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IP326. Lecture 12. Thursday, Feb. 7, 2019 

 

 

● An alternative derivation of the self-diffusion coefficient        

 

         We showed earlier how an expression for the diffusion coefficient D (or the self-

diffusion coefficient sD )  could be obtained as a time-correlation function using the 

general formalism of  linear response theory. But in using this approach, we had to resort 

to a certain amount of hand-waving to get to the final result.  In this section, we’ll adopt a 

different, more rigorous method to derive the same result. Such methods are generally 

necessary when the effects of the external field that cause a response in the system are not 

readily incorporated into the Hamiltonian. This usually happens when the force (i.e., the 

perturbation) is not mechanical in origin but thermal. Thermal and other non-mechanical 

perturbations (such as temperature differences or concentration gradients) are what lead 

to transport processes like diffusion, viscous flow and heat conduction. Although we did 

find a way to treat diffusion within the Hamiltonian formalism (and will subsequently 

find a similar way to treat viscosity), the present formalism is more general.    

 

       Physically, diffusion is a process of mass (i.e., particle) redistribution, so consider 

what happens to some small volume of fluid V inside a much larger container of the fluid, 

as depicted in the figure below: 
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The surface enclosing V is a vector S centered around a point r. The surface area is a 

vector because perpendicular straight lines pointing in different directions can be drawn 

to each point on it, giving the surface a definite sense or directionality.  

 

           In the vicinity of each point r in the volume V, and at some instant of time t,  

assume that there is some density of particles ),( tr . In microscopic terms, what we 

mean by ),( tr  is the following:  
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where )(tir  is the location at time t of the ith particle (out of  a total of N), and the delta 

function is the continuum analogue of the Kronecker delta, and so acts like a counting 

device, registering a value (infinity, strictly speaking) whenever )(tir  is within the 

volume V, and returning a value 0 when it is not. For the purposes of the present 

calculation, we won’t need to refer to this definition again, but it’s worth bearing  in mind 

because it’s the definition that will be used in talking about density correlation functions 

later on.  

 

          Knowing the density of particles at r, we can determine the total mass M of 

particles in V at time t from the formula 
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where m is the mass of each particle, and the subscript  V on the integral denotes the 

restriction of the integration variable dr to the confines of the given volume. The change 

of M(t) with time is therefore given by  
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This change in mass is the result of the flow of particles into and out of V through the 

surface S, an infinitesimal element of which is shown below, along with the unit normal 

n̂ that indicates its orientation. 
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           The mass of fluid around r in the volume V  can be imagined to move with a 

velocity ),( tru  at time t, such that the rate of flow of mass density is ),(),( ttm rur . 

This flow is in the direction of the vector u. We’d like to know how much of this flow  

lies along the normal at dS; the answer is ),(),( ttmd rurS  . The negative sign is 

introduced to indicate that the flow exits V  when 0ˆ un  (thereby decreasing the 

number of particles in V) and that it enters V when 0ˆ un  (thereby increasing the 

number of particles in V.) The integral of ),(),( ttmd rurS   over the entire surface 

area is the change in the total mass with time. That is, 
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Equating (3) and (4), we get  

 

                                         ),(),(
),(

ttd
t

t
d

V
rurS

r
r

S








                                           (5) 

 

The integral on the RHS can be converted into an integral over r using Gauss’s 

divergence theorem, which leads to  
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Since this relation must hold for integrals over any arbitrary volume, it follows that 
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Equation (6) is simply the mathematical statement of the conservation of mass: any 

change in time of the mass of material in V is the result of the flow of material into or out 

of V. This relation is exact.  

