IP326. Lecture 18. Tuesday, March 5, 2019

o The generalized Langevin equation (Cont.’d)

We’ve now shown that the Liouville equation for the evolution of a vector variable

Al)=(A,A,,..,A), viz,
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can be transformed exactly using the projection operators P =>"|A)(A ‘AJ.>_1<Aj | and
i

Q =1- P to the so-called generalized Langevin equation (or GLE), given by
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which also leads immediately to the memory function equation for the time correlation
function C(t) =(A|A(t)):
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In Egs. (2) and (3), Q is the frequency matrix, |F(t)> is the generalized random force,
and K(t) is the memory function matrix, which are defined, respectively, as

Q= 2 (AA) (A LA, |FO)=eQILIA) and K, = DA [A) (R |F,©).

e Symmetry properties (Cont.’d)

3. If the variables A transform under time reversal as y,A, where y, =+1, then the
random force matrix (F|F(t)) transforms as (i) <Fi‘Fj (t)> —>7/i7j<Fi‘Fj (—t)> , and as

(i) (F|F,(-0) = 77, (F [F (0



Proofs

Under time reversal, which corresponds to the operation {g,p}— {g,—p}, the projector P
transforms as P — y,7,7,;7;P =P . This means that under the same operation Q — Q.

From the definition of the random force, the time correlation function (F|F(t)) is given
by

(F[F,®) = [drf,(NQILA ) e QiLA,
so it follows that

(F | F, () —tee=ta=s, [drf, (D)[Qi(-L)y, Al e 'Qi(-L)y, A
=717, AT, (T)(QILA ) eV QILA,

= 7i7j<Fi ‘ F, (_t)>

which proves equality (i) in Property 3. To prove equality (ii), we recognize, first of all,
that we can write F;(t) in the equivalent form

. Qilt~; _ Qilt- _ AQiLQt
Fi(t)=e""QILA; =e~"F, =e~F;
where, in the last relation, we’ve used the fact that QF; = F;.

Therefore,

(R |F, ()= [ drfy ()R (M)e *F,(I)
- :ZO% J. drf, Fi* (Q“—Q)(Q"—Q)m1 Fj

- it—lJ.dl“fo(QiLQFi*)(QiLQ)"’1 F, (because Q and L are Hermitian)
n=0 n:

0 n

= z_' .[ drf, [(QILQ)" Fi*]Fj (after n iterations of the above step)
n-o N:



=5 ([drf,FIQILQ)' R (because (L) =iL, iL being real)
n=0 n:
= (art,Freomer |

=(R[RO)

But  since (R |F (1)Ll 0 (FIF (),  this  means  that

<Fi ‘Fj(_t)>m)yi7j<|:j ‘Fi(t)>

4. Parity. Under an inversion of parity, the signs of both positions and momenta are
reversed, i.e., {q,p}— {—q,—p}. If the variables A have a definite signature under parity

inversion, we’ve already shown that the time correlation function C;(t) = <Ai ‘ A (t)> will

vanish unless A, and A; have the same parity. The elements of the memory function
matrix, on the other hand, will transform as

<Fi‘Fj (t)> st ’yi7j<Fi‘Fj (t)>
Proof. Under parity inversion, the projectors P and Q are unchanged. Also, since
F;(t) =e®"QILA;, we have F,(t) > 7;F,(t) (because iL—iL.) Hence,
(R |F;(®) > 77;(F|F,(t). This also means that the memory function is non-

vanishing only when A; and A; have the same signature under parity inversion.

The following results can be proved similarly.

5. If Atransforms as o; A (Where «; =+1) under reflection, then C;(t) vanishes unless
A and A, have the same reflection symmetry. The symmetry matrix € is also 0 if A
and A, have different reflection symmetries. And so also is the random force matrix

(because under reflection (F, |F; () - a,a;(F|F;(1)).)

e Revisiting Self-Diffusion with the GLE

The fact that the GLE represents an alternative exact expression for the equation of
motion of a dynamical variable suggests that expressions we’ve derived earlier for
various transport coefficients — which were based on linearized versions of the Liouville



equation — may themselves have more general forms. We’ll now consider this possibility
by investigating what the GLE has to say about the self-diffusion coefficient.

