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IP326. Lecture 15. Thursday, Feb. 21, 2019 

 

 

● Hydrodynamic approach to the shear viscosity (Cont.’d)        

 

        The Navier-Stokes equation, shown below in all its lurid detail, is the starting point 

for deriving an expression for the shear viscosity  : 
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Because it is a nonlinear equation, however (the nonlinearity arising from the term in 

uu  , which is quadratic in the velocity), it is difficult to treat mathematically, and 

approximations are usually needed to extract something from it. An approximation we 

shall use is to assume that the dynamical variables ),( tr  and ),( tru  are not very 

different from the values they have in equilibrium. In other words,  
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In (2a),   is the mean number density (a time and space independent quantity), and  

),( tr  is a small deviation from it. In a fluid that’s quiescent, there is no net flow, so the 

mean velocity is 0, and ),( tru , the fluctuation around this value, is just the local 

velocity itself, but regarded as small. When (2a) and (2b) are substituted into (1) and only 

the terms linear in the density and velocity fluctuations retained, the result is the so-called 

linearized Navier-Stokes equation, given by    
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This equation, being linear in ),( tru , is amenable to treatment, in this case by the 

method of Fourier transforms. Defining the Fourier transform of a function )(rf  through 

the relation  
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and applying this definition to both sides of Eq. (3), we arrive at 
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which makes use of the relations )(ˆ)( kkrr
rk fifed i 
  and 

)(ˆ)( 22
krr

rk fkfed i 
 to deal with the Fourier transforms of derivatives (under the 

assumption that )(rf  vanishes at zyx ,, .) 

 

       Eq. (4) can be simplified by selecting a specific Cartesian axis along which to align 

the vector k and then separating û  into two components, one lying along this selected 

axis and the other along the axes perpendicular to it. If the unit vector in the direction of 

the selected axis (which we will later identify with the z axis) is denoted ||ê , we can write 

k and û as  
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where k is the magnitude of k, and 
û  is a vector lying in the plane of the axes normal 

to ||ê . The substitution of (5) into (4) leads to  
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from which it follows that the terms on either side of the equality sign that involve the 

vectors parallel and perpendicular to the direction of k must be equal to each other. That 

is, 
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For the present purposes, only the second of these equations – viz., (7b) – needs to be   

considered further, since that is the equation that contains   in isolation. Equation (7b) is 

easily solved; the solution is 
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which, for a specific choice of  , can be used in constructing  a time correlation 

function. Since neither direction, x or y,  is special, either may be used for this purpose, so 

we’ll choose to work with )(ˆ tu x . From (8), the normalized time correlation function of 

this dynamical variable is 
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The shear viscosity can be obtained from this expression by differentiating )(tC  twice 

with respect to k, and then setting k to 0 in the result. This yields 
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To use this equation to obtain  , we need to derive an expression for the time-correlation 

function )(tC  in terms of an appropriate set of microscopic variables. For this purpose, 

we’ll note that the velocity ),( tru  [or equivalently  ),( tru ] has the following 

definition: 
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(which means that ),( tru  is really to be identified with the net velocity of  all the 

particles located in the immediate neighbourhood of the point r at time t.)   

 

           From (11), the x component of the Fourier transform of ),( tru  with respect to the  

Fourier variable ke||
ˆk is seen to be  
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where we’ve replaced the velocity of the ith particle along x by its definition in terms of 

the time derivative of )(txi , and where the parallel axis has now explicitly been identified 

with the z axis. With this expression for the velocity, we see that the associated 

normalized time correlation function becomes 
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The denominator of (13) is readily evaluated, since it is just an equilibrium average with 

respect to the distribution of a canonical ensemble. This means that 
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the middle equation following from the independence of particle velocities, and the last 

from the equipartition of energies. If we use (14) in the denominator of (13), we find that  
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Substituting (15) into (13), then taking two derivatives with respect to k, next setting k to 

0, and finally substituting the result into (10), we find that 
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Consider the first term on the right hand side of (16); because of momentum conservation 

(which implies that the total momentum of the particles at some initial time 0t  equals 

their momentum at a later time t), the sum  
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can be expressed as a complete square: 
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The summand in (17) also happens to admit of the following integral representation  
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 5 

 

which can be proved by differentiating both sides of (18) with respect to t, and using the 

general result  
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to treat the right hand side of (18). 

 

          The substitution of (18) into (17) now leads to  
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This expression is now further treated by first separating the integrals over 
1t  and 

2t   into 

the following two integrals  
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and then by switching the order of integration in the second, using step functions to effect 

this step; the result is 

 

                                            

t tt tt t

dtdtdtdtdtdt
0 0

12

0 0

21

0 0

21

21

 

 

When this is put back into (19), one sees (by simple relabeling) that the contributions 

from the two integrals are identical, and that the equation can therefore be reduced to  
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The ensemble averages in this expression are of the general form )()( 21 tBtA , and so, 

because of stationarity, can also be written as  )0()( 21 BttA  . This means that the 
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)(tpxz  is the xz element of the pressure tensor at time t. Thus, by passing to the limit 

t in this equation, setting tt /  to 0 in the process, one sees that Eq. (21) finally 

reduces to the Green-Kubo relation for the shear viscosity derived earlier: 
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