IP326. Lecture 15. Thursday, Feb. 21, 2019

e Hydrodynamic approach to the shear viscosity (Cont.’d)

The Navier-Stokes equation, shown below in all its lurid detail, is the starting point
for deriving an expression for the shear viscosity 7 :

mp(gw-v)u:—VP+nV2u+[%n+;<jvv-u (1)

Because it is a nonlinear equation, however (the nonlinearity arising from the term in
u-Vu, which is quadratic in the velocity), it is difficult to treat mathematically, and
approximations are usually needed to extract something from it. An approximation we
shall use is to assume that the dynamical variables p(r,t) and u(r,t) are not very

different from the values they have in equilibrium. In other words,
p(r.t)=p +p(r,1) + O((5p)°) (22)
u(r,t) = su(r,t) + O((su)?) (2b)

In (2a), p is the mean number density (a time and space independent quantity), and
op(r,t) is a small deviation from it. In a fluid that’s quiescent, there is no net flow, so the
mean velocity is 0, and ou(r,t), the fluctuation around this value, is just the local

velocity itself, but regarded as small. When (2a) and (2b) are substituted into (1) and only
the terms linear in the density and velocity fluctuations retained, the result is the so-called
linearized Navier-Stokes equation, given by

mﬁ%:—vp+nv2w+(%n+xjvv-5u (3)

This equation, being linear in Su(r,t), is amenable to treatment, in this case by the
method of Fourier transforms. Defining the Fourier transform of a function f(r) through
the relation

f (k) = [ drexp(ik - r) f (r)

and applying this definition to both sides of Eq. (3), we arrive at
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which  makes use of the relations  [dre*'Vf(r)=—ikf(k)  and

J'dre"“vz f (r) = —k2f (k) to deal with the Fourier transforms of derivatives (under the

assumption that f(r) vanishes at X, y,z — *.)

Eq. (4) can be simplified by selecting a specific Cartesian axis along which to align
the vector k and then separating o0 into two components, one lying along this selected

axis and the other along the axes perpendicular to it. If the unit vector in the direction of
the selected axis (which we will later identify with the z axis) is denoted €,, we can write

kand 50as
k=¢€ék and o0=¢d, +00, (5)

where K is the magnitude of k, and &0, is a vector lying in the plane of the axes normal
to €,. The substitution of (5) into (4) leads to
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from which it follows that the terms on either side of the equality sign that involve the
vectors parallel and perpendicular to the direction of k must be equal to each other. That
is,

o, .
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For the present purposes, only the second of these equations — viz., (7b) — needs to be
considered further, since that is the equation that contains 7 in isolation. Equation (7b) is

easily solved; the solution is
80,,(t) =50, Q)o@ 7kt/mp)  a=xy ()

which, for a specific choice of «, can be used in constructing a time correlation
function. Since neither direction, x or y, is special, either may be used for this purpose, so
we’ll choose to work with 6U , (t) . From (8), the normalized time correlation function of

this dynamical variable is
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The shear viscosity can be obtained from this expression by differentiating C (t) twice
with respect to k, and then setting k to O in the result. This yields

mp 0°C (t)
=7 10
n o (10)

k=0

To use this equation to obtain 7, we need to derive an expression for the time-correlation
function C(t) in terms of an appropriate set of microscopic variables. For this purpose,
we’ll note that the wvelocity u(r,t) [or equivalently ou(r,t)] has the following
definition:

ou(r,t) :iui(t)cs(r—ri ) (12)

(which means that u(r,t) is really to be identified with the net velocity of all the
particles located in the immediate neighbourhood of the point r at time t.)

From (11), the x component of the Fourier transform of u(r,t) with respect to the
Fourier variable k = €k is seen to be

80,0 = Y () explikz, ()] (12)

where we’ve replaced the velocity of the ith particle along x by its definition in terms of
the time derivative of x,(t), and where the parallel axis has now explicitly been identified

with the z axis. With this expression for the velocity, we see that the associated
normalized time correlation function becomes
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The denominator of (13) is readily evaluated, since it is just an equilibrium average with
respect to the distribution of a canonical ensemble. This means that

(% (0)%; (0) exp[ ik (z, (0) — z; (0))]) = ( (0); (0) )(exp[ ik (z,(0) - ; (0))])
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= 2Kl 5 (expl-ik(z,(0) - 7, (0)]) (14)
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the middle equation following from the independence of particle velocities, and the last
from the equipartition of energies. If we use (14) in the denominator of (13), we find that

N
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i,j=1
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Substituting (15) into (13), then taking two derivatives with respect to k, next setting k to
0, and finally substituting the result into (10), we find that
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Consider the first term on the right hand side of (16); because of momentum conservation
(which implies that the total momentum of the particles at some initial time t =0 equals

. . N . N
their momentum at a later time t), the sum ZH p;(0) can also be written ijl P (1)
And likewise, in the second term on the right hand side of (16), the sum ZN:l p, (t) can

be written ZN:l P, (0) . When these transformations are introduced into (16), the equation
can be expressed as a complete square:

1
1= <(z[p.x(t>z ® - p.(0)2 (0)]j > a7)

The summand in (17) also happens to admit of the following integral representation

P50~ P (OO = e L p,(4)P.(0) + R | (18)



which can be proved by differentiating both sides of (18) with respect to t, and using the
general result

—b(f)dt'f (1) = £ (o(t), t) 2 ab(t) ~ f(a(t),r) 2V aa(t) b(f)olt Y

a(t) a(t)
to treat the right hand side of (18).

The substitution of (18) into (17) now leads to
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This expression is now further treated by first separating the integrals over t, and t, into
the following two integrals
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and then by switching the order of integration in the second, using step functions to effect
this step; the result is
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When this is put back into (19), one sees (by simple relabeling) that the contributions
from the two integrals are identical, and that the equation can therefore be reduced to

4
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The ensemble averages in this expression are of the general form <A(t1)B(t2)>, and so,
because of stationarity, can also be written as <A(t1 —tZ)B(O)>. This means that the



integral .[;dtlj? dt,(A(t, —t,)B), after the change of variable t' = —t, +t,, followed by an
interchange of the order of integration (again effected by the introduction of a suitable
step function), can be written as j;dt’ Lfdtl<A(t’)B>, which can be immediately evaluated

to I;dt'(t —t')(A(t')B). Using these results, we see that Eq. (20) can be expressed as

<(Z|: : P, (t) P, (1) + F, (t)z, (t')iD X

=1

Vk Tty

(ﬁ{ pM@mJ@+Ed®Z®ﬂD (21)

The term Ztl[pix(t) p, 1)/ m+F, (t)z,(t)] in (21) will be recognized as Vp,, (t) , where

p,, (t) is the xz element of the pressure tensor at time t. Thus, by passing to the limit

t — ooin this equation, setting t'/t to O in the process, one sees that Eq. (21) finally
reduces to the Green-Kubo relation for the shear viscosity derived earlier:

\Y
kgT

=L [dt(p.p,)



