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IP326. Lecture 20. Tuesday, March 12, 2019 

 

 

● Continued fraction representation of time correlation functions   

   

           The calculations that led to the Langevin equation from the GLE were based on 

the existence of a small parameter, Mm / , that allowed various operators in the 

exact equation for a dynamical variable to be approximated by the leading order term in a 

series expansion. Since there may not always be such parameters in a problem (or an easy 

way to identify them), it’s important to have other systematic and well-controlled ways of 

treating otherwise intractable dynamical equations. This section illustrates one such 

alternative, which we’ll apply directly to a time-correlation function itself, rather than to 

its associated  phase space variable.  

 

         So consider the function )()( tAAtC  , which is equivalent to AeAtC iLt)( , 

where L, as usual, is the Liouville operator. We’ve seen that this function satisfies the so-

called memory function equation, and our objective now will be to find approximations 

to this equation and its solution. To this end, we’ll begin by re-expressing )(tC  in 

Laplace space, where it becomes 
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We can rewrite this equation identically as 
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where P is the projection operator AAAAP
1

  and PQ  1 . Let’s now recall the 

following operator identity: 
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and identify M as iLQs   and N as iLP . Introducing these definitions into Eq. (2), we 

see that  
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Consider each of these functions in turn; by definition 
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But 0AQ  (by construction), so  )(ˆ
1 sC  reduces to  
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Similarly, 
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Consider the factor AiLiLQsA 1)(   in Eq. (7); it can be transformed as follows: 
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(because QQ 2  by idempotency)   
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Substituting Eq. (8) into Eq. (7), we see that  
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The function QiLAAQiL   in Eq. (9) will be recognized as the definition of the 

generalized random force F . So iLQBA , where B stands for QiLAQiLs 1)(  , can 

be written as BFBQiLABQLAi  .  Hence, the function )(ˆ
2 sC  simplifies to 
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Recall that the memory function K(t) in the GLE was defined as  
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so, formally, its Laplace transform is given by 
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which means that )(ˆ
2 sC  in Eq. (10) can be written as 
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After putting Eqs. (12) and  (6) back into Eq. (4b), and solving for )(ˆ sC , the result is  
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where we’ve replaced the autocorrelation function AA  by its definition in terms of the  

0t  value of )(tC .  

 

           This expression for )(ˆ sC  could actually have been obtained directly and much 

more simply from the memory function equation itself: 
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All one needs to do is take the Laplace transform of both sides of the equation (using the 

convolution theorem to treat the term in K(t)); this leads to 
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which when rearranged recovers Eq. (13). The reason for following the elaborate 

procedure we did is that we’ll need to use exactly this procedure again to manipulate 

)(ˆ sC  into another exact form.  

  

            But our starting point this time will be the memory function )(ˆ sK , which is also a 

time correlation function, but one involving the generalized random force F . So let’s 

now introduce a set of two new projection operators, 
1P  and 

1Q , that project an arbitrary 

vector (i.e., dynamical variable) onto the parallel and perpendicular directions of  F , 

respectively. From our discussions, 
1P  will be given by 
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and 
1Q  by 

11 1 PQ   .  We can now rewrite the expression for )(ˆ sK  in Eq. (11) first as   
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(because FFQ  ), and then as 
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Making use once more of the identity 1111 )()(   NMNMMNM , but with M 

chosen to be 1QiLQQs   and N chosen to be 1QiLQP , we transform Eq. (16) to 
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Consider )(ˆ
3 sC , which from the above equations has the definition  
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This can be rewritten as a series expansion: 
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But since 01 FQ , by construction, Eq. (19) immediately simplifies to 
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Turning now to )(ˆ
4 sC , which has the definition  

 

                              F
QiLQs

QiLQP
QiLQQs

FAAsC



 11

)(ˆ
1

1

1

4  ,                   (21) 

 

we introduce the expression
1P , and arrive at  
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where 
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The function )(ˆ sC  can be transformed as follows: 
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where  LFFFF
1

1


 . In arriving at this expression for 

1 , we used the fact that 

QLQFF QLFF LFQF LFF , which itself made use of the idempotent 

and Hermitian properties of Q.  Similarly, the second term in Eq. (24) used the fact that 

1

2

1 QQ  . Equation (24) can be further transformed to  
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The structure of the second term in Eq. (25) suggests that we can identify a new 

generalized random force f  as 
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This means that BQiLQQF 
1 , where B stands for fQiLQQs 1
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        Putting all the pieces together, we find that 
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And substituting this expression into the expression for )(ˆ sC , we finally arrive at  

 

                                          

)(ˆ

)0(/)0(

)0(
)(ˆ

11 sKis

CK
is

C
sC




                                            (29) 

 

The above sequence of steps can be repeated ad infinitum with each new memory 

function that’s generated by the procedure. The result is a continued fraction 

representation of )(ˆ sC . Truncation of the continued fraction at some particular order 

leads to an approximation for )(ˆ sC .  

                                  

 

 

 

          

 

 

 

 

 

 

 

          

                                                

 

                                   

 


