IP326. Lecture 16. Tuesday, Feb. 26, 2019

e Projection operator methods in the derivation of equations of motion and time
correlation functions

In earlier lectures, we showed how, within the framework of linear response theory
or continuum mechanics, the equations of motion of various dynamical variables could
be used to derive expressions for transport coefficients in terms of time correlation
functions. We’ll now show how these same equations of motion can be transformed to
an equivalent exact representation that lends itself more readily to systematic, well-
controlled and physically motivated approximation schemes.

Recall that the time evolution of any dynamical variable A is dictated by the equation

92O i) (1)

But being exact, this equation is analytically intractable for all but the simplest systems.
Formally, however, its solution can be obtained at once:

A(t) = e™A(0) (2)

As we noted before, the operator e™ is unitary, meaning, it preserves the norm of A(0),

merely changing its “orientation” over the course of the time interval t, but leaving its
magnitude unaffected, as illustrated schematically in the figure below:

A

This allows us to think of A(0) and A(t) as vectors in phase space, and to employ the bra
and ket notation of quantum mechanics to refer to them. We can reinforce this vector
interpretation of a dynamical variable by noting that the time correlation function C(t),

defined as C(t) = | dI'f,(I") A" (I")e™ A(I"), can be rewritten as
0



C(t) = [ dr(f," A(T)) e™ f3"* A(T) (3)

by virtue of the fact that f, is real and that iLf, = 0, making it possible to move f,”* to
the left of the operator e""without affecting anything. In (3a), the combination f,'*A can
be regarded in an abstract sense as a “wavefunction” w,. In other words,
wA(T) = f/2(I)A(T). The important thing to note about this function is that for any

property A that has a finite ensemble average, , will be square integrable, meaning,
de |, () < o; so v, is effectively a vector in the Hilbert space of functions of T'
(cf. Berne and Pecora.) In any case, we have the relation

C(t) = [ ATy (Dw (T, 1) = (A| A®D)) (30)

where |A) =y, (1), |A) = (A|=wi([), and | A1) =, (T(1)) = . (T, t). It will always
be understood that when a bra and ket are multiplied together, integration over I' is
implied.

Equation (3b) is entirely analogous to the scalar product in quantum mechanics, with
|A> representing a ‘“‘state vector”. The product of two such vectors can therefore be
interpreted in a way analogous to the way we interpret the dot product in algebra, which
for any two vectors P and Q is denoted P-Q, and is defined as |P ||Q|cosé&, where &
is the angle between the vectors. Here, |Q|cos@ = q is the magnitude of the projection
of Qonto P, and is illustrated in the figure below

|Qfcosf=q

The projection q can also be writtenas q=|Q|(P||Q|)"P-Q.



The time correlation function ( A| A(t)) may be viewed similarly, as a scalar product
in phase space, in which the initial state of the system, represented by |A(O)>, IS

multiplied by the projection of the time-evolved state, | A(t)), onto it. In analogy with the
dot product, we can therefore say that

Projection of | A(t)) onto | A(0)) =|A)A|A)"(A|A(t)) (4)

This interpretation of the term projection is meaningful in that by using (4) to calculate
the projection of | A(0)) onto | A(0)), we get

| A)(ALA)(A]A) = | A)( Al A) (Al A
=|A)
which is what we should get. So given these facts, we can formally define the operation
of projecting any vector (i.e., any dynamical variable) onto |A> through the introduction
of a projection operator P, defined as
P=|A)AA) (A 5)

and such that

PIA()) = A)(A| A)"(AAD)) (6)
The scalar product of P|A(t)) with | A) is therefore given by

(AIPIA®) = (Al A A A) (A A®))

=(AlA®)

This means that a time correlation function can be thought of as a measure of the amount
of a dynamical variable at time t that is correlated with, or that has a component lying
along, the same or different dynamical variable at time 0.



e Properties of the projector P

1. Idempotency
Consider the action of P on the “state vector” w(I') =|B). By definition
P[B)=| A)A[A)(A[B)

which is some other state vector. Geometrically, it corresponds to the line segment shown
in the figure below

Now imagine acting P on P|B); the result is
PP|B) = P?|B)
= A)A|R) (A AYA|A)(A[B)
= AXA|A)(A[B)
= P|B) (7)

In other words, P? = P, which makes P an idempotent operator.

