IP326. Lecture 17. Thursday, Feb. 28, 2019

e An exact equation of motion for the time evolution of a dynamical variable

The projection operators P and Q introduced in the last lecture, and defined as
P=|AYA/A) (Al and Q=1-|A)(A|A)"(A|, will now be used to derive a new
equation of motion for the dynamical variable A(t). We’ve already established that the
time evolution of A(t) is determined by the equation

dA

o =ILA® (1)

where L is the Liouvillian. The formal solution of Eq. (1) is A(t) =e™A(0), and if this
solution is substituted back into Eq. (1), the result is

9An _ iLe™ A(0) = e™iLA

which in bra-ket notation becomes

dlA®) _ e
— e iL|A) ()

The introduction of a factor of unity into Eq. (2) in the form 1=P +Q leads to

d| A(t))
dt

=e"(P+Q)iL|A)

=e"“PiL| A) +e"QiL| A) (3)

Consider the first term on the RHS of Eq. (3); using the definition of P in this term, we
get

ePiL| A) = e™| A)Y(A| A) "(A[iLA)
—ie'| A
=iQ A1) 4

where Q= (A|A)"(A|LA) is a quantity we shall refer to as a “frequency”.



To treat the second term on the RHS of Eq. (3), we first recall the operator identity
g (Mt — g~Mt _ J‘; dt'e Mt Ne"™MNY “which can be rearranged to

t
e—Mt _ e—(M+N)t +J'dtre—M(t—t')Ne—(M+N)t’ (5)
0

If we now set the operators M and N in this relation to be —iL and PiL, respectively, we
arrive at the identity

t
eiLt _ eQiLt +J'dt/eiL(t—t')PiLeQiLt' (6)
0
which we then use with the expression e™QiL|A) from Eq. (3) to produce
. . t . .
e"QiL| A) = e?“QiL| A) + [ dt’e™PiLe* " QiL| A) (7)
0

The structure of Eq. (7) suggests that it may be helpful to introduce a new state vector
|F(t)), defined as

|F(t)) = e QiL| A) (8)

This function has some interesting properties. Consider what happens when we take its
scalar product with the vector | A); the result is

(A[F (1)) =(Ale*"QiL| A) (9)

After expanding out the exponential, this becomes

(AIF () = <A|(1+QiLt + -QiLtQiL+ ---)QiL| A

= (A|QILA) + t{A|QILQIL ) + t2—2|<A|QiLQiLQiL> T (10)

In all of the terms in Eq. (10), the leftmost Q can be moved into the bra because of
hermiticity, so all these terms will contain the factor (QA|=(|QA))", which is 0, and so

(A[F(t))=0. In other words, |F(t)) is orthogonal to the initial value of A, viz., |A), at



all times. This makes | F(t)) akin to a random variable, since at no time do such variables

have any correlation at all with a dynamical variable. For this reason, we’ll refer to
|F(t)> as a generalized random force (although, strictly speaking, its time evolution is

entirely deterministic.)

The action of Q on |F(t)) is also revealing; it is given by
QIF () =@~ AXAlA) (AN FO)
=[F(0)=[AXA|A) (AIFO)
=[F®)
so |F(t)) lies in the space orthogonal to | A) .

After substituting Egs. (4), (7) and (8) into Eq. (3), the evolution equation for
| A(t)) is transformed to

d|A(t))
dt

=iQ A(t)) + j dt’e““PiL| F(t")) +| F(t)) (11)

A few additional manipulations of Eqg. (11) can be carried out, specifically on the
function PiL| F(t')) in the second term, which is now treated as follows:

PiL|F(t) = PILQ F(t)) (because Q|F(t))=|F(t)))
=(1-QILQ[F(1))
=iLQ|F(t)) - QILQ| F(t"))
=iLQ|F(t")) - (1—| A)Y Al A) " (ADILQ| F(t'))
=| AYA|A)(AILQ|F (1)) (12)
Because both L and Q are Hermitian, Eq. (12) can be rewritten as

PILIF (1)) = AYA| &) (QLAIF (1)



= | A)A|A)(QILA|F (1)) (13)

Recalling the definition of the generalized force in Eq. (8), we see that the term(QiLA| in

Eq. (13) is just the value of this force at time 0, viz., (|F))". If we now put these results
back in Eq. (11), we get

OI'S—?» =iQ[A(t)) —jdt'e““’>| AYA|A)(F|F () +|F () (14)

For convenience, we’ll now introduce a function K(t) defined as
-1 ’
K(t) =(A|A) (F|F(t)) (15)
We’ll refer to it as a “memory function” (for reasons that will become clear later.) At the

same time, let’s notice that e'‘"| A) is nothing but | A(t—t’)), which means that Eq.
(14) finally reduces to

d| 2:0) =IO A(t)) - j dt’| A(t —t"))K(t") +| F (1))

or more conventionally to

d|A(t))
dt

=iQ A(t)) —jdt'K(t -t

At) +|F (1)) (16)

after the change of variable x — —t"+t in the integral on the right hand side.

