

IP326. Lecture 20. Tuesday, March 12, 2019

- Continued fraction representation of time correlation functions

The calculations that led to the Langevin equation from the GLE were based on the existence of a small parameter, $\lambda \equiv \sqrt{m/M}$, that allowed various operators in the exact equation for a dynamical variable to be approximated by the leading order term in a series expansion. Since there may not always be such parameters in a problem (or an easy way to identify them), it's important to have other systematic and well-controlled ways of treating otherwise intractable dynamical equations. This section illustrates one such alternative, which we'll apply directly to a time-correlation function itself, rather than to its associated phase space variable.

So consider the function $C(t) \equiv \langle A | A(t) \rangle$, which is equivalent to $C(t) = \langle A | e^{iLt} | A \rangle$, where L , as usual, is the Liouville operator. We've seen that this function satisfies the so-called memory function equation, and our objective now will be to find approximations to this equation and its solution. To this end, we'll begin by re-expressing $C(t)$ in Laplace space, where it becomes

$$\hat{C}(s) = \langle A | \frac{1}{s - iL} | A \rangle \quad (1)$$

We can rewrite this equation identically as

$$\hat{C}(s) = \langle A | \frac{1}{s - iL(Q + P)} | A \rangle \quad (2)$$

where P is the projection operator $P = |A\rangle\langle A|^{-1}\langle A|$ and $Q = 1 - P$. Let's now recall the following operator identity:

$$(M + N)^{-1} = M^{-1} - M^{-1}N(M + N)^{-1} \quad (3)$$

and identify M as $s - iLQ$ and N as $-iLP$. Introducing these definitions into Eq. (2), we see that

$$\hat{C}(s) = \langle A | \frac{1}{s - iLQ} | A \rangle + \langle A | \frac{1}{s - iLQ} iLP \frac{1}{s - iL} | A \rangle \quad (4a)$$

$$\equiv \hat{C}_1(s) + \hat{C}_2(s) \quad (4b)$$

Consider each of these functions in turn; by definition

$$\begin{aligned}
\hat{C}_1(s) &= \langle A | \frac{1}{s - iLQ} | A \rangle \\
&= \frac{1}{s} \langle A \left(1 + \frac{1}{s} iLQ + \frac{1}{s^2} LQLQ + \dots \right) | A \rangle
\end{aligned} \tag{5}$$

But $Q|A\rangle = 0$ (by construction), so $\hat{C}_1(s)$ reduces to

$$\hat{C}_1(s) = \frac{1}{s} \langle A | A \rangle \tag{6}$$

Similarly,

$$\begin{aligned}
\hat{C}_2(s) &= \langle A | \frac{1}{s - iLQ} iLP \frac{1}{s - iL} | A \rangle \\
&= \langle A | \frac{1}{s - iLQ} iL | A \rangle \langle A | A \rangle^{-1} \langle A | \frac{1}{s - iL} | A \rangle \\
&= \langle A | \frac{1}{s - iLQ} iL | A \rangle \langle A | A \rangle^{-1} \hat{C}(s)
\end{aligned} \tag{7}$$

Consider the factor $\langle A | (s - iLQ)^{-1} iL | A \rangle$ in Eq. (7); it can be transformed as follows:

$$\begin{aligned}
\langle A | \frac{1}{s - iLQ} iL | A \rangle &= \frac{1}{s} \langle A \left(1 + \frac{1}{s} iLQ + \frac{1}{s^2} iLQ iLQ + \dots \right) | iL | A \rangle \\
&= \frac{1}{s} \langle A \left(1 + \frac{1}{s} iLQ \left\{ 1 + \frac{1}{s} iLQ + \frac{1}{s^2} iLQ iLQ + \dots \right\} \right) | iL | A \rangle \\
&= \frac{1}{s} \langle A | iLA \rangle + \frac{1}{s} \langle A | \frac{1}{s} iLQ \left(1 + \frac{1}{s} iLQ + \frac{1}{s^2} iLQ iLQ + \dots \right) | iL | A \rangle \\
&= \frac{1}{s} \langle A | iLA \rangle + \frac{1}{s} \langle A | \frac{1}{s} iLQ \left(Q + \frac{1}{s} QiLQ + \frac{1}{s^2} QiLQ iLQ + \dots \right) | iL | A \rangle
\end{aligned}$$

