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IP326. Lecture 16. Tuesday, Feb. 26, 2019 

 

 

● Projection operator methods in the derivation of equations of motion and time 

correlation functions        

 

        In earlier lectures, we showed how, within the framework of linear response theory 

or continuum mechanics,  the equations of motion of various dynamical variables could 

be used to derive expressions for transport coefficients in terms of time correlation 

functions. We’ll now show how these same  equations of motion can be transformed  to 

an equivalent exact representation that lends itself more readily to systematic, well-

controlled and physically motivated approximation schemes.  

 

       Recall that the time evolution of any dynamical variable A is dictated by the equation  

 

                                                    )(
)(

tiLA
dt

tdA
                                                                (1) 

 

But being exact, this equation is analytically intractable for all but the simplest systems. 

Formally, however, its solution can be obtained at once: 

 

                                                     )0()( AetA itL                                                              (2) 

 

As we noted before, the operator itLe is unitary, meaning, it preserves the norm of )0(A , 

merely changing its “orientation” over the course of the time interval t, but leaving its 

magnitude unaffected, as illustrated schematically in the figure below: 

 

 

 

                                                                            A(t) 

                                                                    

 

 

 

                                                                                                       A(0) 

 

 

 

 

 

 

This allows us to think of  A(0) and A(t) as vectors in phase space, and to employ the bra 

and ket notation of quantum mechanics to refer to them. We can reinforce this vector 

interpretation of a dynamical variable by noting that the time correlation function C(t), 

defined as   )()()()( *

0 AeAfdtC itL , can be rewritten as 
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                                        )())(()( 2/1

0

*2/1

0 AfeAfdtC itL                                           (3a) 

 

by virtue of the fact that 0f  is real and that 00 iLf , making it possible to move 2/1

0f  to 

the left of the operator itLe without affecting anything. In (3a), the combination Af 2/1

0  can 

be regarded in an abstract sense as a “wavefunction” 
A . In other words, 

)()()( 2/1

0  AfA . The important thing to note about this function is that for any 

property A that has a finite ensemble average,  
A  will be square integrable, meaning,  

  2|)(| Ad  ; so 
A  is effectively a vector in the Hilbert space of functions of   

(cf. Berne and Pecora.) In any case, we have the relation  

 

                                        )(),()()( * tAAtdtC AA                                        (3b) 

 

where )( AA  , )(**
 AAA  , and ),())(()( tttA AA   . It will always 

be  understood that when a bra and ket are multiplied together, integration over   is 

implied.  

 

       Equation (3b) is entirely analogous to the scalar product in quantum mechanics, with 

A  representing a “state vector”. The product of two such vectors can therefore be 

interpreted in a way analogous to the way we interpret the dot product in algebra,  which 

for any two vectors P and Q is denoted QP  , and is defined as cos|||| QP , where   

is the angle between the vectors. Here, qcos|| Q  is the magnitude of the projection 

of  Q onto P, and is illustrated in the figure below  

 

 

                                                                      Q 

 

 

 

 

 

 

 

                                                                                                          P 

 

 

                                                          

                                                           qcos|| Q  

 

 

The projection q can also be written as   QPQPQ 
1

||||||q .  
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         The time correlation function )(tAA  may be viewed similarly, as a scalar product 

in phase space, in which the initial state of the system, represented by )0(A , is 

multiplied by the projection of the time-evolved state, )(tA ,  onto it. In analogy with the 

dot product, we can therefore say that 

 

                   Projection of )(tA  onto )0(A  )(
1

tAAAAA


                                (4) 

 

This interpretation of the term projection is meaningful in that by using (4) to calculate 

the projection of )0(A  onto )0(A , we get  

 

                                AAAAAAAAAA
11

)0(


  

 

                                                                 A  

 

which is what we should get. So given these facts, we can formally define the operation 

of projecting any vector (i.e., any dynamical variable) onto A  through the introduction 

of a projection operator P, defined as 

 

                                                   AAAAP
1

                                                          (5) 

 

and such that 

 

                                         )()(
1

tAAAAAtAP


                                                  (6) 

 

The scalar product of )(tAP  with A  is therefore given by 

 

                                    )()(
1

tAAAAAAtAPA


  

 

                                                      )(tAA  

 

This means that a time correlation function can be thought of as a measure of the amount 

of a dynamical variable at time t that is correlated with, or that has a component lying 

along, the same or different dynamical variable at time 0.   
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● Properties of the projector P      

 

1. Idempotency 

 

Consider the action of P on the “state vector”  BB )( .  By definition 

 

                         BAAAABP
1

  

 

which is some other state vector. Geometrically, it corresponds to the line segment shown 

in the figure below 

 

                                                                    B  

 

 

                                                                                                                A  

 

 

 

 

                                                                     BP    

 

 

Now imagine acting P on BP ; the result is 

 

                                                BPBPP 2     

                       

                                                           BAAAAAAAA
11 

  

                                                                                                                  

                                                           BAAAA
1

  

 

                                                           BP                                                                     (7) 

 

In other words, PP 2
, which makes P an idempotent operator. 

 

 

2. Hermiticity 

 

        Consider the scalar product of the vector A  and the vector BP . By definition this 

product is 
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                                            BAAAAABPA
1

  

 

                                                          BA                                                                    (8) 

 

Now consider the scalar product of the vector B  with the vector AP , which is 

 

                                                ABAPB                                                                 (9) 

 

But recall that BAAB 
*

, which means that  

 

                                                BAAPB 
*

 

 

and so 

 

                                                 
*

APBBPA       

 

                                                              
*

PAB  

 

                                                              BPA  

 

Thus, BPAPBA  , which makes P a Hermitian operator. 

