IP326. Lecture 12. Thursday, Feb. 7, 2019

e An alternative derivation of the self-diffusion coefficient

We showed earlier how an expression for the diffusion coefficient D (or the self-
diffusion coefficient D,) could be obtained as a time-correlation function using the

general formalism of linear response theory. But in using this approach, we had to resort
to a certain amount of hand-waving to get to the final result. In this section, we’ll adopt a
different, more rigorous method to derive the same result. Such methods are generally
necessary when the effects of the external field that cause a response in the system are not
readily incorporated into the Hamiltonian. This usually happens when the force (i.e., the
perturbation) is not mechanical in origin but thermal. Thermal and other non-mechanical
perturbations (such as temperature differences or concentration gradients) are what lead
to transport processes like diffusion, viscous flow and heat conduction. Although we did
find a way to treat diffusion within the Hamiltonian formalism (and will subsequently
find a similar way to treat viscosity), the present formalism is more general.

Physically, diffusion is a process of mass (i.e., particle) redistribution, so consider

what happens to some small volume of fluid V inside a much larger container of the fluid,
as depicted in the figure below:
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The surface enclosing V is a vector S centered around a point r. The surface area is a
vector because perpendicular straight lines pointing in different directions can be drawn
to each point on it, giving the surface a definite sense or directionality.

In the vicinity of each point r in the volume V, and at some instant of time t,
assume that there is some density of particles p(r,t). In microscopic terms, what we

mean by p(r,t) is the following:
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where r;(t) is the location at time t of the ith particle (out of a total of N), and the delta

function is the continuum analogue of the Kronecker delta, and so acts like a counting
device, registering a value (infinity, strictly speaking) whenever r,(t) is within the
volume V, and returning a value 0 when it is not. For the purposes of the present
calculation, we won’t need to refer to this definition again, but it’s worth bearing in mind
because it’s the definition that will be used in talking about density correlation functions
later on.

Knowing the density of particles at r, we can determine the total mass M of
particles in V at time t from the formula

M (t) =m Ldrp(r, t) )

where m is the mass of each particle, and the subscript V on the integral denotes the
restriction of the integration variable dr to the confines of the given volume. The change
of M(t) with time is therefore given by

dM (t) op(r,t)
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This change in mass is the result of the flow of particles into and out of V through the
surface S, an infinitesimal element of which is shown below, along with the unit normal
A that indicates its orientation.



The mass of fluid around r in the volume V can be imagined to move with a
velocity u(r,t) at time t, such that the rate of flow of mass density is mo(r,t)u(r,t).
This flow is in the direction of the vector u. We’d like to know how much of this flow
lies along the normal at dS; the answer is —mdS- p(r,t)u(r,t). The negative sign is
introduced to indicate that the flow exits V. when A-u>0 (thereby decreasing the
number of particles in V) and that it enters V when A-u<0 (thereby increasing the
number of particles in V.) The integral of —mdS- p(r,t)u(r,t) over the entire surface
area is the change in the total mass with time. That is,

% =-m LdS- p(r,tu(r,t) (4)
Equating (3) and (4), we get
Ldr% =— LdS- p(r,tu(r,t) (5)

The integral on the RHS can be converted into an integral over r using Gauss’s
divergence theorem, which leads to

Ldr[%+ v . p(r,t)u(r,t)} 0

Since this relation must hold for integrals over any arbitrary volume, it follows that

% =V, - p(r.t)u(r. 1) (6)

Equation (6) is simply the mathematical statement of the conservation of mass: any
change in time of the mass of material in V is the result of the flow of material into or out
of V. This relation is exact.

