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IP326. Lecture 18. Tuesday, March 5, 2019 

 

 

● The generalized Langevin equation (Cont.’d)  

 

       We’ve now shown that the Liouville equation for the evolution of a vector variable 

),,,()( 21 nAAAt A , viz.,   
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can be transformed exactly using the projection operators  
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PQ  1  to the so-called generalized Langevin equation (or GLE), given by                                                         
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which also leads immediately to the memory function equation for the time correlation 

function )()( tt AAC  :  
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In Eqs. (2) and (3), Ω  is the frequency matrix, )(tF  is the generalized random force, 

and )(tK  is the memory function matrix, which are defined, respectively, as 
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● Symmetry properties (Cont.’d) 

 

3. If the variables iA transform under time reversal as ii A , where 1i , then the 

random force matrix )(tFF  transforms as (i) )()( tFFtFF jijiji    , and as  
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Proofs 

 

Under time reversal, which corresponds to the operation    pqpq  ,, , the projector P 

transforms as PPP jjii   . This means that under the same operation QQ  . 

From the definition of the random force, the time correlation function )(tFF  is given 

by 
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so it follows that 
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which proves equality (i) in Property 3. To prove equality (ii), we recognize, first of all, 

that we can write )(tF j  in the equivalent form 
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where, in the last relation, we’ve used the fact that jj FQF  . 

 

      Therefore, 
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But since )()( },{},{ tFFtFF jijiji    pqpq
, this means that 

*},{},{ )()( tFFtFF ijjiji    pqpq
. 

 

 

4. Parity. Under an inversion of parity, the signs of both positions and momenta are 

reversed, i.e., },{},{ pqpq  . If the variables iA have a definite signature under parity 

inversion, we’ve already shown that the time correlation function )()( tAAtC jiij   will 

vanish unless iA  and jA  have the same parity. The elements of the memory function 

matrix, on the other hand, will transform as  
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Proof. Under parity inversion, the projectors P and Q are unchanged. Also, since 

j

QiLt

j QiLAetF )( , we have  )()( tFtF jjj   (because iLiL  .) Hence, 

)()( tFFtFF jijiji  .  This also means that the memory function is non-

vanishing only when iA  and jA  have the same signature under parity inversion. 

 

The following results can be proved similarly. 

 

5. If iA transforms as ii A  (where )1i  under reflection, then )(tCij  vanishes unless 

iA  and  jA  have the same reflection symmetry. The symmetry matrix ij is also 0 if iA  

and  jA  have different reflection symmetries. And so also is the random force matrix 

(because under reflection )()( tFFtFF jijiji  .)  

 

 

● Revisiting Self-Diffusion with the GLE 

 

      The fact that the GLE represents an alternative exact expression for the equation of 

motion of a dynamical variable suggests that expressions we’ve derived earlier for 

various transport coefficients – which were based on linearized versions of the Liouville 
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equation – may themselves have more general forms. We’ll now consider this possibility 

by investigating what the GLE has to say about the self-diffusion coefficient.  

       

        Recall that in our hydrodynamic approach to the calculation of this coefficient, the 

starting point was essentially the following diffusion equation: 
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where we interpreted ),( tG r  as the probability density that a particle initially located at 

some point at time 0t  would be found at the point r at time t. What this interpretation 

really means is that ),( tG r  should be understood as being defined by the relation 
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where r(0) and r(t) are the coordinates of the particle at the initial and final times, 

respectively. The delta function in this definition acts to select just those particles that 

have travelled a distance r in this time interval, while the angular brackets perform an 

average over the equilibrium distribution of these particles.  

 

        We found it convenient earlier to work in Fourier space, and if we now Fourier 

transform Eq. (5), we get  
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which suggests that  ),(
~

tG k  can actually be represented as a time correlation function of 

the form )(tAA  in which )(tA  can be identified with )( tie rk  and A  with )0(rkie , 

such that )0(rk ieA .  

 

         Once we recognize that ),(
~

tG k  can be expressed as a time correlation function, we 

know that it will satisfy a memory function equation, in this case the equation 
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Now for a single variable, AALAA  , where A  is the time derivative of A 

evaluated at 0t . We’ve seen that time correlation functions with this structure are 0 by 

time reversal symmetry, so 0 , and Eq. (7) reduces to  
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The memory function in this expression is given by 
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With A  given by rk ieA , the generalized random force becomes 
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where v(0) is the initial velocity of the particle. In the same way 
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In general,  
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From the definition of the memory function, we therefore have 
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the last equality following from the fact that with rk ieA , 1AA .   

 

         Let’s return now to Eq. (8); because it has the structure of a convolution in time, it’s 

natural to consider treating it using Laplace transforms. So if both sides of the equation 

are Laplace transformed, the result is   
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where the tilde-circumflex notation refers to a Fourier transform with respect to a spatial 

variable and a Laplace transform with respect to a time variable. After solving Eq. (17) 

for ),(
~̂

sG k , we get  

 

                                                  
),(

~̂
)0,(

~

),(
~̂

sKs

G
sG

k

k
k


       

 

                                                              
kkk

k




),(
~̂

)0,(
~

sDs

G
                                           (18) 

 

where ),(
~̂

sD k  is the Laplace transform of  ),(
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tD k . If we had Fourier-Laplace 

transformed Eq. (4) (the equation for the density distribution of r obtained from 

hydrodynamics), the result would have been 
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A comparison of these last two equations suggests that the self-diffusion coefficient is 

really a limiting form of a much more complicated object that depends both on a 

wavevector (that is, on a quantity that is inversely related to a length) and a frequency (a 

quantity inversely related to time.) In fact, it can be shown (though we won’t show it 

here) that  
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The above limit corresponds to what we refer to as the hydrodynamic limit, i.e., the limit 

of large distances and long times. Other transport coefficients (like the shear viscosity, for 

instance) can also be shown using the GLE to correspond to limiting forms of wavevector 

and frequency dependent quantities.                         

                                              


