IP326. Lecture 21. Thursday, March 14, 2019

e Mathematical interlude: A non-rigorous introduction to functional calculus

As our earlier discussions have shown, a dynamical variable A under thermal
equilibrium conditions is effectively a random variable that can fluctuate across a range
of possible values. The distribution of these values at some time t, P(A,t), contains
considerably more information about the dynamics of A than just its mean or variance,
which are the quantities one typically determines from an equation for the evolution of A.
What we’d like to do now is use this evolution equation to determine P(A,t), or at least
to set up an equation for it that could in principle be solved. To make the connection
between A(t) and P(A,t), we’ll adopt an approach based on an exact result known as
Novikov’s theorem. This theorem is formulated in terms of mathematical objects referred
to as functionals, and in this section, we’ll discuss a few of their relevant properties.

Let’s first recall that a quantity f is said to be a function of a variable x if given a
value for x, the value of f is determined. In the equation below, for example,

f(x)=x>
f is said to be a function of x because its value is specified once a value is assigned to x.

In general, f can depend on more than one variable, as in the equation below

where f is said to be a function of x;, x,, ... X,. A function that depends on an

effectively infinite number of independent variables can be said to be a functional.
Somewhat more precisely, a quantity F is said to be a functional of a function y(x) (for
some range of x) if given y(x) in the chosen interval of x, the value of F is determined.
The dependence of F on y(x) is denoted F[y] (note the square brackets and the omission
of the argument of y.) Here are some examples of functionals

b
Flyl= Ide(x)y(x) ,  G(x) being some function of x,

F.ly] = [ dxexp[y(x)]

There are several things about the functional F that must be borne in mind: 1) F is not a
function of x, 2) F is not a function of a function (contrary to the definition in the glossary



of Chaikin and Lubensky’s textbook on condensed matter physics.) What we generally
understand by the term “function of a function” can illustrated by the following example:

let f(x)=x+1 be some function of x and g(x)=x* be another. Both

g(f(x)) =(x+1?> and f(g(x)) =x*>+1 are functions of functions; their values are

specified once the value of x is specified. For the value of a functional F to be specified,
however, an effectively infinite number of variable values must be specified. Which is
why F cannot be described as a function of a function.

Functional derivatives

If f is a function of x, the derivative of f with respect to x, df/dx, is defined as

ﬂz lim f(x+Ax) — f(x)
dx ax—0 AX

Thus, df/dx can be identified from the relation

Af = ﬂAx
dx

in the limit of small Ax. If f is a function of many variables, the corresponding relation is
1 of
Af =) —AX,

By analogy, we identify the functional derivative of a functional F with respect to a
function y at the point x, which we denote, oF[y]/dy(x), from the equation

F 50

oF=F -F[yl=|d
[y + ] U]!x@@)

where oy is some arbitrary change in the function y at the point x that can be defined as
oy(x) = Iim0 £Y (x), Y(x) being some other arbitrary function of x.

Examples

LIf Flyl=[ dxG(x)y(x). find SF[y]/6Y(x).

Answer



F =F[y+]-Flyl= [dG)(y(x) +F(x) - [ dXG(x)y(x)

= [&xG()y(x)

Hence,

FIY1 _Gx)
%Y(x)

2. If F[y]= I:dxexp[ﬂy(x)] - where /3 is a constant, find SF[y]/&y(x).

Answer

b b
OF =F[y+&]-F[y]= Idxeﬂ(y(X)+5y(X)) _J‘dxeﬁy(x)
b b

b
= ] dre”3y(x)

And so,
oF[y] _ g
300 *

3. If F[y]l=y(x), find oF[y]/oy(x).

Answer Strictly speaking, the given equation for F does not define a functional, but it can
be recast so that it does, at least in terms of appearance. The way to do this is to rewrite
the equation as

FIyl= [axy(<)5(x-X)



Then,

OF =F[y+&]-Flyl= [d(y(x)+FH(XNS(x=x) — [dxy(x)3(x—x)

= de’é(x = X"y (x")

Therefore,

FIY_ H0) _ 50
H(¥) ~ H(X)

Higher order functional derivatives are defined much the way they are in discrete variable
calculus. For instance, if F[y] is a functional of y(x), then the functional derivative of
oF[y]/dy(x) with respect to a function y at the point x’ can be regarded as the second

order functional derivative of F, and denoted 5°F[y]/ &y(x")dy(X).

Examples
1. Let
Fly]= [ dxy*(x)
Then,
Syl _
300 2y(x)
and
—52,':[3/] =20(x-X)
y(x)dy(x)
2. Suppose
FIyl=y(x)



Then,

éF[y] — 5(X— Xr)
A (X)
and
S°FIyl  _
H(X")Y(X)
3. Similarly, if
FLyl= [ dx"G(x")y(x")
then

SFlyl _ &
(XY (x)  H(X)

G(x') =

Functional Calculus

Most rules of ordinary differential calculus — such as the chain rule and the product rule —
apply, in generalized form, to functional derivatives as well.

1. The Chain Rule

Suppose H[y] = e, Then MY _ e OFLY]

¥ (X) H(x)
Proof
HIy + ]~ H[y] =e"¥ -l
Now F[y+5y]=F[y]+.[dX i;([z)]@(x)
Therefore,



HLy +&]-H[y]= F[y](lJrJ.dxéF([y)]@(XH J el
:jdxeF[y]éF[y] (X)
()

éH[Y] eFlyl d:[y]
dy(X) H(x)

Hence, as asserted.

2. The Product Rule

oH[y] oF [yl oLyl
S h =F th
uppose H[y]=F,[y]F,[y] . Then (%) (%) F(x)

Proof

Hlyl=FRly+&IRLy+9]-FlylRly]

(F[yh JaT (x)](F )+ fox S @(x)j—Fl[y]FZ[y]

o[yl o, [y]
=[dx F +F
= x( W50 RIS J@(x)

so A _p FII, p KT
Fyx) Ty FX)

as asserted.

Once the notion of multiple derivatives of a functional is formalized, it becomes
possible to extend other useful results from ordinary calculus to the functional realm. One
such result is the Taylor’s series, which for a functional is defined as

S L rax SFlyl |
FIyl= Y= [ dx, - [ dx, TEREE TeR ARG

in analogy with the Taylor’s series expansion of a function of several variables. (N.B. In
the equation above, the k = 0term in the sum is understood to mean just F[0].)



