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IP326. Lecture 17. Thursday, Feb. 28, 2019 

 

 

● An exact equation of motion for the time evolution of a dynamical variable 

 

       The projection operators  P and Q  introduced in the last lecture, and defined as             

AAAAP
1

  and AAAAQ
1

1


 , will now be used to derive a new 

equation of motion for the dynamical variable )(tA . We’ve already established that the 

time evolution of  )(tA  is determined by the equation  

  

                                                    )(
)(

tiLA
dt

tdA
                                                                (1) 

 

where L is the Liouvillian.  The formal solution of Eq. (1) is )0()( AetA iLt , and if this 

solution is substituted back into Eq. (1), the result is                                                         

 

                                         iLAeAiLe
dt

tdA iLtiLt  )0(
)(

   

 

which in bra-ket notation becomes 

 

                                                  AiLe
dt

tAd
iLt

)(
                                                          (2) 

 

The introduction of  a factor of unity into Eq. (2) in the form QP 1  leads to  

 

                                               AiLQPe
dt

tAd
iLt )(

)(
      

 

                                                            AQiLeAPiLe iLtiLt                                         (3) 

 

Consider the first term on the RHS of Eq. (3); using the definition of P in this term, we 

get  

 

                                          iLAAAAAeAPiLe iLtiLt 1
       

 

                                                            AieiLt                     

 

                                                           )(tAi                                                               (4) 

 

where LAAAA
1

  is a quantity we shall refer to as a “frequency”. 
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           To treat the second term on the RHS of Eq. (3), we first recall the operator identity 

tNMttM
t

MttNM Neetdee


  )()(

0

)( , which can be rearranged to 

 

                                       tNMttM

t

tNMMt Neetdee


  )()(

0

)(                                       (5) 

 

If we now set the operators M and N in this relation to be iL  and PiL, respectively, we 

arrive at the identity 

 

                                           tQiLttiL

t

QiLtiLt PiLeetdee


  )(

0

                                              (6) 

 

which we then use with the expression AQiLeiLt  from Eq. (3) to produce  

 

                           AQiLPiLeetdAQiLeAQiLe tQiLttiL

t

QiLtiLt 

  )(

0

                             (7) 

 

The structure of Eq. (7) suggests that it may be helpful to introduce a new state vector 

)(tF , defined as  

                                            

                                                  AQiLetF QiLt)(                                                         (8) 

 

This function has some interesting properties. Consider what happens when we take its 

scalar product with the vector A ; the result is 

 

                                            AQiLeAtFA QiLt)(                                                      (9) 

 

After expanding out the exponential, this becomes  

 

                    AQiLQiLtQiLtQiLtAtFA 







 

!2

1
1)(           

 

                                    QiLQiLQiLA
t

QiLQiLAtQiLAA
!2

2

                 (10) 

 

In all of the terms in Eq. (10), the leftmost Q can be moved into the bra because of 

hermiticity, so all these terms will contain the factor *)( QAQA  , which is 0, and so 

0)( tFA . In other words, )(tF  is orthogonal to the initial value of A, viz., A ,  at 
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all times. This makes )(tF  akin to a random variable, since at no time do such variables 

have any correlation at all with a dynamical variable. For this reason, we’ll refer to 

)(tF  as a generalized random force (although, strictly speaking, its time evolution is 

entirely deterministic.)  

 

        The action of  Q on )(tF  is also revealing; it is given by  

                    

                        )()1()(
1

tFAAAAtFQ


  

 

                                     )()(
1

tFAAAAtF


  

 

                                     )(tF  

 

so )(tF  lies in the space orthogonal to A .  

 

          After substituting Eqs. (4), (7) and (8) into Eq. (3), the evolution equation for 

)(tA  is transformed to  

 

                                


t

ttiL tFtFPiLetdtAi
dt

tAd

0

)( )()()(
)(

                         (11) 

 

A few additional manipulations of Eq. (11) can be carried out, specifically on the 

function )(tFPiL   in the second term, which is now treated as follows: 

 

                              )()( tFPiLQtFPiL                 (because )()( tFtFQ  ) 

 

                                               )()1( tFiLQQ         

                                      

                                               )()( tFQiLQtFiLQ   

 

                                               )()1()(
1

tFiLQAAAAtFiLQ 


 

 

                                               )(
1

tFiLQAAAA 


                                              (12) 

 

Because both L and Q are Hermitian, Eq. (12) can be rewritten as 

 

                                         )()(
1

tFQLAAAAitFPiL 

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                                                          )(
1

tFQiLAAAA 


                                  (13) 

 

Recalling the definition of the generalized force in Eq. (8), we see that the term QiLA  in 

Eq. (13) is just the value of this force at time 0, viz., *)( F . If we now put these results 

back in Eq. (11), we get  

 

                       


t

ttiL tFtFFAAAetdtAi
dt

tAd

0

1)( )()()(
)(

                  (14) 

 

For convenience, we’ll now introduce a function K(t) defined as  

 

                                                       )()(
1

tFFAAtK 


                                         (15) 

 

We’ll refer to it as a “memory function” (for reasons that will become clear later.) At the 

same time, let’s notice that  Ae ttiL )(   is nothing but )( ttA  , which means that Eq. 