(because $Q^2 = Q$ by idempotency)

$$\frac{1}{s} \langle A | iLA \rangle + \frac{1}{s} \langle A | \frac{1}{s} iLQ \left(1 + \frac{1}{s} QiL + \frac{1}{s^2} QiLQ iL + \dots \right) | QiL | A \rangle$$

$$= \frac{1}{s} i\Omega \langle A | A \rangle + \frac{1}{s} \langle A | iLQ \frac{1}{s - QiL} QiL | A \rangle \quad (8)$$

Substituting Eq. (8) into Eq. (7), we see that

$$\hat{C}_2(s) = \left[\frac{1}{s} i\Omega \langle A | A \rangle + \frac{1}{s} \langle A | iLQ \frac{1}{s - QiL} QiL | A \rangle \right] \langle A | A \rangle^{-1} \hat{C}(s) \quad (9)$$

The function $QiL | A \rangle = | QiLA \rangle$ in Eq. (9) will be recognized as the definition of the generalized random force $| F \rangle$. So $\langle A | iLQB \rangle$, where B stands for $(s - QiL)^{-1} QiLA$, can be written as $i \langle QLA | B \rangle = -\langle QiLA | B \rangle = -\langle F | B \rangle$. Hence, the function $\hat{C}_2(s)$ simplifies to

$$\hat{C}_2(s) = \left[\frac{1}{s} i\Omega - \frac{1}{s} \langle A | A \rangle^{-1} \langle F | \frac{1}{s - QiL} | F \rangle \right] \hat{C}(s) \quad (10)$$

Recall that the memory function $K(t)$ in the GLE was defined as

$$K(t) = \langle A | A \rangle^{-1} \langle F | F(t) \rangle = \langle A | A \rangle^{-1} \langle F | e^{QiLt} F \rangle$$

so, formally, its Laplace transform is given by

$$\hat{K}(s) = \langle A | A \rangle^{-1} \langle F | \frac{1}{s - QiL} | F \rangle \quad (11)$$

which means that $\hat{C}_2(s)$ in Eq. (10) can be written as

$$\hat{C}_2(s) = \frac{1}{s} [i\Omega - \hat{K}(s)] \hat{C}(s) \quad (12)$$

After putting Eqs. (12) and (6) back into Eq. (4b), and solving for $\hat{C}(s)$, the result is

$$\hat{C}(s) = \frac{C(0)}{s - i\Omega + \hat{K}(s)} \quad (13)$$

where we've replaced the autocorrelation function $\langle A | A \rangle$ by its definition in terms of the $t = 0$ value of $C(t)$.

This expression for $\hat{C}(s)$ could actually have been obtained directly and much more simply from the memory function equation itself:

$$\frac{\partial C(t)}{\partial t} = i\Omega C(t) - \int_0^t dt' K(t-t')C(t') \quad (14)$$

All one needs to do is take the Laplace transform of both sides of the equation (using the convolution theorem to treat the term in $K(t)$); this leads to

$$-C(0) + s\hat{C}(s) = i\Omega\hat{C}(s) - \hat{K}(s)\hat{C}(s)$$

which when rearranged recovers Eq. (13). The reason for following the elaborate procedure we did is that we'll need to use exactly this procedure again to manipulate $\hat{C}(s)$ into another exact form.

