equations
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The first of these is easily seen to be solved by



T(t) oce™™ . (24)
There is no need at the moment to include a proportionality constant in this relation.

The second of these equations — Eq. (23b) — is a specific instance of an eigenvalue
equation, the constant k functioning as the eigenvalue and the function ¢(x) as the

eigenfunction. The general solution of Eq. (23b) is also easily derived; it is

#(x) = Asin kx + B coskx (25)

where A and B are constants of integration that will have to be fixed by the boundary and
initial conditions. One of these conditions, as noted before, is J(x=0)=0, which

translates to the condition
¢'(x=0) = (Ak coskx — Bk sin kx) |,_,=0 (26)

The solution of this equation requires that A=0. Hence, ¢(x)=Bcoskx. The other
boundary condition, viz., ¢'(x =L) =—-Bksin kx|,_, =0, requires that kL =ns, with n an

integer that can take the values 0, 1, 2, etc. So the boundary conditions have fixed the
value of the separation constant k as

k=—2, n=012,... (27)

in the process identifying the eigenfunction ¢(x) as
@(X) oc cos(nzx /L) (28)

The proportionality constant in this relation, as well as the one in Eq. (24), will be
chosen later to ensure that joLcij(x,t) =1.

With Egs. (24), (27) and (28) in hand, the distribution function P(x,t) can now be
written as the linear combination

P(x,t) = > .C, cos(nax/L)e™" Pt
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where the expansion coefficients C, are to be determined. To determine these
coefficients, we apply the initial condition P(x,0) =J(x—X,) to Eqg. (29), which leads to



o(x—x,)=C, +§:Cn cos(nzx /L) (30)
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We now multiply both sides of this equation by cos(mzx /L), and then integrate the
result over x from 0 to L, obtaining

x=L 0 L
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From this last relation one sees that C, =1/L and C_, =(2/L)cos(mzx,/L) for m>1.
Having thus found C,_ (or equivalently C_, since m is a dummy index), the complete
expression for P(x,t) is given by

I:’(X,'f)=1+3 cos(nx, / L) cos(nzx / L)e ™" PV (32)
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It is easily verified that J.OdeP(x,t) =1.



