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IP326. Lecture 10. Tuesday, Feb. 5, 2019 

 

 

            

● Time correlation functions and transport coefficients (Contd.)    

 

       We showed that a system whose response to a weak external force F(t) was causal, 

linear and stationary generated a ‘signal’ S(t) (a measurable property of the system) that 

was related to  F(t) in the following way 
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where )(t  is referred to as a response function, which we expect to depend solely on the 

intrinsic properties of the unperturbed  (force-free) system, and not on the applied force. 

Our objective now is to derive an expression for )(t . 

 

        We’ve already argued that S(t) can be identified with the ensemble average of some 

property A of the system that is measured a time interval t after the system  – initially in 

equilibrium at the temperature T  –  has been acted on by an external force at time 0t . 

That is, 
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where  
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We’ve also stated that the Hamiltonian H of the system can be approximated as  
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the subscript 0 in Eqs. (3) and (4) referring to force-free conditions. In what follows, 

we’ll take A and B to be real.  

 

        The time evolution of f  is governed by the Liouville equation: 
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which, on substitution of the approximations for f and H in (3) and (4), becomes 
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Therefore, 
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where 0L  is the Liouville operator of the unperturbed system (the Hamiltonian of which 

is .)0H  In arriving at Eq. (7), we’ve neglected the term involving )()( tftF  on the 

grounds that it is expected to be of higher order in the field than the terms we’ve retained.  

 

       Now we’d shown earlier that the equilibrium density distribution 0f  is time-

independent, and so 000 0/ fiLtf  . Further, if we assume that 0f  corresponds to 

the canonical ensemble, then 
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and so 
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Note also that )()(0  BBiL  . Putting all these results back into Eq. (7), we see that it 

reduces to 
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Equation (8) is a first order linear differential equation in )(tf , which we can solve by 

the method of integrating factors. This involves first multiplying both sides of the 

equation by an as yet undetermined function of t, g(t). This leads to 
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which we then rewrite identically as 
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Since g(t) is arbitrary, we can choose it to eliminate the second term on the left-hand side 

of Eq. (9). This choice leads to a simple differential equation for g(t) that we’ll solve 

formally as 
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This is a formal solution in the sense that 0L  is being treated essentially as a constant, and 

not as an operator, but the approach gives the correct final answers, so we’ll ignore its 

lack of rigor. With this solution for g(t) in hand, we can immediately integrate Eq. (9) to 
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 At the initial time 0t , the system is in equilibrium in the absence of the force, so 

0)0( f , and Eq. (10), after rearranging terms, simplifies to 
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Substituting Eq. (11) into Eq. (2), we find that 
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From one of the operator identities derived earlier, Eq. (12) can be written as 
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Comparing Eq. (13) with Eq. (1), and identifying 
0

)( AtA   with S(t), we can 

immediately see that  
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which can also be rewritten identically as 
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so as advertised, the response of a system to a weak external force is determined by a 

time correlation function of the system’s intrinsic, force-free properties. 

 

         Equation (14), or its equivalent (15), can be thought as an example of a fluctuation-

dissipation relation, an equation between the response of a system, as contained in the 

fluctuations of some of its dynamical variables, and the force responsible for it. The 

reason the relation makes reference to ‘fluctuations’ is that time correlations of the above 

kind actually do involve correlations between fluctuating quantities, as we can show.  

 

        What we mean by a fluctuation is the deviation of some property from its mean 

value. If the properties in question are A and B, then their fluctuations at time t, )(tA and 

)(tB , respectively, are given by 
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So the response function really is associated with fluctuations, and it’s these fluctuations 

that ultimately dissipate the effects introduced by the external force; hence the name 

‘fluctuation-dissipation’.  

 

 

• The diffusion coefficient 

 

         We’ll now illustrate how linear response theory allows us to relate transport 

coefficients to one or more of a system’s dynamical variables. The transport coefficient 

we’ll consider first is the diffusion coefficient, which is a measure of how quickly the 

particles  in a particular system are transported across space when their distribution is not 

uniform, i.e., when there are concentration gradients in the system. These concentration 

gradients are akin to an external force, and they cause mass to flow from regions of high 

to low concentration. It’s been found empirically that the resulting ‘current’  is directly 

proportional to the magnitude of the concentration gradient, a relation referred to as 

Fick’s law, and usually written as  
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where ),( tc r is the particle concentration at r at time t, J is the current (a vectorial 

quantity to account for the flow’s directionality), D is the diffusion coefficient, the 

quantity we’re interested in deriving an expression for in terms of the intrinsic properties 

of the system, and the negative sign is introduced to indicate that the flow is from high to 

low concentration. (The units of J, D and c are, respectively, mol.m-2.s-1, m2.s-1 and 

mol.m-3.) We’ll derive this expression in two ways: one very heuristically, ignoring 

mathematical niceties, but highlighting the connection to linear response theory, and the 

other more rigorously.  

 

        In the heuristic approach, we interpret Fick’s law (Eq. (16)) as a relation between a 

cause (the concentration gradient) and an effect (the particle current), so that J effectively 

becomes the ‘signal’ we measure after we’ve applied the weak external field cr , which 

we’ll now denote F(t) to indicate that it acts like a force. In this interpretation D is 

proportional to the response function )(t of the system. Since J is a current, we’ll 

identify it with the steady average net velocity of a collection of particles, and we’ll also 

assume, for specificity, that it is directed along the x-axis. This means that  
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where )(tiq  is the position of the ith particle at time t. The t limit is introduced to 

ensure that the system has had a long enough time to settle into regular reproducible 

behavior.  

 

        In the language of the previous section, the current corresponds to the dynamical 

variable A, and so  
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The other dynamical variable B is linked to the force, which in the x direction we’ll 

assume is given by xeF ˆ , where F is a constant and xê  is a unit vector along x. The 

precise connection between B and the phase space variables of the system can be 

determined by considering the equations of motion of these phase space variables; they 

are 
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The structure of the second of these two equations suggests that the Hamiltonian of the 

system is given by 

 

                                                       



N

j

jFHH
1

0 q    

 

This implies that the variable B is given by 
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Now in the unperturbed system, the flow of current is 0 (meaning, 0
0
A ), so from 

Eqs. (13), (18) and (19), it follows that 
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The Boltzmann distribution over which the average in (20) is carried out factors into 

contributions from individual particles, so 
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using this result in (20), along with the change of variable  tt , we get   
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Had the current been directed along the y or z directions, the result would have been the 

same except for a change of label, so we can write quite generally that  
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Finally, from Fick’s law and Eqs. (17) and (22),  we make the identification 
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Since there’s no reason why, under equilibrium conditions, different particles should have 

different velocity correlation functions, we can write Eq. (23) as  
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where v now refers to the velocity of any one particle. Given this expression, it’s possible 

to define a so-called self-diffusion coefficient sD  as the value of D per particle. So sD  is 

given by 
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It is this expression for sD  that we will now rederive by a more rigorous approach.   

 

 

 

          

 

                

 

 

 

 

          

 

                                            


