IP326. Lecture 19. Thursday, March 7, 2019

e The generalized Langevin equation applied to a large mass in a fluid of smaller masses

Consider a system consisting of a single large particle (say, a colloid) of mass M in
a bath of N solvent particles of mass m, with M >>m. The position and momentum of
the colloid are taken to be r, and p,, respectively, while the position and momentum of

the ith solvent molecule are similarly taken to be r, and p;. If only pairwise interactions
are assumed to occur between the particles, the Hamiltonian H of the system is given by
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The corresponding Liouvillian iL can therefore be expressed as iL =il +iL,, where
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where F, and F, are the forces acting on the colloid and the ith solvent molecule,

respectively. The bath Liouvillian depends on the phase space variables of only the
solvent particles, while iL,depends on both the phase variables of the colloid as well as

the coordinates of the solvent (through the intermolecular force term.)

Let’s assume that we’re interested in knowing only how the colloid evolves in time,
irrespective of what happens to all the other solvent molecules in the medium. What we
need to do, then, is extract that part of the dynamics of those other molecules that are
relevant to the dynamics of the colloid. We can do this by introducing a projector P,
defined as



P= | Pos >< Pos | p0a>7l< Pos | (4)

that projects an arbitrary dynamical variable onto the «th component of the colloid’s
momentum, and then applying P to the Liouville equation for | Pos (t)>, which is
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From our previous results, we know that we then end up with the following GLE
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where Q= (P, | Pon )" (Pou |LPs. ), f,(t) is the generalized random force (the use of

lower case for this variable is to distinguish it from the symbols for the forces acting on
colloid and solvent, which are in upper case), defined as

| f,(0) =e*"QiL[p,, ) ()
and K (t) is the memory function, defined as (py, | Py, ) (f, | £, (1)).

Since iL| py,) =| Po. ) the frequency, Qoc(p,, | Py, ). is identically 0 by symmetry.
Using the same symmetry property, the generalized random force | fa(t)> in Eq. (7) can
be rewritten as
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where |F,,) is the force on the colloid along « .

So far the treatment has been exact; we haven’t yet exploited the fact that M >>m.
To do so, let’s recognize that if the system is at the temperature T, the momenta of the

bath particles are of the order of ./mk,T (because the thermal energy available to the
particles is on the order of k,T, and by equipartition p®/2m~k,T ), while the



momentum of the colloid is, for similar reasons, of the order of ,/Mk,T . These
considerations suggest that we introduce a new colloid momentum P, defined as
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which in turn suggests that we relabel the coordinates r, as R, for consistency of
notation. In terms of these new variables, the colloid Liouvillian becomes
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The bath Liouvillian remains the same. What we’ve accomplished by the above change
of variable is to establish explicitly that iL, is of order A relative to iL; this will make it

possible to introduce simplifying approximations later.

Returning to the expression for the random force in Eq. (8), we can make use of the
identity
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with M and N chosen to be —QIL and — PiL, respectively, to rewrite the term e¥"|F, )
as
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The second term on the RHS of Eq. (12) can be simplified as follows:
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Recall that iL =iL; +iL,, and that iL, acts only on the phase space variables of the bath
molecules, so the term (iLp,, | in the integrand of Eq. (13) reduces to (iL, p,, |. But from

what we’ve shown in Eq. (10), this is a term of order A, and can therefore be neglected
in comparison to the leading term in Eq. (12), which now becomes

eQiLt| F0a> ~ eiLt| F0a> (14)

This result can be simplified even further by replacing iL by iL =il +iL,, using the
identity in Eq. (11) again, but this time substituting —iL; for M and —iL, for N, and then

noting that the contribution from the resulting convolution integral is again of order A,
and is therefore negligible in comparison to the leading term. So we finally have
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This means that the random force can be interpreted as the intermolecular force exerted
on the colloid by all the solvent molecules when the colloid is essentially stationary

(stationary because A<<1, so M >>1.) Under this interpretation, |fa(t)> can be

regarded as a “fast” variable (in relation to the colloid, which is sluggish) that loses its
correlation with its initial value very quickly. In other words, the memory function K(t) in
the GLE for the colloid momentum can be assumed to decay to 0 extremely fast. That
being the case, the GLE itself (cf. Eq. (6)), after setting Q2 to 0, can be rewritten as
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Defining a parameter ¢ as ¢ = LoatK(t) , We see that the evolution equation for | Pos (t))
finally takes the form (after dropping the bra-ket notation for now)
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or the form,



Poll) — . +£() (19)

since we’ve assumed — implicitly — that the system is isotropic, and that no direction is
privileged. Equation (18) is the Langevin equation, and ¢ is referred to as the friction
coefficient. The Langevin equation is one of the simplest models of Brownian motion, the
kind of random motion that a particle like the colloid in our example would execute in a
fluid of many more lighter particles.

e The fluctuation-dissipation relation

We can get a better handle on the meaning of the parameter £ that appears in the
Langevin equation by deriving an expression for the mean kinetic energy of the colloid,
which we know from the equipartition theorem should be k;T /2 per quadratic degree of

freedom. We’ll use Eq. (17) for the purpose, first rewriting it in terms of the velocity
(omitting the subscript « for convenience)

m ava—it) =—¢v(t) + f(t) (19)

To solve this equation, we need to know what to do about the random force f. We’ve
shown that it acts effectively like a random variable (always being uncorrelated with the
initial value of v), and that its correlations die off very rapidly. This suggests that it
probably wouldn’t be unreasonable to assume that it has these two properties:

(f(1)=0 (20a)
(@) f(t))=2Cst-t) (20b)

The first is a statement that the force is 0 on average and the second is a statement that the
force at one instant of time is completely uncorrelated with the force at any other time.
The coefficient C is an unknown (adjustable) parameter that is a measure of how strong
the force is.

We can now proceed to solve Eqg. (19); the solution is
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When this result is squared, and then averaged over the distribution of initial velocities,
we end up with
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In deriving this expression, we’ve made use of the fact that (v(0)f(t))=0. After
carrying out the integrations in (22), we find that

(v(t)?) = (v(0)?)e 4™ + m% (L—e22m) (23)

which at long times, when the system has settled into a time-independent stationary state,
reduces to
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In this limit, the mean kinetic energy of the particle is C/2{, and so from the
equipartition theorem,

C=4ksT

The time correlation function of the random force is therefore given by
(f(O)F(t) =28 TS(t—t) (24)

which is sometimes referred to as the fluctuation-dissipation theorem. The word
dissipation appears here by virtue of the fact that in Eq. (19), if there had been no random
force term, the velocity of the particle would eventually have decayed to 0, which would
have required the particle to dissipate all its energy to the surroundings, essentially
because of friction, which can be ascribed to the parameter ¢ (hence its name — friction
coefficient.) The presence of the random force f in Eqg. (19) ensures that the particle
actually remains forever in motion, the energy it dissipates frictionally being constantly
replenished by f.



