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Knots and Links

K L Sebastian

Knots appear in a variety of contexts in physics,
chemistry and biology. This article is an intro-
duction to the science of knots and links for the
uninitiated and it outlines why scientists find
them fascinating.

1. Knotted Fish

Think of an organism that has four hearts, one nostril,
no stomach but with teeth on its tongue! This may seem
like creature out of a science fiction story, but a fish with
all these attributes exists. It is the hagfish, which is one
of the lowest forms of fish and is an archaic (very old)
form of life. It can secrete a thick slime on its skin, which
makes the fish very slippery to hold. Because of this,
it is also known as the slime eel. The hagfish usually
burrows into either dead or live fish and eats the flesh
and internal organs. It takes hold of the flesh using its
teeth and pulls it out. The most surprising thing about
the hagfish is that, if it needs extra leverage to pull the
flesh out, it loops itself into a knot and presses the knot
against the body of the prey, as shown in Figure 1. The
knot that it makes is known as the half hitch. If you
take hold of the hagfish, it would then secrete the slime
and use the knot mechanism to pull itself out. Once
free, the fish has to get rid of the slime, as otherwise, its
gills and nostril would be blocked with the slime and it
would suffocate. This too, it does, by moving the knot
from one end of it to the other. It can form not only the
half hitch, but also the figure eight knot. An old article
by Jensen, gives more details on the hagfish [1].

2. Mathematics of Knots

Every one of us has made the half hitch knot (see Figure
2) on a string. Mathematicians, however, prefer their
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Figure 1. The hagfish bites
into the prey, knots itself
up, and uses the knot for
leverage for pulling the
flesh out. (taken from refer-
ence [5]).
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Figure 2(left). The half
hitch, which is converted
into atrefoil knot by joining
thetwoendstoformaloop.
Figure 3 (center). The
unknot.

Figure 4 (right). The trefoil,
whichis denoted as 3, as it
has the crossing number
three.

Figure 5. Two dimensional
representation of the tre-
foil. Notethat at each inter-
section, the lower strand is
represented byalinethatis
broken.

knots to be loops. The reason is simple. Moving one of
the loose ends of the string in Figure 2 through the knot
can untie it easily. This can be avoided if the two ends
are joined together to form a loop. Then the knot is em-
bedded in the string for ever. The simplest such “math-
ematician’s knot” is obtained if one takes the two ends
of a straight string and joins them together to form a
simple loop, and this is called the unknot (see Figure 3).
The knot obtained by joining together two ends of the
knotted hagfish shown in Figure 4 is known as the trefoil.
It is the simplest nontrivial knot and has the interest-
ing property that it is not superimposable on its mirror
image. This means that if one had a substance, whose
molecules are made of a long chain, looped and knotted
to form the trefoil, then the substance would be opti-
cally active. The trefoil is a three dimensional object,
but it can be easily represented on two-dimensional pa-
per. Such a representation would have crossings, which
are represented by interrupting the line that represents
the lower strand (see Figure 5).

Two knots are considered equivalent (same) if one can be
deformed into the other. Obviously, one is not allowed
to cut the loop and rejoin. Thus the knot in Figure 6 is
equivalent to the unknot. A characteristic of a knot is
the crossing number. The unknot has no crossing, but
its equivalent representation shown in the Figure 6 has
ten crossings. The minimum number of crossing with
which a knot can be represented in two dimensions is
known as the crossing number. The trefoil thus has the
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crossing number three and is denoted as 3;. The figure-
eight knot (Figure 8) has four crossings and is denoted
by 41.

Two knots can be cut and joined to get a more com-
plex knot. The mathematician would say that the two
knots have been composed (multiplied!) to get a new
complex knot. An example is shown in Figure 7. Ob-
viously composing the unknot with any knot leaves the
knot unchanged. Thus, the unknot, among all the pos-
sible knots, is like unity (multiplicative identity) among
the set of integers N (remember 1 X n = n for any n €
N). Further, it may be possible to deform a knot such
that it is seen to be composed of simpler knots. A knot
that cannot be simplified in this fashion, is known as a
prime knot. Obviously, this is analogous to the prime
numbers which cannot be decomposed and written as a
product of two smaller primes. An interesting question
is: given a knot, does it have an inverse? That is, for a
given knot K1, do we have another knot K5, such that
the composition of K7 and K5 is the unknot? If such a
K5 exists, then it would be referred to as the inverse of
K. Interestingly, non trivial knots do not have inverses.

Knots are difficult to work with, and often, it can be
very hard to say whether two planar diagrams represent
the same knot or not. Therefore, mathematicians have
thought up clever ways for this purpose. They use the
knot invariants. The idea in introducing an invariant

Figure 6 (left). A knot
equivalent to the unknot.

