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IP326. Lecture 24. Tuesday, March 26, 2019  

 

 

● The Ornstein-Uhlenbeck distribution     

 

        In the previous lecture we showed that the Langevin equation for the velocity v(t) of 

a particle in one dimension, viz.,  
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could be used to derive the following equation for the probability density  that v(t) has the 

value v at time t:  
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Here and in Eq. (1), m is the mass of the particle,  its friction coefficient, and f(t) a 

random variable defined by the correlations 0)( tf  and )(2)()( ttTktftf B
  .   

 

       We’d now like to find the solution to this equation as a function of t and the 

particle’s initial velocity 0v . There are several ways to do this, and the approach we’ll 

take is based on the properties of the random variable f(t), which, as we’ve noted before, 

is Gaussian. What we mean by this is that the probability that f(t) follows a certain 

trajectory in a certain interval of time t is given by a quadratic functional of f; that is  
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This particular structure of P[f] guarantees – although we won’t show it – that the mean 

of f (t) is 0 and that its two-time correlation is a delta function. From (1), it’s evident that 

v(t) is a linear functional of f, meaning, effectively, that it is a sum of Gaussian random 

variables. That makes v(t) a Gaussian random variable too, which means that the values 

that it can take, at some time t, are Gaussianly distributed. Now a Gaussian distribution of 

a random variable, say z, is defined completely by its mean, )(tz  and its variance 
222 )()()( tztztz  . Given these two parameters the distribution of z values, ),( tzP , is 

given by 
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So to determine the distribution of velocities, it’s enough to calculate )(tv  and 
222 )()()( tvtvtv  . For this purpose, we first solve Eq. (1) for v(t); the solution is 
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This means that 
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The average of these two equations over the distribution of  f leads to 
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Thus, if we set the initial value of the velocity, v(0), to 0v , we see that the variance of the 

velocity is given by 
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and so   
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which is known as the Ornstein-Uhlenbeck distribution. It can be verified by direct 

substitution that Eq. (10) satisfies Eq. (2).  



 3 

 

        The following points about the  Ornstein-Uhlenbeck distribution are worth noting: 

 

(i) The peak of the distribution is located at mtev /

0

 , its value at 0t being 0v , which 

then drifts to 0 as t .  

 

(ii) The width of the distribution broadens as t increases [see Eq. (9); at 0t , 0v , 

while at t , mTkBv / .]   

 

(iii) In the t  limit, the distribution becomes Maxwellian. That is,  

 

                               


















Tk

mv

Tk

m
vPvP

BB

eq
2

exp
2

)(),(
2

2/1


                                  (11) 

 

Schematically, the evolution of ),( tvP  with t looks something like this: 

 

 

                                             P(v,t) 
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● Solutions of the diffusion equation     

 

        In the overdamped limit, when the inertial term in Eq. (1) can be neglected (typically 

in dense fluids), the particle’s position is governed by the equation                                                
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which we’ve shown can be transformed to the following equation for the probability 

density that the particle is at x at time t:  
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where D is the diffusion coefficient, defined as /TkB
.  The usual way of solving this 

equation is through Fourier transforms, the Fourier transform of some function )(xf  

being defined as )()(
~

xfedxkf ikx





 . If we apply this transform to both sides of Eq. (13), 

under the assumption that ),( txP  and its derivatives vanish at x , we get 
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which is solved by 
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Assuming that the particle starts off at the point 0x , we can express the initial condition 

on the particle’s distribution as )()0,( 0xxxP   , which means that  
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When this expression is put back into Eq. (14) and the result inverse Fourier transformed 

according to the formula 
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where the factor of 2  is introduced as a matter of convention, we find that  
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which is the solution to Eq. (13) under the so-called natural boundary conditions 

0),(  tP  and for the initial condition )()0,( 0xxxP   . You can also verify that 

),( txP , as given by Eq. (16), is normalized to unity.  

 

         The evolution of ),( txP  as t increases is sketched in the figure below for the case 

of a particle starting off at 00 x . 
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                                                                         P(x,t) 
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The widths of the curves in the above figure increase as 2/1t  (because Dtx 2 ), while 

their heights decrease as 2/1t (because DttP 4/1),0(  ). The area under the curves 

remains unity for all t. There is no non-trivial limiting distribution as t ; instead 

0),( txP  for all x.  