But our starting point this time will be the memory function $\hat{K}(s)$, which is also a time correlation function, but one involving the generalized random force $|F\rangle$. So let's now introduce a set of two new projection operators, P_1 and Q_1 , that project an arbitrary vector (i.e., dynamical variable) onto the parallel and perpendicular directions of $|F\rangle$, respectively. From our discussions, P_1 will be given by

$$P_1 = |F\rangle\langle F|F\rangle^{-1}\langle F| \quad (15)$$

and Q_1 by $Q_1 = 1 - P_1$. We can now rewrite the expression for $\hat{K}(s)$ in Eq. (11) first as

$$\hat{K}(s) = \langle A|A\rangle^{-1}\langle F|\frac{1}{s - QiLQ}|F\rangle$$

(because $Q|F\rangle = |F\rangle$), and then as

$$\begin{aligned} \hat{K}(s) &= \langle A|A\rangle^{-1}\langle F|\frac{1}{s - QiLQ(Q_1 + P_1)}|F\rangle \\ &= \langle A|A\rangle^{-1}\langle F|\frac{1}{s - QiLQQ_1 - QiLQP_1}|F\rangle \end{aligned} \quad (16)$$

Making use once more of the identity $(M + N)^{-1} = M^{-1} - M^{-1}N(M + N)^{-1}$, but with M chosen to be $s - QiLQQ_1$ and N chosen to be $-QiLQP_1$, we transform Eq. (16) to

$$\hat{K}(s) = \langle A|A\rangle^{-1}\langle F|\frac{1}{s - QiLQQ_1}|F\rangle + \langle A|A\rangle^{-1}\langle F|\frac{1}{s - QiLQQ_1}QiLQP_1\frac{1}{s - QiLQ}|F\rangle \quad (17a)$$

$$\equiv \hat{C}_3(s) + \hat{C}_4(s) \quad (17b)$$

Consider $\hat{C}_3(s)$, which from the above equations has the definition

$$\hat{C}_3(s) = \langle A | A \rangle^{-1} \langle F | \frac{1}{s - QiLQQ_1} | F \rangle \quad (18)$$

This can be rewritten as a series expansion:

$$\hat{C}_3(s) = \langle A | A \rangle^{-1} \frac{1}{s} \langle F | \left(1 + \frac{1}{s} QiLQQ_1 + \frac{1}{s^2} QiLQQ_1 QiLQQ_1 + \dots \right) | F \rangle \quad (19)$$

But since $Q_1 | F \rangle = 0$, by construction, Eq. (19) immediately simplifies to

$$\hat{C}_3(s) = \frac{1}{s} \langle A | A \rangle^{-1} \langle F | F \rangle \quad (20)$$

Turning now to $\hat{C}_4(s)$, which has the definition

$$\hat{C}_4(s) = \langle A | A \rangle^{-1} \langle F | \frac{1}{s - QiLQQ_1} QiLQP_1 \frac{1}{s - QiLQ} | F \rangle, \quad (21)$$

we introduce the expression P_1 , and arrive at

$$\begin{aligned} \hat{C}_4(s) &= \langle A | A \rangle^{-1} \langle F | \frac{1}{s - QiLQQ_1} QiLQ | F \rangle \langle F | F \rangle^{-1} \langle F | \frac{1}{s - QiLQ} | F \rangle \\ &\equiv \langle F | F \rangle^{-1} \hat{C}_5(s) \hat{K}(s) \end{aligned} \quad (22)$$

where

$$\hat{C}_5(s) \equiv \langle F | \frac{1}{s - QiLQQ_1} QiLQ | F \rangle \quad (23)$$

The function $\hat{C}(s)$ can be transformed as follows:

$$\hat{C}_5(s) = \frac{1}{s} \langle F | \left(1 + \frac{1}{s} QiLQQ_1 + \frac{1}{s^2} QiLQQ_1 QiLQQ_1 + \dots \right) QiLQ | F \rangle$$

