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IP326. Lecture 19. Thursday, March 7, 2019 

 

 

● The generalized Langevin equation applied to a large mass in a fluid of smaller masses  

 

           Consider a system consisting of a single large particle (say, a colloid) of mass M in 

a bath of N solvent particles of mass m, with mM  . The position and momentum of 

the colloid are taken to be 0r  and 0p , respectively, while the position and momentum of 

the ith solvent molecule are similarly taken to be ir  and  ip . If only pairwise interactions 

are assumed to occur between the particles, the Hamiltonian H of the system is given by 
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The corresponding Liouvillian iL can therefore be expressed as 0iLiLiL B  , where 
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and 
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where  0F  and iF  are the forces acting on the colloid and the ith solvent molecule,  

respectively. The bath Liouvillian depends on the phase space variables of only the 

solvent particles, while 0iL depends on both the phase variables of the colloid as well as 

the coordinates of the solvent (through the intermolecular force term.)    

 

         Let’s assume that we’re interested in knowing only how the colloid evolves in time, 

irrespective of what happens to all the other solvent molecules in the medium. What we 

need to do, then, is extract that part of the dynamics of those other molecules that are 

relevant to the dynamics of the colloid. We can do this by introducing a   projector P , 

defined as  
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that projects an arbitrary dynamical variable onto the  th component of the colloid’s 

momentum, and then applying P to the Liouville equation for )(0 tp  , which is 
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From our previous results, we know that we then end up with the following GLE     
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where  00

1

00 Lpppp


 , )(tf  is the generalized random force (the use of 

lower case for this variable is to distinguish it from the symbols for the forces acting on 

colloid and solvent, which are in upper case), defined as  
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and )(tK is the memory function, defined as )(
1

00 tffpp 


.     

 

        Since  00 ppiL  , the frequency,  00 pp  , is identically 0 by symmetry.  

Using the same symmetry property, the generalized random force )(tf  in Eq. (7) can 

be rewritten as  
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where 0F  is the force on the colloid along  .                                          

 

        So far the treatment has been exact; we haven’t yet exploited the fact that mM  . 

To do so, let’s recognize that if the system is at the temperature T, the momenta of the 

bath particles are of the order of TmkB   (because the thermal energy available to the 

particles is on the order of TkB , and by equipartition Tkmp B~2/2 ), while the 
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momentum of the colloid is, for similar reasons, of the order of TMkB
. These 

considerations suggest that we introduce a new colloid momentum 0P  defined as  
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which in turn suggests that we relabel the coordinates 0r  as 0R  for consistency of 

notation. In terms of these new variables, the colloid Liouvillian becomes 
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The bath Liouvillian remains the same. What we’ve accomplished by the above change 

of variable is to establish explicitly that 0iL  is of order   relative to 
BiL ; this will make it 

possible to introduce simplifying approximations later.  

 

      Returning to the expression for the random force in Eq. (8), we can make use of the 

identity  
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with M and N chosen to be QiL  and PiL , respectively, to rewrite the term 0FeQiLt  

as 

 

                                     0

)(

0

00 FPiLeetdFeFe tiLttQiL

t

iLtQiLt 

                            (12) 

 

The second term on the RHS of Eq. (12) can be simplified as follows: 
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Recall that 0iLiLiL B  , and that 
BiL  acts only on the phase space variables of the bath 

molecules, so the term 0iLp  in the integrand of Eq. (13) reduces to 00 piL . But from 

what we’ve shown in Eq. (10), this is a term of order  , and can therefore be neglected 

in comparison to the leading term in Eq. (12), which now becomes 
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This result can be simplified even further by replacing iL by 0iLiLiL B  , using the 

identity in Eq. (11) again, but this time substituting 
BiL for M and 0iL  for N, and then 

noting that the contribution from the resulting convolution integral is again of order  , 

and is therefore negligible in comparison to the leading term. So we finally have 
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This means that the random force can be interpreted as the intermolecular force exerted 

on the colloid by all the solvent molecules when the colloid is essentially stationary 

(stationary because 1 , so 1M .) Under this interpretation, )(tf  can be 

regarded as a “fast” variable (in relation to the colloid, which is sluggish) that loses its 

correlation with its initial value very quickly. In other words, the memory function K(t) in 

the GLE for the colloid momentum can be assumed to decay to 0 extremely fast. That 

being the case, the GLE itself (cf. Eq. (6)), after setting   to 0, can be rewritten as   
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Defining a parameter   as 



0

)(tdtK , we see that the evolution equation for )(0 tp   

finally takes the form (after dropping the bra-ket notation for now) 

 

                                                    )()(
)(

0
0 tftp

t

tp


  



                                         (17) 

 

or the form,  
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since we’ve assumed – implicitly – that the system is isotropic, and that no direction is 

privileged. Equation (18) is the Langevin equation, and   is referred to as the friction 

coefficient. The Langevin equation is one of the simplest models of Brownian motion, the 

kind of random motion that a particle like the colloid in our example would execute in a 

fluid of many more lighter particles.  

 

 

● The fluctuation-dissipation relation 

 

         We can get a better handle on the meaning of the parameter   that appears in the 

Langevin equation by deriving an expression for the mean kinetic energy of the colloid, 

which we know from the equipartition theorem should be 2/TkB
 per quadratic degree of 

freedom. We’ll use Eq. (17) for the purpose, first rewriting it in terms of the velocity 

(omitting the subscript   for convenience) 
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To solve this equation, we need to know what to do about the random force f. We’ve 

shown that it acts effectively like a random variable (always being uncorrelated with the 

initial value of v), and that its correlations die off very rapidly. This suggests that it 

probably wouldn’t be unreasonable to assume that it has these two properties: 
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The first is a statement that the force is 0 on average and the second is a statement that the 

force at one instant of time is completely uncorrelated with the force at any other time. 

The coefficient C is an unknown (adjustable) parameter that is a measure of how strong 

the force is.  

 

               We can now proceed to solve Eq. (19); the solution is 
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When this result is squared, and then averaged over the distribution of initial velocities, 

we end up with 
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In deriving this expression, we’ve made use of the fact that 0)()0( tfv . After 

carrying out the integrations in (22), we find that 
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which at long times, when the system has settled into a time-independent stationary state, 

reduces to  
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In this limit, the mean kinetic energy of the particle is 2/C , and so from the 

equipartition theorem, 

 

                                                       TkC B  

 

The time correlation function of the random force is therefore given by 
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which is sometimes referred to as the fluctuation-dissipation theorem. The word 

dissipation appears here by virtue of the fact that in Eq. (19), if there had been no random 

force term, the velocity of the particle would eventually have decayed to 0, which would 

have required the particle to dissipate all its energy to the surroundings, essentially 

because of friction, which can be ascribed to the parameter  (hence its name – friction 

coefficient.) The presence of the random force f  in Eq. (19) ensures that the particle 

actually remains forever in motion, the energy it dissipates frictionally being constantly 

replenished by f.  

 

 

 

 

 

 

          

                                                

 

                                   

 


