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IP326. Lecture 13. Thursday, Feb. 14, 2019 

 

 

● The shear viscosity (Cont.’d)        

 

           It was argued earlier that the application of a shear force to a system in equilibrium 

creates an asymmetry in its internal pressure. So it is this anisotropic pressure that is the 

manifestation of the system’s response to the external perturbation, and that is, therefore, 

the quantity analogous to the dynamical variable A in the relation BtAt )()(   for the 

response function )(t .  (We’ve already determined the structure of the variable B.) To 

find a suitable structure for A, recall that we had asserted that the usual isotropic pressure 

P that appears in thermodynamics could be expressed as the following equilibrium 

ensemble average: 
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Before writing down the generalization of this result for anisotropic systems, we’ll first 

show how Eq. (1) is derived.  

 

        Under constant temperature conditions, P can be found from the relations 
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Here F is the Helmholtz free energy, V  is the volume and Q is the canonical partition 

function, which is given by 
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where !/1 3 NhC N

N   In order to differentiate Q with respect to V, we introduced the 

change of variable  ii rVq 3/1 , zyx ,,  in (3), which caused the transformed phase 

space volume element to be multiplied by a factor of 
NV . But we also proved that phase 

space extension is conserved, and the only way that can happen after the change from q 

to r variables is if this 
NV  factor is cancelled by a compensating factor of 

NV 
. This is 

easily accomplished if we now introduce another change of variable: ,3/1

  ii Vp   

zyx ,, . Once we do this,  the partition function Q becomes 
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Therefore, after differentiating (4) with respect to V, we find that 
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If we now transform Eq. (5) back to the original variables, we get 
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which is the microscopic form of the isotropic pressure. The structure of this function 

suggests that a quantity analogous to pressure and applicable to anisotropic systems can 

be defined as follows:    
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This is actually just one element of a 33  matrix, so in fact this anisotropic pressure is a 

tensor, which from now on we’ll refer to as the pressure tensor, and denote P. The 

ordinary pressure P is just the isotropic part of P, specifically 
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        In the specific case of a shear force, where the shear is applied along the x direction, 

the induced flow is along the y direction, and the xy component of P thus becomes non-

zero. It is this component that is observed to be proportional to the velocity gradient, the 

proportionality constant being the shear viscosity. That is, 
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So the shear viscosity can now be defined as  
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where ),()( tptp    is the analogue of the variable A(t), and the t limit is 

introduced to ensure that the system has had enough time to eliminate transient behavior 

and to settle into a steady state condition.  

 

          Now we had shown earlier that  
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which can also be written as 
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This quantity is therefore also related to the pressure tensor; specifically 
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So on the basis of our linear response formalism, we can write 
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But  
0xyp  is 0 (show this!). Using these results in (9), along with the stationarity 

property of time correlation functions, we finally arrive at the following expression for 

the shear viscosity 
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Formulas like (12) (and the analogous one for the self-diffusion coefficient D) are  

referred to as Green-Kubo relations.  
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● Alternative derivation of  the Green-Kubo relation for shear viscosity 

 

         Equation (12) can also be derived along the lines of our derivation of the self-

diffusion coefficient, which was based on an exact equation for the conservation of mass 

and an empirical relation for the density dependence of the mass current. In that particular 

case, it was a concentration gradient that caused the flow of mass. When a shear force is 

the external perturbation, the result is a velocity gradient,  and this leads to a flow of 

momentum. What we’ll do now is derive an expression for the rate of flow of this 

momentum. The approach we’ll take is to again focus on an element of volume in the 

fluid of interest, account for all the ways momentum can pass into and out of it, and 

eventually end up with an equation for the conservation of momentum. We’ll then 

simplify this equation using empirical information on the relation between the flux of 

momentum and a gradient in the velocity.      

 

       So consider an arbitrary element of volume V  centered at the point r.  Let the mass 

density there be ),( tm r . Assume that this mass has the velocity ),( tru ; its momentum 

density, g(r,t),  is then given by 
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so the total momentum G(t) of the fluid in V is 
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The rate of change of this momentum is therefore  
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There are two contributions to this momentum change: (i) a so-called convective 

contribution originating in the direct transport of  g through the surface of V , and  (ii) a 

contribution that comes from the forces exerted on the surface of V by the fluid lying 

outside it.  

 

Turning first to the convective flow of momentum, consider an infinitesimal element of 

area Sd  on the surface of V. Since the fluid at r moves with the velocity ),( tru , the 

component of this velocity that flows out of V along the outward pointing normal at Sd  is 

),( td ruS   , so the rate of change of momentum density at r caused by fluid moving 

through Sd with the velocity ),( tru  is ),()],([ ttd rgruS  . So the total rate of change of 

momentum originating in convection is 

 

                            ),(),()],([
)(

tttdm
dt

td

conv

rruruS
G

S
                                            

 



 5 

                                          ),()],(),([ tttdm rruruS
S

                                               (16) 

 

In arriving at the second equality in (16), we used the fact that there is a third way of  

multiplying vectors together called the direct product. To illustrate this operation, 

consider two vectors A and B in three-space; by definition, their direct (or dyadic) 

product is 

 

                                     



















332313

322212

312111

BABABA

BABABA

BABABA

AB                                                       (17) 

 

where iA and iB , 3,2,1i , are the components of A and B along the Cartesian axes 

labeled 1, 2 and 3. This  definition of the direct product makes  AB a tensor. Tensors, like 

vectors, can be expanded in terms of their components. So, for example, a tensor T with 

components ijT  can be written as 
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where jiee ˆˆ  is the tensor known as the unit dyad. Unit dyads are ordered pairs of unit 

vectors that lie along specific Cartesian axes, as illustrated below for the unit dyads 32
ˆˆ ee  

and 23
ˆˆ ee .  
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It’s important to note that the order of the vectors matters; in general, 2332
ˆˆˆˆ eeee  . This is 

certainly the case for physical problems involving flow caused by the application of an 

external force; the flow along a given direction will often depend on which direction the 

force is applied from.                                        

 

         There are different ways of multiplying tensors with vectors and other tensors, but 

for now we’ll only be concerned with what’s referred to as the dot product of a tensor and 

vector. To define this operation, we note the following relations between unit vectors: 
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and  
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These relations make use of familiar identities involving the dot product of two vectors. 

Now if T is a tensor and v a vector, their dot product is defined as  
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so the dot product of a tensor and a vector is another vector whose ith component  (from 

the above relation) is the sum  

3

1j jijvT . We’ll eventually use this result to treat the 

expression for the rate of convective momentum flow in Eq. (16).             

 

          In the meantime, we’ll turn to the other contribution to dttd /)(G , which comes 

from the force acting on the surface of V. Assume that over the area dS, the force is dF. 

In some sense, the “ratio” of this force to the area is a pressure, except that since both dS 

and dF are vectors, the only way they can be related to each other is if dS is dotted into a 

tensor. In other words, it must be the case that  

 

                                                         σSF  dd                                                               (19) 

 

We’ll refer to the tensor σ  in this relation as the stress tensor. If the force and area had 

been scalars, then σ  would simply have been the usual isotropic pressure P.  

 

          From (19), we see that the total force F acting over S is given by 
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Combining Eqs. (15), (16) and (20), we obtain  
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From this relation it follows that 
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which is the equation for the conservation of momentum. Like the equation for the 

conservation of mass, Eq. (21) is also exact. We’ll later find an approximation to it that 

can be used to derive an expression for the shear viscosity.  

 

                        

 

  

 

                                                                                            

 

 

              

 

 

 

 

     

                                                           

 

                                                 

  


