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IP326. Lecture 21. Thursday, March 14, 2019 

 

 

● Mathematical interlude: A non-rigorous introduction to functional calculus   

 

          As our earlier discussions have shown, a dynamical variable A under thermal 

equilibrium conditions is effectively a random variable that can fluctuate across a range 

of possible values. The distribution of these values at some time t, ),( tAP , contains 

considerably more information about the dynamics of A than just its mean or variance, 

which are the quantities one typically determines from an equation for the evolution of A. 

What we’d like to do now is use this evolution equation to determine ),( tAP , or at least 

to set up an equation for it that could in principle be solved. To make the connection 

between A(t) and ),( tAP , we’ll adopt an approach based on an exact result known as 

Novikov’s theorem. This theorem is formulated in terms of mathematical objects referred 

to as functionals, and in this section, we’ll discuss a few of their relevant properties.          

   

         Let’s first recall that a quantity f is said to be a function of a variable x if given a 

value for x, the value of f is determined. In the equation below, for example,  
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f is said to be a function of x because its value is specified once a value is assigned to x.  

 

        In general, f can depend on more than one variable, as in the equation below 
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where f is said to be a function of 
1x , 

2x , nx, . A function that depends on an 

effectively infinite number of independent variables can be said to be a functional. 

Somewhat more precisely, a quantity F is said to be a functional of a function y(x) (for 

some range of x) if given y(x) in the chosen interval of x, the value of F is determined. 

The dependence of F on y(x) is denoted F[y] (note the square brackets and the omission 

of the argument of y.) Here are some examples of functionals 
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There are several things about the functional F that must be borne in mind: 1) F is not a 

function of x, 2) F is not a function of a function (contrary to the definition in the glossary 
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of Chaikin and Lubensky’s textbook on condensed matter physics.) What we generally 

understand by the term “function of a function” can illustrated by the following example: 

let 1)(  xxf  be some function of x and 2)( xxg   be another. Both 
2)1())((  xxfg   and 1))(( 2  xxgf  are functions of functions; their values are 

specified once the value of x is specified. For the value of a functional F to be specified, 

however, an effectively infinite number of variable values must be specified. Which is 

why F  cannot be described as a function of a function.  

 

 

Functional derivatives 

 

If f is a function of x, the derivative of f with respect to x, df/dx,  is defined as 
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Thus, df/dx can be identified from the relation 
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in the limit of small x . If f is a function of many variables, the corresponding relation is  
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By analogy, we identify the functional derivative of a functional F with respect to a 

function y at the point x, which we denote, )(/][ xyyF  , from the equation 
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where y is some arbitrary change in the function y at the point x that can be defined as 
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 , Y(x) being some other arbitrary function of x.  

 

 

Examples   

 

1. If  
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a
xyxdxGyF )()(][ , find )(/][ xyyF  . 

 

Answer  
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Hence,   
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2. If 
b

a
xydxyF )](exp[][  , where   is a constant, find )(/][ xyyF  . 

 

Answer 
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And so,   
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3. If )(][ xyyF  , find )(/][ xyyF  . 

 

Answer Strictly speaking, the given equation for F does not define a functional, but it can 

be recast so that it does, at least in terms of  appearance. The way to do this is to rewrite 

the equation as  
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Then, 
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Therefore, 
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Higher order functional derivatives are defined much the way they are in discrete variable 

calculus. For instance, if  F[y] is a functional of y(x), then the functional derivative of 

)(/][ xyyF   with respect to a function y at the point x  can be regarded as the second 

order functional derivative of F, and denoted )()(/][2 xyxyyF   .  

 

Examples 

 

1. Let 
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2. Suppose  

 

                                                               )(][ xyyF   

 

 

 



 5 

Then, 
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3. Similarly, if 
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Functional Calculus  

 

Most rules of ordinary differential calculus – such as the chain rule and the product rule – 

apply, in generalized form, to functional derivatives as well.  

 

 

1. The Chain Rule 
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Proof 
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2. The Product Rule                  
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Proof                                    
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        Once the notion of multiple derivatives of a functional is formalized, it becomes 

possible to extend other useful results from ordinary calculus to the functional realm. One 

such result is the Taylor’s series, which for a functional is defined as  
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in analogy with the Taylor’s series expansion of a function of several variables. (N.B. In 

the equation above, the 0k term in the sum is understood to mean just F[0].)  

 

              

 

 