Figure 7 (right). Compos-
ing two trefoil knotsto geta
squareknot.Obviously,the
square knotis not prime. If
onecomposed atrefoil knot
with its mirror image, the
result is a different knot,
known as the granny knot.

A knot that is not
composed of two
simpler knots is
known as a prime
knot.
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Figure 8. The figure eight
knot, which can be repre-
sented only withaminimum
of four crossings and is la-
beled as 4,.

Figure 9. A knot having the
same Alexander Polyno-
mial as the unknot. Both
have Alexander polynomial
equal to unity.
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is the following: Given any knot, one can calculate the
invariant, which is unique and is unchanged even if one
calculates it using a deformed version of the same knot.
Naturally a knot invariant remains unchanged if one per-
forms any kind of deformation on the knot. The knot
invariant could be a number or a polynomial. The first
example of a knot invariant is the Alexander polynomial,
discovered in 1927. The Alexander polynomial for the
trefoil knot is > — ¢ + 1 and the polynomial for 4; (the
figure-eight knot of Figure 8) is t* — 3t +1. As these two
polynomials are different one concludes that the knots
are different. The Alexander polynomial for the unknot
is equal to 1 (unity). A table of all the knots having up
to 9 crossings is given in the Appendix 1 of the book by
Livingston [14]. The Appendix 2 of the same book lists
the Alexander polynomial of each one of these knots.

The next to be introduced was the Jones polynomial.
This polynomial involves not only positive powers of Vi,
but negative powers too. Almost immediately after the
introduction of Jones polynomials, the HOMFLY poly-
nomial, was found independently by Hoste, Ocneanu,
Millet, Freyd, Lickorish and Yetter and it is named af-
ter them (there were others too, who invented the same,
but they published their results slightly later). However,
given a knot polynomial, it may not be possible to iden-
tify the knot uniquely. Thus the knot shown in Figure
9 and the unknot have the same Alexander polynomial
associated with them. The Jones polynomial is better
in this respect, but this too has the same problem. For
more information on polynomial invariants, see the arti-
cle by Sunder [2] in Resonance, or the books by Adams
[3] or Sossinsky [4].

In addition to knots, mathematicians also like to think
of links, the simplest example of which is the Hopf link,
shown in Figure 10. A more complicated link called
the Borromean link, which has three rings connected
together, is shown in Figure 11. The interesting thing
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about this link is that any two of the rings are not inter-
locked, while the three are. Thus cutting any one of the
rings causes the other two to fall apart. The link was
known from prehistoric times, but got its name from the
15th century Italian family Borromeo which used this
symbol extensively on crests and statues commissioned
by them. Interestingly, molecules with this kind of in-
terconnectedness have been synthesized [5]. See Figure
12 for three dimensional representation of the geometry
of such a molecule.

3. Knot Physics

Knots were taken up for serious scientific study first in
the field of physics. In the 19th century, physicists be-
lieved in all-pervading ether. Electromagnetic waves, of
which radio and microwaves and visible light are exam-
ples, were believed to be waves in the medium of ether,
in a fashion similar to sound waves, whose medium is
air. Ether was believed to be an ideal fluid. Helmholtz
had investigated flows in such fluids. In particular, he
analyzed vortices in such fluids and showed that vortex
tubes (collection of vortex lines) had to close up and
such closed loops of vortex tubes are quite stable. At
that time one knew nothing about atoms and there was
no evidence for their existence. Still, some scientists be-
lieved them to exist, though one had no idea of their na-
ture. In 1867, Thomson (who later became Lord Kelvin)
proposed that atoms were knots of vortex tubes in ether.
The existence of different elements would then be due to
the possibility of having different kinds of knots in three
dimensional space. Further, spectral lines observed in
the radiation from atoms could be due to vibrations of
these loops. These ideas were supported by Maxwell, the
founder of electromagnetic theory of light. The physico-
chemical properties of each element would then be due to
their different knotted-ness. This started off an attempt
at the problem of classifying knots by Tait. This is a
rather difficult problem, as it is usually very difficult to

Figure 10. A Hopf link.
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Figure 11.Two dimensioal
representation of Borro-
mean rings.

Figure 12. Three dimen-
sional representation ofthe
Borromean link.
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There are
1,701,935 knots
with 16 or fewer

crossings.

