IP326. Lecture 10. Tuesday, Feb. 5, 2019

e Time correlation functions and transport coefficients (Contd.)

We showed that a system whose response to a weak external force F(t) was causal,
linear and stationary generated a ‘signal’ S(t) (a measurable property of the system) that
was related to F(t) in the following way

S(t) = [dtx(t—t)F(t) (1)

where y(t) is referred to as a response function, which we expect to depend solely on the

intrinsic properties of the unperturbed (force-free) system, and not on the applied force.
Our objective now is to derive an expression for y(t) .

We’ve already argued that S(t) can be identified with the ensemble average of some
property A of the system that is measured a time interval t after the system — initially in
equilibrium at the temperature T — has been acted on by an external force at time t =0.
That is,

S(t) <> (A(t)) = j drA(D) f (T, 1) )

where

f([,t) = f,() + Af (t) (3)
We’ve also stated that the Hamiltonian H of the system can be approximated as

H(T',t) =~ Hy (1) - B(I)F(1), (4)

the subscript 0 in Egs. (3) and (4) referring to force-free conditions. In what follows,
we’ll take A and B to be real.

The time evolution of f is governed by the Liouville equation:
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which, on substitution of the approximations for f and H in (3) and (4), becomes
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where L, is the Liouville operator of the unperturbed system (the Hamiltonian of which
is H,.) In arriving at Eq. (7), we’ve neglected the term involving F (t)Af (t)on the
grounds that it is expected to be of higher order in the field than the terms we’ve retained.

Now we’d shown earlier that the equilibrium density distribution f, is time-

independent, and so of, /ot =0=—iL,f,. Further, if we assume that f, corresponds to
the canonical ensemble, then

of, of
-0 =- and —%=-
8ql ﬂfo aq| apl ﬁfo apl

and so

i{as_afo_as_afo}:_ﬁfoz{m o oH, a}B

i 0Py 00 0q; Op; aq; dp; dp; aq;
= [f,iL,B

Note also that iL,B(I") = B(I') . Putting all these results back into Eq. (7), we see that it
reduces to

OA) _ it af (1) + A, F(DB(D) ®)




Equation (8) is a first order linear differential equation in Af (t), which we can solve by

the method of integrating factors. This involves first multiplying both sides of the
equation by an as yet undetermined function of t, g(t). This leads to
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which we then rewrite identically as
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Since g(t) is arbitrary, we can choose it to eliminate the second term on the left-hand side
of Eq. (9). This choice leads to a simple differential equation for g(t) that we’ll solve
formally as

g(t) = g(0) exp(itL,)

This is a formal solution in the sense that L, is being treated essentially as a constant, and

not as an operator, but the approach gives the correct final answers, so we’ll ignore its
lack of rigor. With this solution for g(t) in hand, we can immediately integrate Eq. (9) to

Af (1)g(0)e"™ — Af (0)g(0) = A9 (0)j dt’e"™F (t")B(I) (10)

At the initial time t =0, the system is in equilibrium in the absence of the force, so
Af (0) =0, and Eq. (10), after rearranging terms, simplifies to

t
Af (t) = A, _[ dt'e "R F(t)B(I) (11)
0
Substituting Eq. (11) into Eq. (2), we find that

(A@) = [ drA(D)| f,(I) + ﬂj dt'F(t') f,(D)e "% B(T)

= j drA(D) f, () + ﬁj dt'F(t) j dr'f, (D) A(D)e V% B(I) (12)

From one of the operator identities derived earlier, Eq. (12) can be written as
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Comparing Eq. (13) with Eq. (1), and identifying (A(t))—(A), with S(t), we can
immediately see that
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which can also be rewritten identically as
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so as advertised, the response of a system to a weak external force is determined by a
time correlation function of the system’s intrinsic, force-free properties.

Equation (14), or its equivalent (15), can be thought as an example of a fluctuation-
dissipation relation, an equation between the response of a system, as contained in the
fluctuations of some of its dynamical variables, and the force responsible for it. The
reason the relation makes reference to ‘fluctuations’ is that time correlations of the above
kind actually do involve correlations between fluctuating quantities, as we can show.