 

       It’s possible to derive a more useful, but approximate, relation for the change in mass 

density with time if we invoke Fick’s law, which states that mass flows result from 

concentration gradients, and are directly proportional to them when the gradients are not 

too steep. According to Fick’s law then, 
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where D is the diffusion coefficient, the negative sign indicating that the flow proceeds 

from high to low concentrations. Substitution of (7) into (6) produces the diffusion 

equation, given by  
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Equation (8), although referring to the time evolution of the number density ),( tr ,  can  

also be re-interpreted as an equation for the probability rr dtG ),(  that a particle starting 

out from the point 0r at time 0 is located between r and rr d  at time t.  Writing this 

equation out explicitly, we have  
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the constant sD  now being identified with the self-diffusion coefficient.  

 

 

● Expressing the self-diffusion coefficient as a time correlation function 

 

         Starting from (9), we can relate sD  to measurable properties of the system. We 

proceed by first rewriting (9) in terms of Fourier transforms, the Fourier transform )(
~

kf  

of a function )(rf  being defined as )()(
~

rrk
rk fedf i 

 . When we apply this transform 

to (9), the result is  
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which, after integration by parts twice becomes  
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In arriving at this expression we’ve thrown away the surface terms, which involve the 

function ),( tG r  or its first derivative with respect to r evaluated at points infinitely far 

away from 0r ; since these terms are probabilities, their neglect is justified because we 

can assume that particles are unlikely to be found infinitely far away from their starting 

location in a finite period of time. Furthermore, given our initial condition on the particle 

position, which mathematically can be expressed as )()0,( rr G , it’s easy to show that 

the corresponding Fourier space initial condition is 1)0,(
~

kG . The solution of Eq. (10) 

is then immediately seen to be 
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from which we have the identity  
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The definition of ),(
~

tG k  as the integral ),( tGed i
rr

rk

  means that the right-hand side of 

Eq. (12) is given by   
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where   is the angle between k and r. A transformation of the variables in the above 

integral to spherical polar coordinates, with the z-axis in the Cartesian frame taken to lie 

along the direction of k, leads to the relation  

 

                               









0 0

2

0

222

02

2

),(cossin),(
~

 

 tGrddrdrtG
k k

rk                    (14) 

 

The integral over   in Eq. (14) produces a factor of 2 , while the integral over   , 

which is evaluated using the result (show this)   xxxdx 32 cos)3/1(cossin , produces 

a factor of 2/3. So (14) becomes 
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If ),( tG r  is assumed to be isotropic (meaning there’s no directional preference for the 

location of the particle, which is reasonable), Eq. (15) can be rewritten as  
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The integral on the right hand side is nothing but the definition of the average of the 

particle’s square displacement, and this result, along with Eq. (12), implies that  
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One of the ways self-diffusion constants are estimated is through Eq. (17), which can be 

rearranged to  ttDs 6/)(2
r . Reasonable estimates of sD  can be obtained from 

experiments or simulations of particle motion by taking the long-time limit of the ratio of 

the square of the distance travelled by the particle to the duration of its travel time. (The 

long time limit ensures that transient behavior has died out, and that the system is in 

steady, time-independent conditions.)  
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          Equation (17) also provides a way of expressing sD  as a time correlation function. 

To make the connection, one recognizes that a particle’s displacement r(t) in the interval t 

is related to its velocity v as    
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Consider the evaluation of 
1I . It is first simplified by changing variables from 

2t  to  , 

where 
12 tt  ; this leads to    
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Then by introducing a step function into the integrand (a step function )(z  being a 

function with the property that 1)( z if 0z  and 0)( z if  0z ), it is rewritten as  
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2I  is treated similarly. Using the time reversal symmetry of time auto-correlation 

functions, it is first written as  
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which, by relabeling 
1t  as 

2t  and 
2t  as 

1t , is seen to be identical to 
1I . Thus, from (18), 
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2 2)( It r , and from (17) and (19),  
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The last line follows from the assumption that the velocity auto-correlation decays 

quickly enough (in fact, in experiments and simulations it typically does so on the 

picosecond timescale) that no error is introduced by extending the upper limit t in the first 

integral to   and neglecting the factor of t/ . 

 

           Equation (20) is identical to the expression we’d derived for sD  from linear 

response theory.  

 

 

                                                              

 

                                    

                                               

 

                                   


