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IP326. Lecture 12. Tuesday, Feb. 12, 2019 

 

 

● The shear viscosity        

 

         One other transport coefficient that can be treated within the linear response 

formalism is the shear viscosity, a quantity that is a measure of the response of a system 

to the effects of an applied shear force. To subject a system to a shear force, one typically 

places the system between two plates, and then moves the plates parallel to each other in 

opposite directions. The rate at which the plates are pulled apart is called the shear rate, 

and is usually denoted  .   

 

          The application of a shear force in a certain direction (say, along the x-axis to be 

specific) changes the velocities of the layers of fluid lying between the two plates in the 

y-direction, the layers closest to the plates being the most affected, and those below 

progressively less so. These shear generated fluid flows are also chiefly directed along 

the x-axis since that is the direction the plates are moved. If arrows of different lengths 

are used to denote the direction and magnitude of these flows, then something like the 

pattern shown below will be created by the presence of shear:   
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If the strength of the shear force (as measured by  ) is not too high, it’s reasonable to 

assume  –  as the figure above suggests – that the fluid velocity v in the x-direction, xv , at 

a height y above the x-axis is proportional to y, the proportionality constant being given 

by  . So we can write  

 

                                                           xey ˆv                                                                  (1) 

 

where xê  is a unit vector along x. Let’s also assume that at some time t each particle in 

the fluid (out of a total of N), when subject to the given shear force, acquires an extra 

velocity (in addition to whatever velocity it happens to have in the absence of the force) 

of the form given by Eq. (1). The momentum of the ith particle then becomes 

xiyi eqm ˆp , where m is the mass of the particle, and iyq  is the y-component  of its 

position. The Hamiltonian of the system is therefore given by 
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In arriving at this expression for H, we’ve assumed that the contribution from the term 

quadratic in   can be neglected, since the shear force is weak. As written, H has exactly 

the same structure as the general linear response Hamiltonian introduced earlier, meaning 

H  can be written as )()()(),( 0 tFBHtH  , where  
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We also showed earlier that the function that appears in the time correlation function 

describing a transport coefficient is )(B . From (3), we see that )(B  is   
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where ii pF   is the force on particle i.  

 

           The nature of the response of a system experiencing the effects of   is contained 

in the function BtA )( , but the variable A(t) is still to be identified. We can identify it 

by noting that a shearing force creates an asymmetry in the internal pressure of the 

system, and that to describe this asymmetry, it becomes necessary to generalize the 

notion of pressure to allow for differences in its value in different directions. This 

generalized pressure is the pressure tensor, and its definition is based on the following 

definition of the conventional isotropic pressure P: 
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where as usual, the angular brackets denote an equilibrium ensemble average. Before 

proceeding from here to the pressure tensor, we need to understand where Eq. (5) itself 

comes from. To this end, consider the expression for P that one obtains from statistical 

thermodynamics in the canonical ensemble: 

 



 3 

                              
NT

B

NT

NVTQ
V

Tk
V

F
P

,,

),,(ln 
























                                       (6) 

 

where F is the Helmholtz free energy, V the volume and Q the canonical partition, which 

is given by 
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The volume dependence of Q is contained both in the Hamiltonian as well as in the limits 

of integration of the components of the coordinate variables; although often simply set to 

 , these limits, strictly speaking, only extend up to some linear dimension 3/1V of the 

container holding the system. The volume arising out of these integrations can be 

explicitly extracted by introducing the change of variables  ii rVq 3/1 , zyx ,, . This 

change of variables will, of course, alter d , but it should not, because as we’ll now 

prove, d  is a constant, a result that Gibbs described as the conservation of extension in 

phase space. What this means is that even though the phase space variables  NN qp ,   

may change (as they inevitably would when they evolve in time or when they are the 

subjects of a variable transformation), the phase space volume elements of the original 

and transformed variables still stay the same. That is, 
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This is equivalent to the statement that the Jacobian J of the transformation from old to 

new variables is unity. This is an important and non-obvious result, so it’s worth showing 

how it comes about. 

 

 

• Proof of the conservation of phase space extension  

 

By definition, the Jacobian J is given by 
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Let’s now rename the variables as follows: 
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with the primed variables renamed the same way. So in this new system of nomenclature,  

y’s with even subscripts refer to position variables, and y’s with odd subscripts refer to 

momentum variables. (Thus, for instance, ,11 xpy  ,12 xqy  ,13 ypy  ,14 yqy  etc.) In 

general, then, if jxj qy  , then jxj py 1 , and likewise for the primed variables. The 

elements of the Jacobian are therefore the derivatives 
j

i
ij

y

y
J
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a function of the ijJ . Which means that when the ijJ  are varied, the change, dJ, in J itself 

is given by 
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We can now see what happens to J as time evolves and the phase space variables acquire 

new values. First of all, at the initial time, 1J , because the old and new variables are 

the same. But at later times, the change in J is determined by 
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To proceed from here, we need to recall some facts about matrices and determinants, in 

particular the fact that the determinant D of an nn  matrix A whose elements are ija  is 

given by 
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where ijC is the cofactor of the element ija , a cofactor being defined as the signed  minor 

of ija , i.e., 
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with ijM , the minor of ija  , defined as the determinant of a sub-matrix of A obtained by 

eliminating the elements of A’s  ith row and jth column. From (12), we have the relation 
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Returning now to our expression for the time derivative of the Jacobian (Eq. (11)), we 

can use the above result (Eq. (14)), to write Eq. (11) as 
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where the symbol ijJ  stands for the cofactor of the i,j th element.  

 

         Let’s recall our naming convention for the elements of the Jacobian; within that 

convention 
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the y’s and y  ’s being either positions or momenta. If we now interchange the order of 

differentiations in (16) , the right hand side becomes ji yy  / . The variable iy   is the 

time evolution of the position or momentum of the ith particle, which is determined by 

Hamilton’s equations, which means that  
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when i is odd, and the minus sign when it is even (convince yourself of this!) So (16) now 

becomes 
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which we can rewrite using the chain rule as 
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If (18) is substituted into (15), the result is 
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which, after interchanging the order of summations, becomes 

 

                                          
  






N

i

N

k

N

j

kj

ij

ik

i JJ
yy

H

dt

dJ 6

1

6

1

6

11

2

)1(                                         (19) 

 

In the last sum in (19) (over j), when the index i equals k, the sum works out to be the 

determinant J (cf. Eq. (12)). But when the two are not equal, one can show  – although  

we won’t do it here – that sum works out to be 0. This means that 
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Putting this result back into (19), we find that 
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When (20) is re-expressed in terms of the original variables (positions and momenta), one 

sees that the terms in the sum occur in pairs of the following kind: 
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which is, of course, 0, so the entire sum in (20) vanishes, which means that 0/ dtdJ , 

and that J is independent of time. Since J started out at the value 1, it continues to remain 

unity thereafter. In other words, changes to the phase space variables leave the phase 

space volume element unchanged. 

                                                     

                                                          

              

 

 

 

 

     

                                                           

 

                                                 

  