It’s possible to derive a more useful, but approximate, relation for the change in mass
density with time if we invoke Fick’s law, which states that mass flows result from
concentration gradients, and are directly proportional to them when the gradients are not
too steep. According to Fick’s law then,

p(r.u(r,t) =-DV, - p(r,1) ()

where D is the diffusion coefficient, the negative sign indicating that the flow proceeds
from high to low concentrations. Substitution of (7) into (6) produces the diffusion

equation, given by
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Equation (8), although referring to the time evolution of the number density o(r,t), can
also be re-interpreted as an equation for the probability G(r,t)dr that a particle starting

out from the point r =0at time 0 is located between r and r +dr at time t. Writing this
equation out explicitly, we have

oG(r,t)

= D,V2G(r,t) (9)

the constant D, now being identified with the self-diffusion coefficient.

e Expressing the self-diffusion coefficient as a time correlation function

Starting from (9), we can relate D, to measurable properties of the system. We
proceed by first rewriting (9) in terms of Fourier transforms, the Fourier transform 1?(k)
of a function f(r) being defined as f (k) = _|.dre""r f (r) . When we apply this transform
to (9), the result is

oG (K, t)
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which, after integration by parts twice becomes

% = -Dk*G(k,t) (10)

In arriving at this expression we’ve thrown away the surface terms, which involve the
function G(r,t) or its first derivative with respect to r evaluated at points infinitely far

away from r =0; since these terms are probabilities, their neglect is justified because we
can assume that particles are unlikely to be found infinitely far away from their starting
location in a finite period of time. Furthermore, given our initial condition on the particle
position, which mathematically can be expressed as G(r,0) = 6(r), it’s easy to show that

the corresponding Fourier space initial condition is é(k,O) =1. The solution of Eg. (10)
is then immediately seen to be

G(k,t) = exp(—k?D,t) (11)

from which we have the identity
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The definition of G(k,t) as the integral j dre™"G(r,t) means that the right-hand side of
Eq. (12) is given by

%é(k,t)‘kzo = [dr(ir cos )’ G(r,1) (13)

where @ is the angle between k and r. A transformation of the variables in the above
integral to spherical polar coordinates, with the z-axis in the Cartesian frame taken to lie
along the direction of k, leads to the relation
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The integral over ¢ in Eq. (14) produces a factor of 27, while the integral over 6 ,
which is evaluated using the result (show this) J' dxsin x cos® x = —(1/3) cos® x, produces
a factor of 2/3. So (14) becomes
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If G(r,t) is assumed to be isotropic (meaning there’s no directional preference for the
location of the particle, which is reasonable), Eq. (15) can be rewritten as
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The integral on the right hand side is nothing but the definition of the average of the
particle’s square displacement, and this result, along with Eq. (12), implies that

<r2 (t)> =6D,t (17)

One of the ways self-diffusion constants are estimated is through Eqg. (17), which can be
rearranged to D, :<r2(t)>/ 6t . Reasonable estimates of D, can be obtained from

experiments or simulations of particle motion by taking the long-time limit of the ratio of
the square of the distance travelled by the particle to the duration of its travel time. (The
long time limit ensures that transient behavior has died out, and that the system is in
steady, time-independent conditions.)



Equation (17) also provides a way of expressing D, as a time correlation function.

To make the connection, one recognizes that a particle’s displacement r(t) in the interval t
is related to its velocity v as

rt) = jdt’v(t’)

Therefore,
t
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Consider the evaluation of 1,. It is first simplified by changing variables from t, to 7,
where 7 =-t, +t,; this leads to
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Then by introducing a step function into the integrand (a step function 6(z) being a
function with the property that (z) =1if z>0 and 6(z) =0if z<0), it is rewritten as
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I, is treated similarly. Using the time reversal symmetry of time auto-correlation
functions, it is first written as
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which, by relabeling t, as t, and t, as t, is seen to be identical to I,. Thus, from (18),
(r*(t))=21,, and from (17) and (19),

D, :%idr(l—r/txv(r)-v(o»
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N % [dr(v(z)-v() (20)

0

The last line follows from the assumption that the velocity auto-correlation decays
quickly enough (in fact, in experiments and simulations it typically does so on the
picosecond timescale) that no error is introduced by extending the upper limit t in the first
integral to oo and neglecting the factor of 7 /t.

Equation (20) is identical to the expression we’d derived for D, from linear
response theory.