2. Hermiticity

Consider the scalar product of the vector | A) and the vector P|B). By definition this
product is



(A[P|B) = (A| A)(A| A)"(A[B)
=(AlB) ®)
Now consider the scalar product of the vector |B) with the vector P| A), which is
(BIP[A)=(B|A) 9
But recall that (B|A)" =(A|B), which means that
(BIP|A) =(AlB)
and so
(AlP|B)=(BIP|A)
= (B[PA)
=(PAB)

Thus, (A|PB)=(PA|B), which makes P a Hermitian operator.

e The orthogonal projector Q

It will prove useful in the developments to follow to introduce an operator Q
defined as Q =1— P . According to this definition,

Q =1~ A)YA|A)(A] (10)
and so, as one immediate consequence,
QA) =[ A)~ | A)(A|A) (A A)
=0 (12)

which means that the action of Q is to project out of |A> a part that has no component

lying along it. We’ll see, therefore, that the action of Q is effectively to project a
dynamical variable onto the “space” orthogonal to | A> .



Other properties of Q

1. Like P, the operator Q is also idempotent, as demonstrated below by its action on a
vector |B):

QlB) = |B)-|A)(A|A)"(AlB)

Therefore,
Q[B)=Q’[B)

=Q[B) - Q| A}(A|A)*(A[B)
=[B) | AXA|A)(A[B)— | A)A|A) (A B) +| A)Y A A)"(A| A)(AA)“(A[B)
=[B)—| A)(A|A)"(A[B) - A)X A A)“(A[B)+| A)(A| A)(A]B)
=[B) | A)(A|A)"(AlB)
-q8)

Thus, Q2 =Q.

2. Q is also Hermitian. The proof is as follows: Consider the action of Q on | B) .
Q[B)=|QB)=|B)~|A)(A|A)"(A[B)
Therefore,
(c|QB)=(C[B)~(C|A)(A|A)"(A[B)
=(c[B)~(A[B)(A|A)(C|A)
It follows that

(c|QB) =(B|C)-(B|A)(A|A) (A[C)



=(B(L-| A}(AA)“(AD]C)
=(B|QC)

Hence, (C|QB)=(B|QC) =(QC|B), and so Q is Hermitian. The Hermiticity of Q also
implies that

(AlQB) =(QA[B) =0 (12)

which means that Q|B)=|QB) is “orthogonal” to |A). And what this means
geometrically is illustrated below:

Together, these two operators, P and Q, provide a way of rewriting the Liouville equation
for the evolution of the dynamical variable A in an alternate, highly convenient form.
Before seeing how this is done, we’ll first establish some general operator identities.

e |dentity 1

If M and N are any two operators, then
(M+N)*'=M"-M?'N(M +N)™* (13)
Proof

Apply both sides of this equation to the operator M + N . On the LHS, this leads to the
identity operator I, while on the RHS it leads to

MM +N)-M?NI=1+M*N-M"*N =1

So the operators on both sides of (13) are equivalent.



e |dentity 2
(1+M)* =Y (M)’ (14)

Proof

Apply both sides of the equation to the operator | + M . On the LHS this yields I; on the
RHS we have

> MY (M) = (M) = D (M)

1+ Y (M) =D (M)

So the operators on both sides of (14) are equivalent.

e |dentity 3

t
e—(M+N)t _ e—Mt _J'dt'e—M(t—t')Ne—(MJrN)t’ (15)
0

Proof

To prove this result, we first need to provide a meaning to the Laplace transform of an
exponential operator. So consider J': dte'e™™" , which we shall understand as follows:

dte—stz (_1) M ntn

TdtesteMt —
) <)

O =y 8




zli(—%y =1(| +%) (Identity 2)

S S
=(s+M)* (16)

Now consider the operator (s+ M + N)™ and rewrite it using Identity 1. This yields
(S+M+N)'=(+M)"=(s+M)*N(s+M +N)™ (17)

Assuming that s is a Laplace variable, we next take the inverse Laplace transform (which
we’ll denote L™) of both sides of (17), producing

LiNs+M +N) =L (s+M) =L (s)F(s) (18)
where f(s)=(s+M)™ and §(s)=N(s+M +N)™ .

Now, as we’ll show right away, the Laplace inverse of a product of Laplace
transformed functions is the convolution of the original functions. That is

L*T(9)3(9) = [t (t—t)g(t) (19

To prove (19), we take the Laplace transform of both sides of the equation. The LHS
obviously just recovers f(s)g(s) itself, and so

f(9)d(s) = Tdtestjdt'f (t—t)g(t))

O3

dt[dte ot —t) f (t-t)g(t)
0

dt'{ dte ot —t') f (t - t')g(t')

Il
O3
O =y 8

dt’{ dte™ f (t —t")g(t") (20)

O —y 8
—38

'

-

Now rewrite the terms in argument of the exponential as s(t —t'+t") and then introduce
the change of variable x —t—t", which converts (20) to



f(9)3(s) = [ dr [ dxe e f (x)g(t) = F(5)3(s)

thus establishing (19).

If we apply these results to (18), after recalling that L™*(s+a) ™" =e™, we end up
with

t
e—(M+N)t _ e—Mt _Idtre—M(t—t')Ne—(M+N)t’
0

thus, proving Identity 3.
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