(14) finally reduces to  

 

                                 

t

tFtKttAtdtAi
dt

tAd

0

)()()()(
)(

    

 

or  more conventionally to  

 

                                

t

tFtAttKtdtAi
dt

tAd

0

)()()()(
)(

                            (16) 

 

after the change of variable ttx   in the integral on the right hand side.  

 

       Equation (16) is known as the generalized Langevin equation or GLE. It is exact, and 

is an alternative, equivalent form of the Liouville equation, but its structure makes it more 

amenable to the introduction of well-controlled physically motivated approximations, as 

we’ll see.   

 

       By taking the scalar product of the terms on both sides of  Eq. (16) with the initial 

state vector A  (and recalling that 0)( tFA ), the equation can be converted to one 

for the time correlation function )()( tAAtC  ; specifically, 

 

                                            

t

tCttKtdtCi
dt

tdC

0

)()()(
)(

,                                    (17) 

 

which is sometimes referred to as the memory function equation.  



 5 

                                                    

● Generalization to many variables 

 

        The foregoing results apply to the case of just a single dynamical variable (such as 

the x component of the position or the z component of the momentum), but they are easily 

generalized to the case where the dynamical variable is actually a vector and has several 

components (such as the position and momentum of a set of, say, 5 particles in an 

ensemble of N particles in a space of 3 dimensions, which can be regarded as a vector 

with a total of 30 components.) For such cases, the dynamical variables will be 

represented by boldface symbols. So a variable denoted A (or A ) stands for the vector 

),,,( 21 nAAA A . The time autocorrelation function of  A is now a matrix 

)()( tt AAC   that is given by 

 

                                    























)()(

)()(

)(

1

111

tAAtAA

tAAtAA

t

nnn

n









C                                  (18) 

 

The projector P likewise has the following more general definition 

 

                                        



ji

jjii AAAAP
,

11
AAAA                            (19) 

 

and PQ  1  is defined similarly. Given these definitions, it can be shown (and you 

should try showing it yourselves) that the same sequence of steps that led to the 

generalized Langevin equation for a single variable (Eq. (16)), leads, in the case of a 

vector variable, to 

 

                              

t

tttttdti
dt

td

0

)()()()(
)(

FAKAΩ
A

                      (20a) 

 

and  

 

                                

t

ttttdti
dt

td

0

)()()(
)(

CKCΩ
C

                                           (20b) 

 

where AF QiLet QiLt)( , with 
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











































nnn

n

nnn

n

LAALAA

LAALAA

AAAA

AAAA

t

















1

111

1

1

111

)(Ω               (21) 

 

and  

 

      













































)()(

)()(

)(

1

111

1

1

111

tFFtFF

tFFtFF

AAAA

AAAA

t

nnn

n

nnn

n

















K               (22) 

 

The derivation of these results makes use of the orthogonality condition 0FA )(t , 

which translates to the condition jitFA ji ,,0)(  . 

 

       In component form Eqs. (20a) and (20b) are given by 

 

                              )()()()(
)(

0

tFtAttKtdtAΩi
dt

tAd
i

j

jij

t

j

jij

i
          (23a) 

 

                                 
k

t

kjik

k

kjik

ij
tCttKtdtCΩi

dt

tdC

0

)()()(
)(

                          (23b) 

 

 

● Symmetry properties of the time correlation functions 

 

1. We’ve shown earlier that if a dynamical variable iA transforms under time reversal as 

ii A , where 1i , then the correlation function 0ji AA  if ji   . This means 

that if a vector variable A has some subset of components EA  that are even under time 

reversal, meaning EE AA  , and another subset OA  that are odd under time reversal, 

meaning OO AA  , such that it’s possible to write 

 

                                                             









O

E

A

A
A                                                           (24) 

 

then the equilibrium correlation function AA ,  by the symmetry property above,  

acquires a block symmetric matrix structure. That is, 
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                                        














OO

EE

AA0

0AA
AA                                            (25) 

 

This further means that  

 

                                     





















1

1

1

OO

EE

AA0

0AA
AA                                       (26)  

 

A further implication is that the frequency matrix Ω  vanishes unless iA and jA  have 

different signatures under time reversal. 

 

Proof:  By definition, 



k

jkkiij LAAAA
1

. Under time reversal LL  , while 

iii AA  , so it follows that 

 

                           ijji

k

jkkijkkiij LAAAA  



1

 

 

And therefore i  and j  must have opposite signs for Ω  to be non-vanishing. Because 

of this property, Ω  also has a block diagonal structure, but of the form 

 

                                                     









0Ω

Ω0

EO

EO
                                                      (27) 

 

where the off-diagonal matrices couple variables of different time reversal symmetry. 

 

2. Another result proved earlier is that under time reversal, the time correlation function  

)()( tAAtC jiij   transforms as 

 

                                       )()()( * tCtCtC jijiijjiij    

 

Thus if iA  and jA  have the same signature under time reversal, )(tCij  is an even function 

of time, while if they have different signatures, then )(tCij  is an odd function of time. As 

a further corollary, the time autocorrelation function )(tCii is a real, even function of 

time. 

              

             

 

         

 