Equation (16) is known as the generalized Langevin equation or GLE. It is exact, and
is an alternative, equivalent form of the Liouville equation, but its structure makes it more
amenable to the introduction of well-controlled physically motivated approximations, as
we’ll see.

By taking the scalar product of the terms on both sides of Eq. (16) with the initial
state vector |A) (and recalling that (A|F(t)) =0), the equation can be converted to one

for the time correlation function C(t) = (A| A(t)); specifically,

dc() . [ e :
S |QC(t)—£dt K(t—t)C(t), 17)

which is sometimes referred to as the memory function equation.




e Generalization to many variables

The foregoing results apply to the case of just a single dynamical variable (such as
the x component of the position or the z component of the momentum), but they are easily
generalized to the case where the dynamical variable is actually a vector and has several
components (such as the position and momentum of a set of, say, 5 particles in an
ensemble of N particles in a space of 3 dimensions, which can be regarded as a vector
with a total of 30 components.) For such cases, the dynamical variables will be

represented by boldface symbols. So a variable denoted A (or |A>) stands for the vector
A=(A,A,...,A). The time autocorrelation function of A is now a matrix
C(t) = (A|A(t)) that is given by
(AIA®) - - (A|A D)
cty=| . c f (18)

(AJAWD) -~ - (A]AWD)

The projector P likewise has the following more general definition
_ -1
P=|ANA|A) (A=A )A[A) (A (19)
1)

and Q =1-P is defined similarly. Given these definitions, it can be shown (and you
should try showing it yourselves) that the same sequence of steps that led to the
generalized Langevin equation for a single variable (Eg. (16)), leads, in the case of a
vector variable, to

dlfzt(t)> =0 |A()) —jdt’K(t —t)-|A®)) + | F()) (20)
and
% = iQ.C(t)—j.dt’K(t_t’).C(t) (20b)

where |F(t)) =e¥“QiL| A), with



(AIA) o (AIA))((AlLA) o (AlLA)

ev=| . . T (21)
(AIA) = o (A1A)) (AJLA) = = (ALA)
and
(AlA) o (A ((RIR@) - (RIFO)
o= . L @)
AIA) = o (A LRIRO) - (RIFO)

The derivation of these results makes use of the orthogonality condition (A|F(t)) =0

which translates to the condition (A |F;(t)) =0, Vi, j .
In component form Egs. (20a) and (20b) are given by

dIA(t)

ZQ,J‘ A (1) - A () +| F (1) (23a)

ij

dCIJ (t)

=22C,0-X j dtK;, (t—1)Cy (1) (23b)

e Symmetry properties of the time correlation functions

1. We’ve shown earlier that if a dynamical variable A transforms under time reversal as
7:A, where y, =1, then the correlation function (A |A;)=0 if y, = ;. This means

that if a vector variable A has some subset of components A. that are even under time
reversal, meaning A — A, and another subset A, that are odd under time reversal,

meaning A, — —A,, such that it’s possible to write
A
A= ( Ej (24)

then the equilibrium correlation function <A|A>, by the symmetry property above,
acquires a block symmetric matrix structure. That is,



This further means that

4 ((Ag]A)” 0
R L 2o

A further implication is that the frequency matrix € vanishes unless Aiand A; have
different signatures under time reversal.

Proof: By definition, Q; =" (A[A)"(A|LA). Under time reversal L ——L, while
k

A — 7, A, so it follows that
Q= 777 A A (AJLA ) = =77,y
k

And therefore y; and y; must have opposite signs for € to be non-vanishing. Because
of this property, € also has a block diagonal structure, but of the form

0 Q.
ol %

where the off-diagonal matrices couple variables of different time reversal symmetry.
2. Another result proved earlier is that under time reversal, the time correlation function
C;(t) = (A| A (1)) transforms as

o t— 717Gy (-t)= 7i7’jC*J’i(t)

Thus if A and A; have the same signature under time reversal, C;(t) is an even function
of time, while if they have different signatures, then C;(t) is an odd function of time. As

a further corollary, the time autocorrelation function C;(t)is a real, even function of
time.



