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IP326. Lecture 14. Tuesday, Feb. 19, 2019 

 

 

● Hydrodynamic approach to the shear viscosity (Cont.’d)        

 

          We showed earlier that in a given volume of fluid V centered at the point r, the 

total momentum density ),( trg  changed with time as a result of two factors: (i) the flow 

of fluid through the surface S of V with the velocity ),( tru  (a process called convection), 

and (ii) the total force acting on S from the fluid surrounding it. When these factors were 

accounted for, we were led to the following equation for the conservation of momentum: 
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where ),( tr  is the number density of the fluid, and σ is the so-called stress tensor. A 

given component of σ , say, ij , is to be interpreted as the j component of a force acting 

on a unit area perpendicular to the i direction.  An illustration of what this means is 

shown below: 
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The diagonal elements of the stress tensor, viz., ii , are called normal stresses, because 

they represent forces per unit area acting perpendicular or normal to a given plane, while 

the off-diagonal elements, jiij , , are called shear stresses, because they represent 

forces per unit area acting parallel to a given plane.  

 

        For a fluid in equilibrium, the shear stresses are 0, while the normal stresses are all 

equal to each other, and are all independent of position (because otherwise the fluid 

would move.) So at equilibrium, we have the relation  
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where 0P  is the equilibrium pressure, and the negative sign indicates that the stresses act 

outwards, in a direction opposite to 0P , which acts inwards. 0P  is not necessarily the 

same as the hydrostatic pressure PtP ),(r  at the point r at time t, which is defined as 

the normal force per unit area averaged over the three mutually perpendicular planes 

through the point r. That is,  3/)(),( zzyyxxtP  r .  

 

        The stress tenor is also symmetric in its indices. The simple physical reason for this 

is that if it weren’t, the shear stresses ij  and ji  would be unbalanced, and they could 

then potentially generate a torque, causing the fluid to rotate. Since the fluid doesn’t 

rotate, it must be the case that jiij   .  This allows us to write the components of σ  as 

 

                                                      ijijij P                                                              (3) 

 

where ij  represents the stresses generated when velocity gradients are present, i.e., when 

there are viscous forces in the medium. Because ij  and ij  are both symmetric, ij  must 

be symmetric too.  

 

          The relation between the stresses ij  and gradients in the velocity is generally not 

not known à priori, but when the gradients are small, it’s reasonable to assume that they 

are directly proportional. The most general such linear relationship takes the form 

 

                                               





m n n

m
ijmnij

q

v
C ,   zyxnmji ,,,,,                             (4) 

 

where the ijmnC  are unknown coefficients (of which, in principle there could be 8134  .) 

But if ij  is to be symmetric, (i.e., invariant to an interchange of i and j), then there’s only 

way of combining the terms in (4) that will guarantee this, and that is 
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where A and B are two other unknown coefficients. We can immediately identify A by 

considering stress component xy , which is the y component of the force per unit area that 

acts on the surface perpendicular to the x direction (see the figure below): 
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For this particular component, Eq. (5) reduces to 
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But by definition xy  is also xyP , the negative of the xy component of the pressure 

tensor, while xyP  itself, as we’ve seen, is given by 
y

v
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So A in Eq. (5) is nothing but the shear viscosity. That is 
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As for B, by general convention, this coefficient is defined to be 
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where   is called the dilatational viscosity coefficient. There are reasons for writing B in 

this form, but we won’t get into them, since it will turn out that for the calculation of  , 

this term in B will eventually prove unimportant.  

 

If we now substitute Eqs. (3), (5), (7) and (8) into Eq. (1), we end up with  
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where the superscript T stands for transpose, and where for convenience the dependence 

of the density and velocity on r and t has been omitted.  

 

         Equation (9) is effectively the starting point for our derivation of a formula for  , 

and to proceed from here, we’ll use various vector or tensor identities to simplify each of  

terms in the equation, starting with the left hand side. 
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Substituting Eqs. (10a)-(10f) into (9), we get 
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This can be simplified by recalling the equation for the conservation of mass: 

u  mtm / . The substitution of this relation into Eq. (11) leads to  
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This is the Navier-Stokes equation, and it is the key hydrodynamic equation that governs 

the flow of a viscous fluid.  

                                            

 

                         

                                                                                            

            

 

 

 

 


