IP326. Lecture 23. Thursday, March 21, 2019

e Diffusion equations of various Kinds

In Lecture 19, we saw that the application of the GLE to the dynamics of a large
mass (such as a colloid) in a fluid of much smaller masses led to a Langevin equation for
the larger mass’s velocity. In one dimension, this Langevin equation is given by

o(t) _
=)+ 1 () (1)

where m is the particle’s mass, V(t) its velocity at time t, £ its friction coefficient, and f(t)
a random variable that we argued could be assumed to have these properties:
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In arriving at Egs. (1) and (2), we made the following assumptions: (1) that f(t) decayed
from its initial value extremely fast (essentially instantaneously), and (2) that at long
times the average energy of the system was dictated by the equipartition theorem.

We’d now like to convert the above Langevin equation into an equation for the
probability density, P(v,t), that the particle has a velocity v at the time t. Formally, we

can define P(v,t) as follows:

P(v,t) =(5(v—v(t))) (3)

where the angular brackets denote an average over the distribution of the random variable
f(t). That the RHS of Eq. (3) does indeed correspond to the distribution of values that the
particle’s velocity can assume at time t can be seen as follows: a particle starting off with
some initial velocity eventually ends up — under the influence of the random force -
with the velocity v(t) after an interval of time t; that velocity may or may not correspond
to some given value v; if it does, the delta function “counts” the occurrence by becoming
infinitely large; if it doesn’t, the delta function returns the value 0, meaning the mismatch
is not counted. At the end of the given time interval, the particle is “reset” to an initial
value and then again allowed to evolve (stochastically) for the same interval of time t. Its
velocity at that time is again counted if it equals v, but not otherwise. The process is
repeated a large number of times, in this way effectively building up a histogram of the
number of times v(t) assumes a particular value at time t.

To determine how P(v,t) evolves in time, we first differentiate both sides of Eq.
(3) with respect to t, and then use the chain rule to proceed further, as shown below:
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It's easy to show that delta functions have the following property:
0 0
—o(a-b)=——07(a—-b 5
o (a-b) 7a (a-b) ()

The proof is based on the Fourier representation of the delta function; in this
representation, the LHS of Eq. (5) is given by
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Exactly the same result is obtained when the delta function on the RHS of Eq. (5) is
represented as a Fourier integral, establishing that the equality in Eq. (5) does indeed
hold. And when this equality is applied to Eq. (4), we get
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where the second line follows from the fact that v is just a parameter and not a dynamical
variable, so it is unaffected by the averaging procedure represented by the angular
brackets, and can therefore be taken outside them.

The expression for v(t) from Eq. (1) is now substituted into Eq. (6), producing
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We can appeal to another property of delta functions at this stage of the calculation:
xo(a—x)=aod(a—x). This allows us treat the average in the first term on the RHS of
Eq. (7) as follows:
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As for the second term on the RHS of Eq. (7), this is where we invoke Novikov’s
theorem; this term is exactly of the form (9(t)F[6]), with f(t) playing the role of 4(t)

and S(v—v(t)) playing the role of the functional F; o(v—v(t)) is a functional of f

because the velocity v(t) is a functional of f (as becomes evident when Eq. (1) is solved
for v(t).) So using Novikov’s theorem, we have
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To proceed further, we need to derive an expression for the functional derivative
ov(t)/ of (t"). This can be done starting from Eq. (1); if we functionally differentiate this
equation with respect to f(t") (interchanging the order of the t and f(t)
differentiations), we get
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This is a linear first order differential equation for the function ov(t)/of (t) that can be

solved, as usual, by the method of integrating factors. The solution, under the initial
condition v(0)/of (t') =0, is
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On the face of it, the integral over t” in this expression is easy to carry out; the result
would appear to be exp[-<{(t—t")/m], and indeed it is, but only if t" happens to lie in

the interval between 0 and t; if it is larger than t, the integral is actually O (courtesy the
delta function.) So, in fact, Eq. (11) actually reduces to
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where H (t —t') is the Heaviside step function, with the property that H(x) =1 for x >0
and H(x) =0 for x<0.

Substituting Egs. (8), (9) and (12) into Eq. (7), using Eq. (2b) for the correlation of
random forces, and recalling that (5(v—v(t))) is the definition of P(v,t), we arrive at
the following intermediate result
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The final step is to carry out the integration over t’, which again, because of the delta
function, is easily done, but the process leads to a factor of H(0). Strictly speaking, this
quantity is undefined, but by common convention it is understood to have the value 1/2.
With this understanding, Eq. (13) finally becomes
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This is the Ornstein-Uhlenbeck equation for diffusion in velocity space.

e Diffusion in position space

In dense fluids, the velocity of a large mass (such as a colloid) relaxes extremely
quickly from an initial non-equilibrium value, so its inertia (as represented by the term
mv(t) ) is negligible. In such fluids, then, Eq. (1) reduces to
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which can be described as the overdamped limit of Eq. (1). This limiting form of Eq. (1)
can be used to derive an expression for the probability density P(x,t) that the particle is

at the position x at time t. The starting point of this derivation is the definition
P(x,t) = (S(x—x(t))) (16)
where as before the angular brackets denote an average with respect to the distribution of

f(t). Proceeding now as we did in the derivation of Eq. (14), we first differentiate both
sides of Eq. (15) with respect to t; this leads to
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Applying Novikov’s theorem, we now arrive at
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After substituting Eq. (19) into (18), carrying out the integration over t’, and again using
the definition H(0) =1/2, we are led to the following position space diffusion equation:
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e The phase space diffusion equation

The same methods can be used to derive an evolution equation for the probability
density, P(x,v,t), that at time t a particle is at the position x and has the velocity v. This

probability is defined as
P(x,V,t) =(8(x = x(t))S(v — v(t))) (21)
where the variables x(t) and v(t) evolve according to the equations
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After differentiating Eq. (21) with respect to t, we get
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The substitution of Egs. (22a) and (22b) into Eq. (23) leads to
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The last term on the RHS of the above equation is now treated using Novikov’s theorem;
the result is
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From Eq. (22b), as we’ve shown earlier,
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When Eq. (26b) is substituted into Eqg. (25), the first term on the RHS of the latter
contains the contribution
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after the integration over t’ is carried out. But this term vanishes because the argument of

the step function is always negative in the interval over which the integration variable t”
is varied. So Eqg. (25) simplifies to
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Substituting Eq. (27) into Eq. (24), we finally arrive at the so-called phase space diffusion
equation:
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