IP326. Lecture 13. Thursday, Feb. 14, 2019

e The shear viscosity (Cont.’d)

It was argued earlier that the application of a shear force to a system in equilibrium
creates an asymmetry in its internal pressure. So it is this anisotropic pressure that is the
manifestation of the system’s response to the external perturbation, and that is, therefore,

the quantity analogous to the dynamical variable A in the relation y(t) o <A(t)B> for the

response function y(t). (We’ve already determined the structure of the variable B.) To

find a suitable structure for A, recall that we had asserted that the usual isotropic pressure
P that appears in thermodynamics could be expressed as the following equilibrium

ensemble average:
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Before writing down the generalization of this result for anisotropic systems, we’1l first
show how Eq. (1) is derived.

Under constant temperature conditions, P can be found from the relations

oF 0
i —‘(WL - kBT(W hQT.V. N))T,N

_keT(Q
- Q (avjm @

Here F is the Helmholtz free energy, V is the volume and Q is the canonical partition
function, which is given by
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where C, =1/h*"N! In order to differentiate Q with respect to V, we introduced the
change of variable q,, =V "°r
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a=X,Y,z in (3), which caused the transformed phase
space volume element to be multiplied by a factor of V" . But we also proved that phase
space extension is conserved, and the only way that can happen after the change from g
to r variables is if this V" factor is cancelled by a compensating factor of V™" . This is
easily accomplished if we now introduce another change of variable: p,, =V °r,,
a =X,Y,z.0nce we do this, the partition function Q becomes
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Therefore, after differentiating (4) with respect to V, we find that
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If we now transform Eq. (5) back to the original variables, we get
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which is the microscopic form of the isotropic pressure. The structure of this function
suggests that a quantity analogous to pressure and applicable to anisotropic systems can
be defined as follows:
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This is actually just one element of a 3x3 matrix, so in fact this anisotropic pressure is a
tensor, which from now on we’ll refer to as the pressure tensor, and denote P. The
ordinary pressure P is just the isotropic part of P, specifically

P=2 3P, ®

a=x,y,z

In the specific case of a shear force, where the shear is applied along the x direction,
the induced flow is along the y direction, and the xy component of P thus becomes non-
zero. It is this component that is observed to be proportional to the velocity gradient, the
proportionality constant being the shear viscosity. That is,
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So the shear viscosity can now be defined as
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where p,,(t) =p,,(T,t) is the analogue of the variable A(t), and the t — colimit is

introduced to ensure that the system has had enough time to eliminate transient behavior
and to settle into a steady state condition.

Now we had shown earlier that
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which can also be written as
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This quantity is therefore also related to the pressure tensor; specifically
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So on the basis of our linear response formalism, we can write

t

(P ®) =(Py), = BN [dt'(py (t-t)p,, (0)) (12)
0
But <pxy>0 is 0 (show this!). Using these results in (9), along with the stationarity

property of time correlation functions, we finally arrive at the following expression for
the shear viscosity

dt(p, ()P, ). (12)
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Formulas like (12) (and the analogous one for the self-diffusion coefficient D) are
referred to as Green-Kubo relations.



e Alternative derivation of the Green-Kubo relation for shear viscosity

Equation (12) can also be derived along the lines of our derivation of the self-
diffusion coefficient, which was based on an exact equation for the conservation of mass
and an empirical relation for the density dependence of the mass current. In that particular
case, it was a concentration gradient that caused the flow of mass. When a shear force is
the external perturbation, the result is a velocity gradient, and this leads to a flow of
momentum. What we’ll do now is derive an expression for the rate of flow of this
momentum. The approach we’ll take is to again focus on an element of volume in the
fluid of interest, account for all the ways momentum can pass into and out of it, and
eventually end up with an equation for the conservation of momentum. We’ll then
simplify this equation using empirical information on the relation between the flux of
momentum and a gradient in the velocity.

So consider an arbitrary element of volume V centered at the point r. Let the mass
density there be mp(r,t). Assume that this mass has the velocity u(r,t) ; its momentum

density, g(r,t), isthen given by
g(r,t) =mp(r,t)u(r,t) (13)

so the total momentum G(t) of the fluid in V is
G(t)=m Ldrp(r,t)u(r,t) (14)

The rate of change of this momentum is therefore
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There are two contributions to this momentum change: (i) a so-called convective
contribution originating in the direct transport of g through the surface of V, and (ii) a
contribution that comes from the forces exerted on the surface of V by the fluid lying
outside it.

Turning first to the convective flow of momentum, consider an infinitesimal element of
area dS on the surface of V. Since the fluid at r moves with the velocity u(r,t), the

component of this velocity that flows out of V along the outward pointing normal at dS is
—dS-u(r,t) , so the rate of change of momentum density at r caused by fluid moving

through dSwith the velocity u(r,t) is —[dS-u(r,t)]g(r,t). So the total rate of change of
momentum originating in convection is

dG(t)
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In arriving at the second equality in (16), we used the fact that there is a third way of
multiplying vectors together called the direct product. To illustrate this operation,
consider two vectors A and B in three-space; by definition, their direct (or dyadic)
product is

AB, AB, AB;
AB=|AB, AB, AB, (17)
AB,  AB, AB;
where Ajand B;, i=1 2,3, are the components of A and B along the Cartesian axes

labeled 1, 2 and 3. This definition of the direct product makes AB a tensor. Tensors, like
vectors, can be expanded in terms of their components. So, for example, a tensor T with

components T;; can be written as
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where €€, is the tensor known as the unit dyad. Unit dyads are ordered pairs of unit
vectors that lie along specific Cartesian axes, as illustrated below for the unit dyads é.,é,

and é,6,.
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It’s important to note that the order of the vectors matters; in general, é,é, = é,é,. This is
certainly the case for physical problems involving flow caused by the application of an
external force; the flow along a given direction will often depend on which direction the
force is applied from.

There are different ways of multiplying tensors with vectors and other tensors, but
for now we’ll only be concerned with what’s referred to as the dot product of a tensor and
vector. To define this operation, we note the following relations between unit vectors:
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These relations make use of familiar identities involving the dot product of two vectors.
Now if T is a tensor and v a vector, their dot product is defined as
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so the dot product of a tensor and a vector is another vector whose ith component (from
the above relation) is the sum ZLTHV ;- We’ll eventually use this result to treat the

expression for the rate of convective momentum flow in Eq. (16).

In the meantime, we’ll turn to the other contribution to dG(t)/dt, which comes
from the force acting on the surface of V. Assume that over the area dS, the force is dF.
In some sense, the “ratio” of this force to the area is a pressure, except that since both dS
and dF are vectors, the only way they can be related to each other is if dS is dotted into a
tensor. In other words, it must be the case that

dF=dS-o (19)

We’ll refer to the tensor o in this relation as the stress tensor. If the force and area had
been scalars, then ¢ would simply have been the usual isotropic pressure P.

From (19), we see that the total force F acting over S is given by
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force

Combining Egs. (15), (16) and (20), we obtain
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From this relation it follows that
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which is the equation for the conservation of momentum. Like the equation for the
conservation of mass, Eq. (21) is also exact. We’ll later find an approximation to it that
can be used to derive an expression for the shear viscosity.



