IP326. Lecture 12. Tuesday, Feb. 12, 2019

e The shear viscosity

One other transport coefficient that can be treated within the linear response
formalism is the shear viscosity, a quantity that is a measure of the response of a system
to the effects of an applied shear force. To subject a system to a shear force, one typically
places the system between two plates, and then moves the plates parallel to each other in
opposite directions. The rate at which the plates are pulled apart is called the shear rate,
and is usually denoted y .

The application of a shear force in a certain direction (say, along the x-axis to be
specific) changes the velocities of the layers of fluid lying between the two plates in the
y-direction, the layers closest to the plates being the most affected, and those below
progressively less so. These shear generated fluid flows are also chiefly directed along
the x-axis since that is the direction the plates are moved. If arrows of different lengths
are used to denote the direction and magnitude of these flows, then something like the
pattern shown below will be created by the presence of shear:

If the strength of the shear force (as measured by ) is not too high, it’s reasonable to
assume — as the figure above suggests — that the fluid velocity v in the x-direction, v, at

a height y above the x-axis is proportional to y, the proportionality constant being given
by 7. So we can write
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where €, is a unit vector along x. Let’s also assume that at some time t each particle in

the fluid (out of a total of N), when subject to the given shear force, acquires an extra
velocity (in addition to whatever velocity it happens to have in the absence of the force)
of the form given by Eqg. (1). The momentum of the ith particle then becomes

p; + myq,€,, where m is the mass of the particle, and g, is the y-component of its
position. The Hamiltonian of the system is therefore given by
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In arriving at this expression for H, we’ve assumed that the contribution from the term
quadratic in y can be neglected, since the shear force is weak. As written, H has exactly

the same structure as the general linear response Hamiltonian introduced earlier, meaning
H can be writtenas H(I',t) = H,(I') — B(I')F(t) , where
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We also showed earlier that the function that appears in the time correlation function
describing a transport coefficient is B(I') . From (3), we see that B(I') is
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where F, =p, is the force on particle i.

The nature of the response of a system experiencing the effects of y is contained
in the function <A(t)‘ B>, but the variable A(t) is still to be identified. We can identify it

by noting that a shearing force creates an asymmetry in the internal pressure of the
system, and that to describe this asymmetry, it becomes necessary to generalize the
notion of pressure to allow for differences in its value in different directions. This
generalized pressure is the pressure tensor, and its definition is based on the following
definition of the conventional isotropic pressure P:
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where as usual, the angular brackets denote an equilibrium ensemble average. Before
proceeding from here to the pressure tensor, we need to understand where Eq. (5) itself
comes from. To this end, consider the expression for P that one obtains from statistical
thermodynamics in the canonical ensemble:
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where F is the Helmholtz free energy, V the volume and Q the canonical partition, which
is given by
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The volume dependence of Q is contained both in the Hamiltonian as well as in the limits
of integration of the components of the coordinate variables; although often simply set to
+ oo, these limits, strictly speaking, only extend up to some linear dimension V*? of the
container holding the system. The volume arising out of these integrations can be

explicitly extracted by introducing the change of variables q,, =V*°r_, a =x,y,z. This
change of variables will, of course, alter dI', but it should not, because as we’ll now
prove, dI' is a constant, a result that Gibbs described as the conservation of extension in

phase space. What this means is that even though the phase space variables {pN ,qN}

may change (as they inevitably would when they evolve in time or when they are the
subjects of a variable transformation), the phase space volume elements of the original
and transformed variables still stay the same. That is,

dr =dr”’
This is equivalent to the statement that the Jacobian J of the transformation from old to

new variables is unity. This is an important and non-obvious result, so it’s worth showing
how it comes about.

« Proof of the conservation of phase space extension

By definition, the Jacobian J is given by
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Let’s now rename the variables as follows:
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with the primed variables renamed the same way. So in this new system of nomenclature,
y’s with even subscripts refer to position variables, and y’s with odd subscripts refer to
momentum variables. (Thus, for instance, y, = p,,, ¥, =0y, Yz = Py, Y4 =0y, €tC) In

general, then, if y, =q,,, then y,, =p,, and likewise for the primed variables. The
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a function of the J;;. Which means that when the J;; are varied, the change, dJ, in J itself
is given by

elements of the Jacobian are therefore the derivatives J;; = , and J can be considered
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We can now see what happens to J as time evolves and the phase space variables acquire
new values. First of all, at the initial time, J =1, because the old and new variables are
the same. But at later times, the change in J is determined by
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To proceed from here, we need to recall some facts about matrices and determinants, in
particular the fact that the determinant D of an nxn matrix A whose elements are a; is

given by
D= Zau ;»  i=lor2or3or---orn (12)

where C;; is the cofactor of the element a;;, a cofactor being defined as the signed minor
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with M, the minor of a;; , defined as the determinant of a sub-matrix of A obtained by

eliminating the elements of A’s ith row and jth column. From (12), we have the relation
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Returning now to our expression for the time derivative of the Jacobian (Eg. (11)), we
can use the above result (Eq. (14)), to write Eq. (11) as
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where the symbol J" stands for the cofactor of the i,j th element.

Let’s recall our naming convention for the elements of the Jacobian; within that
convention

@y _d oy (16)
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the y’s and y'’s being cither positions or momenta. If we now interchange the order of
differentiations in (16) , the right hand side becomes dy;/dy;. The variable y/ is the

time evolution of the position or momentum of the ith particle, which is determined by
oH
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when i is odd, and the minus sign when it is even (convince yourself of this!) So (16) now
becomes

Hamilton’s equations, which means that y/ = (-1)' , Where the plus sign holds
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which we can rewrite using the chain rule as
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If (18) is substituted into (15), the result is
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which, after interchanging the order of summations, becomes
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In the last sum in (19) (over j), when the index i equals k, the sum works out to be the
determinant J (cf. Eqg. (12)). But when the two are not equal, one can show - although
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Putting this result back into (19), we find that
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When (20) is re-expressed in terms of the original variables (positions and momenta), one
sees that the terms in the sum occur in pairs of the following kind:
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which is, of course, 0, so the entire sum in (20) vanishes, which means that dJ /dt =0
and that J is independent of time. Since J started out at the value 1, it continues to remain
unity thereafter. In other words, changes to the phase space variables leave the phase
space volume element unchanged.