$$\begin{aligned}
&= \frac{1}{s} \langle F | Q_i L Q F \rangle + \frac{1}{s} \langle F | \frac{1}{s} Q_i L Q Q_1 \left(1 + \frac{1}{s} Q_i L Q Q_1 + \frac{1}{s^2} Q_i L Q Q_1 Q_i L Q Q_1 + \dots \right) Q_i L Q | F \rangle \\
&= \frac{i}{s} \langle F | F \rangle \Omega_1 + \frac{1}{s} \langle F | \frac{1}{s} Q_i L Q Q_1 \left(Q_1 + \frac{Q_1}{s} Q_i L Q Q_1 + \frac{Q_1}{s^2} Q_i L Q Q_1 Q_i L Q Q_1 + \dots \right) Q_i L Q | F \rangle
\end{aligned} \tag{24}$$

where $\Omega_1 = \langle F | F \rangle^{-1} \langle F | L F \rangle$. In arriving at this expression for Ω_1 , we used the fact that $\langle F | Q L Q F \rangle = \langle F | Q L F \rangle = \langle Q F | L F \rangle = \langle F | L F \rangle$, which itself made use of the idempotent and Hermitian properties of Q . Similarly, the second term in Eq. (24) used the fact that $Q_1^2 = Q_1$. Equation (24) can be further transformed to

$$\begin{aligned}
\hat{C}_5(s) &= \frac{i}{s} \langle F | F \rangle \Omega_1 + \frac{1}{s} \langle F | \frac{1}{s} Q_i L Q Q_1 \left(1 + \frac{1}{s} Q_1 Q_i L Q + \frac{1}{s^2} Q_1 Q_i L Q Q_1 Q_i L Q + \dots \right) Q_1 Q_i L Q | F \rangle \\
&= \frac{i}{s} \langle F | F \rangle \Omega_1 + \frac{1}{s} \langle F | \frac{1}{s} Q_i L Q Q_1 \frac{1}{1 - Q_1 Q_i L Q / s} Q_1 Q_i L Q | F \rangle \\
&= \frac{i}{s} \langle F | F \rangle \Omega_1 + \frac{1}{s} \langle F | Q_i L Q Q_1 \frac{1}{s - Q_1 Q_i L Q} Q_1 Q_i L Q | F \rangle
\end{aligned} \tag{25}$$

The structure of the second term in Eq. (25) suggests that we can identify a new generalized random force $|f\rangle$ as

$$|f\rangle = Q_1 Q_i L Q |F\rangle \tag{26}$$

This means that $\langle F | Q_i L Q Q_1 B' \rangle$, where B' stands for $(s - Q_1 Q_i L Q)^{-1} f$, can be written as $i \langle Q_1 Q L Q F | B' \rangle = - \langle Q_1 Q_i L Q F | B' \rangle = - \langle f | B' \rangle$. So the function $\hat{C}_5(s)$ in Eq. (25) becomes

$$\begin{aligned}
\hat{C}_5(s) &= \frac{i}{s} \langle F | F \rangle \Omega_1 - \frac{1}{s} \langle f | \frac{1}{s - Q_1 Q_i L Q} | f \rangle \\
&= \frac{i}{s} \langle F | F \rangle \Omega_1 - \frac{1}{s} \langle F | F \rangle \hat{K}_1(s)
\end{aligned} \tag{27}$$

where $\hat{K}_1(s) \equiv \langle F | F \rangle^{-1} \langle f | (s - Q_1 Q_i L Q)^{-1} | f \rangle$.

Putting all the pieces together, we find that

$$\hat{K}(s) = \frac{K(0) / C(0)}{s - i\Omega_1 + \hat{K}_1(s)} \quad (28)$$

And substituting this expression into the expression for $\hat{C}(s)$, we finally arrive at

$$\hat{C}(s) = \frac{C(0)}{s - i\Omega + \frac{K(0) / C(0)}{s - i\Omega_1 + \hat{K}_1(s)}} \quad (29)$$

The above sequence of steps can be repeated ad infinitum with each new memory function that's generated by the procedure. The result is a continued fraction representation of $\hat{C}(s)$. Truncation of the continued fraction at some particular order leads to an approximation for $\hat{C}(s)$.