 

 

● The orthogonal projector Q 

 

         It will prove useful in the developments to follow to introduce an operator Q 

defined as PQ  1 . According to this definition, 

 

                                                 AAAAQ
1

1


                                                     (10) 

 

and so, as one immediate consequence, 

 

                                            AAAAAAAQ
1

    

  

                                                     0                                                                               (11) 

 

which means that the action of Q is to project out of A  a part that has no component 

lying along it. We’ll see, therefore, that the action of Q  is effectively to project a 

dynamical variable onto the “space” orthogonal to A . 
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 Other properties of Q 

 

1. Like P, the operator Q is also idempotent, as demonstrated below by its action on a 

vector B : 

 

                                           BAAAABBQ
1

  

 

Therefore, 

 

      BQBQQ 2  

 

                  BAAAAQBQ
1

  

 

                                                                 

                  BAAAAAAAABAAAABAAAAB
1111 

  

 

                  BAAAABAAAABAAAAB
111 

  

            

                  BAAAAB
1

       

 

                  BQ               

 

Thus, QQ 2 . 

 

2. Q is also Hermitian. The proof is as follows: Consider the action of Q on B . 

 

                                  BAAAABQBBQ
1

   

 

Therefore,  

 

                             BAAAACBCQBC
1

             

 

                                          ACAABABC
1

      

 

It follows that                    

 

                                          CAAAABCBQBC
1* 

  
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                                                        CAAAAB )1(
1

  

 

                                                        QCB   

 

Hence, BQCQCBQBC 
*

, and so Q is Hermitian. The Hermiticity of Q also 

implies that 

 

                                             0 BQAQBA                                                         (12) 

 

which means that QBBQ   is “orthogonal” to A . And what this means 

geometrically is illustrated below: 

 

                                                                                    B  

 

                                                                                                                    A  

 

                                                 BQ  

                                                                                      BP  

 

    

 

Together, these two operators, P and Q, provide a way of rewriting the Liouville equation 

for the evolution of the dynamical variable A in an alternate, highly convenient form. 

Before seeing how this is done, we’ll first establish some general operator identities.  

 

 

● Identity 1 

 

If M and N are any two operators, then 

 

                                      1111 )()(   NMNMMNM                                       (13) 

 

Proof         

 

Apply both sides of this equation to the operator NM  . On the LHS, this leads to the 

identity operator I, while on the RHS it leads to 

 

                      INMNMINIMNMM   1111 )(  

 

So the operators on both sides of (13) are equivalent.  
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 ● Identity 2 

 

                                                   




 
0

1 )()(
n

nMMI                                                  (14) 

 

Proof  

 

Apply both sides of the equation to the operator MI  . On the LHS this yields I; on the 

RHS we have  

 

                                














0

1

00

)()()()(
n

n

n

n

n

n MMMIM                      

 

                                                             









11

)()(
j

j

n

n MMI  

 

                                                            I     
 

So the operators on both sides of (14) are equivalent.  

 

 

 

● Identity 3 

                          

                             
 

t

tNMttMMttNM Neetdee
0

)()()(                                               (15) 

 

Proof  

 

To prove this result, we first need to provide a meaning to the Laplace transform of an 

exponential operator. So consider 




0

Mtstedte , which we shall understand as follows: 
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                                    














0

1

n

n

s

M

s

1
1













s

M
I

s
       (Identity 2) 

 

                                      1
 Ms                                                                                   (16) 

 

Now consider the operator 1)(  NMs  and rewrite it using Identity 1. This yields 

 

                  1111 )()()()(   NMsNMsMsNMs                                (17) 

 

Assuming that s is a Laplace variable, we next take the inverse Laplace transform (which 

we’ll denote 1L ) of both sides of (17), producing 

 

                         )(~)(
~

)()( 11111 sgsfLMsLNMsL                                       (18) 

 

where 1)()(
~  Mssf  and 1)()(~  NMsNsg . 

 

        Now, as we’ll show right away, the Laplace inverse of a product of Laplace 

transformed functions is the convolution of the original functions. That is 

 

                                    

t

tgttftdsgsfL
0

1 )()()(~)(
~

                                                   (19) 

 

To prove (19), we take the Laplace transform of both sides of the equation. The LHS 

obviously just recovers )(~)(
~

sgsf  itself, and so 

 

                                     


 
0 0

)()()(~)(
~

t

st tgttftddtesgsf  

 

                                                     
 

 
0 0

)()()( tgttfttetddt st   

                                               

                                                     
 

 
0 0

)()()( tgttfttdtetd st  

 

                                                     
 



 
0

)()(
t

st tgttfdtetd                                            (20) 

 

Now rewrite the terms in argument of the exponential as )( ttts   and then introduce 

the change of variable ttx  , which converts (20) to 
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                                  )(~)(
~

)()()(~)(
~

0 0

sgsftgxfedxetdsgsf tssx   
 

  

 

thus establishing (19).  

 

         If we apply these results to (18), after recalling that ateasL   11 )( , we end up 

with  

 

                                   tNM

t

ttMMttNM Neetdee


  )(

0

)()(  

 

thus, proving Identity 3.   

 

         

 

      

   

  

                                    

 

                                                     

                                                               

                                              

                                                     

 

 

 

 

                                                                       

 

 

 

 

 

 

 

 

 

                                                    

            

 

 

 

 


