IP326. Lecture 14. Tuesday, Feb. 19, 2019

e Hydrodynamic approach to the shear viscosity (Cont.’d)

We showed earlier that in a given volume of fluid V centered at the point r, the
total momentum density g(r,t) changed with time as a result of two factors: (i) the flow

of fluid through the surface S of V with the velocity u(r,t) (a process called convection),

and (ii) the total force acting on S from the fluid surrounding it. When these factors were
accounted for, we were led to the following equation for the conservation of momentum:
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where p(r,t) is the number density of the fluid, and ois the so-called stress tensor. A

given component of o, say, oy, is to be interpreted as the j component of a force acting

on a unit area perpendicular to the i direction. An illustration of what this means is
shown below:
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The diagonal elements of the stress tensor, viz., o;;, are called normal stresses, because

they represent forces per unit area acting perpendicular or normal to a given plane, while

the off-diagonal elements, o;,i= j, are called shear stresses, because they represent

forces per unit area acting parallel to a given plane.

For a fluid in equilibrium, the shear stresses are 0, while the normal stresses are all
equal to each other, and are all independent of position (because otherwise the fluid
would move.) So at equilibrium, we have the relation

Ow =0y =0, = _PO (2)
where P, is the equilibrium pressure, and the negative sign indicates that the stresses act
outwards, in a direction opposite to P,, which acts inwards. P, is not necessarily the
same as the hydrostatic pressure P(r,t) =P at the point r at time t, which is defined as

the normal force per unit area averaged over the three mutually perpendicular planes
through the point r. That is, P(r,t)=—(o, +0o, +0,)/3.

The stress tenor is also symmetric in its indices. The simple physical reason for this
is that if it weren’t, the shear stresses o;; and o ; would be unbalanced, and they could

then potentially generate a torque, causing the fluid to rotate. Since the fluid doesn’t
rotate, it must be the case that o;; = o;;. This allows us to write the components of ¢ as

o, =—Pd,; + 1, (3)

where z;; represents the stresses generated when velocity gradients are present, i.e., when

there are viscous forces in the medium. Because o;; and &; are both symmetric, z; must
be symmetric too.

The relation between the stresses 7; and gradients in the velocity is generally not

not known a priori, but when the gradients are small, it’s reasonable to assume that they
are directly proportional. The most general such linear relationship takes the form

%fZZCumn%, L ,mn=XxYy,z (4)

where the C,,  are unknown coefficients (of which, in principle there could be 3* =81.)
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But if z;; is to be symmetric, (i.e., invariant to an interchange of i and j), then there’s only
way of combining the terms in (4) that will guarantee this, and that is
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where A and B are two other unknown coefficients. We can immediately identify A by
considering stress component z,,, which is the y component of the force per unit area that

acts on the surface perpendicular to the x direction (see the figure below):
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For this particular component, Eq. (5) reduces to
ov

7, = A— 6

v =A%y (6)

But by definition z,, is also — P, the negative of the xy component of the pressure

tensor, while P, itself, as we've seen, is given by P ,=-7 Vy
oy
So Ain Eq. (5) is nothing but the shear viscosity. That is
A=n (7)
As for B, by general convention, this coefficient is defined to be
B= —277 +K (8)
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where « is called the dilatational viscosity coefficient. There are reasons for writing B in
this form, but we won’t get into them, since it will turn out that for the calculation of 7,

this term in B will eventually prove unimportant.

If we now substitute Egs. (3), (5), (7) and (8) into Eq. (1), we end up with
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where the superscript T stands for transpose, and where for convenience the dependence
of the density and velocity on r and t has been omitted.

Equation (9) is effectively the starting point for our derivation of a formula for 7,

and to proceed from here, we’ll use various vector or tensor identities to simplify each of
terms in the equation, starting with the left hand side.
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Substituting Egs. (10a)-(10f) into (9), we get
mu%—f+mp2—ij:—muV-pu—mpu-Vu—VP+n(V2u+VV-u)—(2?77—K)VV-u

(11)

This can be simplified by recalling the equation for the conservation of mass:
mop [ ot = —mV - pu. The substitution of this relation into Eq. (11) leads to
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This is the Navier-Stokes equation, and it is the key hydrodynamic equation that governs
the flow of a viscous fluid.



