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IP326. Lecture 22. Tuesday, March 19, 2019 

 

 

● Novikov’s Theorem   

 

       As a prelude to the derivation of an equation for the probability distribution of a 

dynamical variable from the equation for its time evolution, we will now prove a 

mathematical result involving the average of a functional of a random variable.   

 

       Let )(t  denote the random variable in question, with t the time, and ][F   some 

functional of )(t . For reasons that will become clear later, we’d like to obtain an 

expression for ][)(  Ft , where the angular brackets stand for an average over the 

distribution of  )(t . Towards this end, consider first the function ][)(  Ft , where 

)(t  is some other arbitrary function of time  – independent of )(t  – that we’ll assume 

is deterministic. The limit 0)( t  recovers the average ][)(  Ft  that we’re interested 

in.  

 

      When 0)( t , we can Taylor expand ][)(  Ft  around  )(t . The result is 
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It is to be understood that the 0n term in Eq. (1b) corresponds to ][)(  Ft .  

 

         Now consider a functional ][J , defined as  
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where the angular brackets denote the same average over the distribution of )(t  

introduced earlier. Given this expression for ][J , averages of the general form 

)()( 1 ntt    can be obtained from the relation  
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So Eq. (1b) can be rewritten identically as  
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The functional derivative )(/][ tJJ   itself can be rewritten in the form 
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where  

 

                                                        ][ln][ JJ                                                          (5b) 

 

With these definitions, the nth order functional derivative involving J in Eq. (4), viz., 
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becomes  
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which can be evaluated using the functional version of Leibnitz’s rule for the nth 

derivative of a product of functions. The result is 
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where, as before, when 0n , the operation of functional differentiation is understood to 

be omitted. Substituting Eq. (7) into Eq. (4), we get 
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Before proceeding to the next step, it will help to explore the meaning of ][J  further. 

From its definition [Eq. (5b)], we see that                               
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In the same way, 
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And similarly 
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The functions 1C , 2C  and 3C  in Eqs. (9b), (10b) and (11b) define what are referred to as 

cumulants (the first cumulant being just the mean and the second the variance.) One of 

the important properties of cumulants is that if the random variable being averaged is 

Gaussian (meaning it can be defined completely by its mean and variance), then all its 
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cumulants beyond the second are identically 0, a property we shall have occasion to use 

later. The functional ][J  can therefore be thought of as a cumulant generating 

functional. 

 

         Returning to Eq. (8), we see that 
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the M’s standing for means. In terms of these means and cumulants, Eq. (8) now becomes 
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As the next step, we interchange the order of summations, much the way we interchanged 

orders of integrations. Specifically, we write 
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It can be verified that both ways of writing the summation yield the same results. After 

this reordering of the sums, if we now introduce a new summation index mnk  , we 

can rewrite Eq. (13) as  
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This expression can be split up into a product of two factors, one involving integrations 

up to m, and the other involving integrations from 1m to mk  . That is, 
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To simplify this expression, let’s relabel the integration variables in the second set of 

integrals as 
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Then Eq. (15) becomes   
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Referring back to Eq. (1b), one can see that the second set of integrals in Eq. (16) is just 

the definition of ][  F . So this equation reduces to 
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Recall that we were actually interested in the 0  limit of the average ][)(  Ft . 

If we apply this limit to Eq. (17), we’ll find that 
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That the RHS of this relation does in fact correctly describe the 0  limit of 
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            Using Eq. (18) in Eq. (17), we finally arrive at 
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which is Novikov’s theorem in its most general form. The theorem is particularly useful 

when )(t  is a Gaussian random variable and 0)( t ; in that case, as mentioned 

before, all cumulants beyond the second vanish, so Eq. (19) reduces to 
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