What we mean by a fluctuation is the deviation of some property from its mean
value. If the properties in question are A and B, then their fluctuations at time t, 6A(t) and
oB(t), respectively, are given by

SAt) = A(t) - (A), and  8B(t) =B(t)-(B),
From these definitions it follows that

(BJA®), = (3B| M), +(3B)y(A), +(B)y (M), +(B)y(A),

Since equilibrium ensemble averages are time-independent, both (B)  and (JA(t)),

vanish, and since (B) (A), is time-independent too,
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So the response function really is associated with fluctuations, and it’s these fluctuations
that ultimately dissipate the effects introduced by the external force; hence the name
‘fluctuation-dissipation’.

» The diffusion coefficient

We’ll now illustrate how linear response theory allows us to relate transport
coefficients to one or more of a system’s dynamical variables. The transport coefficient
we’ll consider first is the diffusion coefficient, which is a measure of how quickly the
particles in a particular system are transported across space when their distribution is not
uniform, i.e., when there are concentration gradients in the system. These concentration
gradients are akin to an external force, and they cause mass to flow from regions of high
to low concentration. It’s been found empirically that the resulting ‘current’ is directly
proportional to the magnitude of the concentration gradient, a relation referred to as
Fick’s law, and usually written as

J=-DV,c(r,t) (16)

where c(r,t)is the particle concentration at r at time t, J is the current (a vectorial
quantity to account for the flow’s directionality), D is the diffusion coefficient, the
quantity we’re interested in deriving an expression for in terms of the intrinsic properties
of the system, and the negative sign is introduced to indicate that the flow is from high to
low concentration. (The units of J, D and c are, respectively, mol.m2.s?, m?s? and
mol.m3) We’ll derive this expression in two ways: one very heuristically, ignoring
mathematical niceties, but highlighting the connection to linear response theory, and the
other more rigorously.

In the heuristic approach, we interpret Fick’s law (Eq. (16)) as a relation between a
cause (the concentration gradient) and an effect (the particle current), so that J effectively
becomes the ‘signal’ we measure after we’ve applied the weak external field V c, which

we’ll now denote F(t) to indicate that it acts like a force. In this interpretation D is
proportional to the response function y(t) of the system. Since J is a current, we’ll

identify it with the steady average net velocity of a collection of particles, and we’ll also
assume, for specificity, that it is directed along the x-axis. This means that

3,0 =l 3 (4,) )

where g, (t) is the position of the ith particle at time t. The t — oo limit is introduced to

ensure that the system has had a long enough time to settle into regular reproducible
behavior.

In the language of the previous section, the current corresponds to the dynamical
variable A, and so
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The other dynamical variable B is linked to the force, which in the x direction we’ll
assume is given by Fé , where F is a constant and €, is a unit vector along x. The

precise connection between B and the phase space variables of the system can be
determined by considering the equations of motion of these phase space variables; they
are
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The structure of the second of these two equations suggests that the Hamiltonian of the
system is given by

N
H=H,-F>q,
j=1
This implies that the variable B is given by

B=Yq, (19)

i=1

Now in the unperturbed system, the flow of current is 0 (meaning, <A>0 =0), so from
Egs. (13), (18) and (19), it follows that
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The Boltzmann distribution over which the average in (20) is carried out factors into
contributions from individual particles, so <qix(t—t’)qjx>0 :5i'j<qix(t—t’)qjx>o. After
using this result in (20), along with the change of variable t'=t — 7, we get
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Had the current been directed along the y or z directions, the result would have been the
same except for a change of label, so we can write quite generally that

>(6,0) = L R [y (0, 0)-a), 22)

Finally, from Fick’s law and Egs. (17) and (22), we make the identification
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Since there’s no reason why, under equilibrium conditions, different particles should have
different velocity correlation functions, we can write Eq. (23) as

A S
D:N!mjgodwv(t)-v)0

where v now refers to the velocity of any one particle. Given this expression, it’s possible
to define a so-called self-diffusion coefficient D, as the value of D per particle. So D, is

given by
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It is this expression for D, that we will now rederive by a more rigorous approach.