Recall that in our hydrodynamic approach to the calculation of this coefficient, the
starting point was essentially the following diffusion equation:

8G(r, 1)

- =DViG(rY (4)

where we interpreted G(r,t) as the probability density that a particle initially located at

some point at time t =0 would be found at the point r at time t. What this interpretation
really means is that G(r,t) should be understood as being defined by the relation

G(r,t) = (S[r - (r(t) - r(O))]) ()

where r(0) and r(t) are the coordinates of the particle at the initial and final times,
respectively. The delta function in this definition acts to select just those particles that
have travelled a distance r in this time interval, while the angular brackets perform an
average over the equilibrium distribution of these particles.

We found it convenient earlier to work in Fourier space, and if we now Fourier
transform Eq. (5), we get

G(k,t) = ([ dre™"s[r - (r () - r(O))])
— <eik-(r(t)—f(0))> (6)

which suggests that é(k,t) can actually be represented as a time correlation function of
the form (A|A(t)) in which |A(t)) can be identified with e*"™ and |A) with e*"@,
such that (A|=e™"@,

Once we recognize that é(k,t) can be expressed as a time correlation function, we
know that it will satisfy a memory function equation, in this case the equation

% =iQG(K, ) —jdt'k”(k,t ~t)G(k, 1) )

Now for a single variable, Q oc (A|LA) <A‘A>, where A is the time derivative of A

evaluated at t =0. We’ve seen that time correlation functions with this structure are 0 by
time reversal symmetry, so Q =0, and Eq. (7) reduces to



oGkt b N
T=—£o|tK(k,t—t)cs(k,t) (8)

The memory function in this expression is given by
K(k,t) = (A|A) " (F|F (1)) 9)
With | A) given by | A)=e™", the generalized random force becomes
|F (1)) = e?"QiL| A) = e?"Qi[ A)

=e'Qik - v(0)e™"© (10)

where v(0) is the initial velocity of the particle. In the same way

|F)=Qik-v(0)e""® (11)
In general,
Q| A) = (1| A)(A| A)“(A]) A)
=|A) (12)
Therefore,
|F (1)) =e® ik - v(0)e*"® (13)
and
|F)=ik-v(0)e""® (14)
which means that (F|=—ik-v(0)e ™", and so
(FIF () =k- (e @v(0)e®v(0)e*" ™)k (15)

From the definition of the memory function, we therefore have

R(k,t) _ <A| A>—1k . <efik.r(O)V(O)eQiLtV(O)ek.r(o)> Kk



(A|A) "k -D(k,t)-k = k-D(k,t) -k (16)

the last equality following from the fact that with | A) =e™", (A|A) =1.

Let’s return now to Eq. (8); because it has the structure of a convolution in time, it’s
natural to consider treating it using Laplace transforms. So if both sides of the equation
are Laplace transformed, the result is

_G(Kk,0)+5G(k,s) = —K (k,s)G(K, 5) 17)

where the tilde-circumflex notation refers to a Fourier transform with respect to a spatial
variable and a Laplace transform with respect to a time variable. After solving Eq. (17)

for é(k,s), we get

_ G(k0)
s+k-D(k,s)-k

(18)

where 5(k,s) is the Laplace transform of I5(k,t). If we had Fourier-Laplace

transformed Eq. (4) (the equation for the density distribution of r obtained from
hydrodynamics), the result would have been

_ G(k,0)
s+k’D

G(k,s) (19)

A comparison of these last two equations suggests that the self-diffusion coefficient is
really a limiting form of a much more complicated object that depends both on a
wavevector (that is, on a quantity that is inversely related to a length) and a frequency (a
quantity inversely related to time.) In fact, it can be shown (though we won’t show it
here) that

D = lim fim < D(K.8)-K

k—0 s—0 (20)
The above limit corresponds to what we refer to as the hydrodynamic limit, i.e., the limit
of large distances and long times. Other transport coefficients (like the shear viscosity, for
instance) can also be shown using the GLE to correspond to limiting forms of wavevector
and frequency dependent quantities.