 

                         

 

● Dynamics of two independent non-interacting particles   

 

        If two identical particles labelled 1 and 2, initially located at the origin, move freely 

in one dimension according to Eq. (12) without mutual interactions (implying that they 

can even pass through each other), we can use Eq. (16) to say something about the 

distribution of their center of mass and the distribution of their inter-particle separations. 

The center of mass of the two particles, cmx , is given by )(
2

1
21 xx  , while their spatial 

separation, r, is given by 12 xx  . From these definitions, the distribution ),( txP cmcm  of 

cmx  at time t can be found from 
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Carrying out the simple Gaussian integration in the last relation, we obtain 
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The effective diffusion coefficient of the center-of-mass “particle” is therefore D/2. 

 

           In the same way, the distribution ),( trPr
 of the separation between the two 

particles can be calculated from  
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The effective diffusion coefficient of the inter-particle distance is therefore 2D. 

 

 

● Solution of the diffusion equation under reflecting  boundary conditions   

 

         Up to now, we’ve been looking at the dynamics of a particle that was free to move 

anywhere. But in many of the systems to which the model of Brownian motion is applied,  

there are often restrictions on where the particle can move. One common situation, for 

instance, is when the particle is confined to a line segment between the points 0 and L, 

where it may be supposed that there exist impenetrable walls that completely reflect the 

particle’s motion. The probability density ),( txP  in these circumstances is no longer the 

expression given in Eq. (16), but must be found by solving Eq. (13) subject to the given 

constraint (and any accompanying initial condition.) This constraint is manifested as a 

boundary condition on x. In the present case, because of the impenetrable walls at 0 and 
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L, there is no flow of probability through them. In other words the “probability current” at 

these points is 0. An expression for this current can be found from the diffusion equation 

itself [Eq. (13)], which can be written in the form 
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where xtxPDtxJ  /),(),( . In this form, the equation has the structure of a continuity 

equation, and the function ),( txJ  is therefore what we identify as the current. The 

vanishing of this current at the end points of the line segment then gives rise to the 

boundary conditions  
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which must be satisfied by any putative solution of the diffusion equation.  

 

       To solve the equation, we can use the method of separation of variables, which 

proceeds by writing  ),( txP  as  
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where T and   are as yet unknown functions of their arguments. If this expression is used 

in Eq. (13), the result is 
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where the dot denotes differentiation with respect t and the double prime denotes 

differentiation with respect to x. Since the LHS of Eq. (22) is solely a function of t, and 

the RHS solely a function of x, it follows that both sides must actually equal a constant, 

which we’ll assign the arbitrary value 2k , the negative sign being introduced to ensure 

physically meaningful behavior at long times. So now we have the two equations 
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The first of these is easily seen to be solved by 
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There is no need at the moment to include a proportionality constant in this relation.   

 

        The second of these equations – Eq. (23b) – is a specific instance of an eigenvalue 

equation, the constant k functioning as the eigenvalue and the function )(x  as the 

eigenfunction. The general solution of Eq. (23b) is also easily derived; it is 
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where A and B are constants of integration that will have to be fixed by the boundary and 

initial conditions. One of these conditions, as noted before, is 0)0( xJ , which 

translates to the condition 
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The solution of this equation requires that 0A . Hence, kxBx cos)(  . The other 

boundary condition, viz., 0|sin)( 
LxkxBkLx , requires that nkL , with n an 

integer that can take the values 0, 1, 2, etc. So the boundary conditions have fixed the 

value of the separation constant k as  
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in the process identifying the eigenfunction )(x  as 
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The proportionality constant in this relation, as well as the one in Eq. (24),  will be 

chosen later to ensure that   
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          With Eqs. (24), (27) and (28) in hand, the distribution function ),( txP  can now be 

written as the linear combination 
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where the expansion coefficients nC  are to be determined. To determine these 

coefficients, we apply the initial condition )()0,( 0xxxP    to Eq. (29), which leads to  
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        We now multiply both sides of this equation by )/cos( Lxm , and then integrate the 

result over x from 0 to L, obtaining 
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From this last relation one sees that LC /10   and )/cos()/2( 0 LxmLCm   for 1m . 

Having thus found mC  (or equivalently nC , since m is a dummy index), the complete 

expression for ),( txP  is given by 

 

                              





0

/

0

222

)/cos()/cos(
21

),(
n

LDtneLxnLxn
LL

txP                       (32) 

 

It is easily verified that  
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