The probability that a
polymer molecule
composed of N units,
joined together at the
two ends to form knot,
is an unknot
decreases
exponentially with N.

say whether two knots are identical or not. Further, the
number of primary knots increase rapidly with the num-
ber of crossings. Thus there is only one knot with three
crossings (excluding mirror images), one with four, two
knots with five crossings, three with six and seven with
a crossing number of seven. Beyond this, the number
increases rapidly. Thus there are 12,965 knots with 13
or fewer crossings and 1,701,935 with 16 or fewer cross-
ings. However, soon due to the discovery of the electron
and the nucleus, one had a better understanding of the
structure of the atom and therefore physicists lost their
interest in knots. Surprisingly, this interest has been re-
vived in the recent past. This is because the theory that
is presently believed to be the most fundamental one is
the string theory, in which particles are considered to
be stringlike objects that are closed. A very interesting
idea is that such loops may be knotted [6]. This is very
much like the original idea of Thomson. Physicists seem
to have come around a full unknot (circle)!

At a more macroscopic level, knots have become impor-
tant in the area of polymer physics. Suppose one has a
large number of long chain molecules, which are present
in solution. Imagine now that the two ends of any given
molecule can react together to form a loop when they
come together. The result will usually be an unknot.
However, it is also possible that the result could be a
non-trival knot, like the trefoil. So, one can ask: what
is the probability that the loop will be an unknot? This
question has been answered by a recent simulation of
Windwer [7], who finds that it decreases exponentially
with the number of units in the polymer N. He finds
that it behaves like Ce ™", where 1 = 0.0051130.

Suppose one has the half-hitch of Figure 2. One takes
hold of the two free ends and pulls apart so that the
string breaks. Where would it break? The observation
is that the breaking occurs at the knot. Interestingly,

30

Vv\N\lV RESONANCE | March 2006



GENERAL | ARTICLE

Uim_’ o3

experimental observation of the dynamics of such break-
ing is easy with knotted spaghetti and therefore, physi-
cists have experimented with spaghetti [8]. At a more
fundamental level, there have been very interesting con-
nections discovered between statistical physics, quan-
tum field theory and knots. These are rather advanced
topics and we shall leave it to the interested reader to
pursue the literature [6].

4. Molecular Links and Knots

Chemists have long been interested in making linked
molecules. The first type to be made are called cate-
nanes. Catena is a Latin word, meaning chain. The sim-
plest of these is the [2]catenane which has the topology
of the Hopf link. Chemists use the [2] to indicate that
two rings have been linked together. The first catenane
was synthesized by Wasserman. The way in which they
were prepared is the following: One first makes a ring
molecule which is big enough that a second linear chain
molecule can thread through it. Then the two ends of
the linear molecule are joined together. The molecules
that are threaded through the ring at the time of closing
will lead to the [2]catenane. Such synthesis has been
facilitated by templating — that is, one uses a species
(invariably a metal ion) around which two long chain
molecules will wrap around as in Figure 13 [9]. Then
the ends of the two chains are closed to obtain a [2]cate-
nane. This elegant synthesis was performed by the group
of Sauvage [9]. Several catenanes have been synthesized
and are of considerable interest, because many of them

Figure 13. Templated syn-

thesis of [2]catenane.

‘Templating’ can
be used efficiently
to synthesize
molecules that are
knotted/linked.
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Figure 14. Templated syn-

thesis of trefoil.

The synthesis of
molecular
Borromean ring [5] is
a beautiful
demonstration of the
use of molecular
modeling in synthetic
organic chemistry.
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have been designed to perform as molecular devices. For
a description of such interesting applications, see chap-
ter 5 of the recent book on nanotechnology [10].

The same kind of strategy has been used to obtain a
trefoil knot (see Figure 14) [9]. One of the most inter-
esting molecules that has recently been made is a mole-
cule analogous to the Borromean link, shown in Figure
12. The synthesis of this molecule is a beautiful demon-
stration of the power of theoretical modeling as an aid
to the chemist. Usually, synthesizing an organic mole-
cule would involve a large number of steps. The more
steps one has, the lower would be yield of the final de-
sired product. The system was first designed on the
computer so that it would tend to self assemble in the
desired form. The use of metal ions was crucial for this.
The molecule could be made in one step (chemists call
this as one pot synthesis) with high yield. Figure 15
gives an idea of the strategy adopted. The reader may
refer to the original article for more details [5]. Obvi-
ously more synthetic challenges remain. For example,
how would one synthesize a molecule with topology of
figure eight knot shown in Figure 87
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Borromean Rings

Interestingly, naturally occurring DNA can be knotted.
Knotting would reduce the size of the molecule in solu-
tion, as a result of which the molecule, in general, can
diffuse faster. A lot of interesting work has been done
with DNA and the first Borromean type link has been
made with DNA [11]. Living cells have enzymes known
as topoisomerases that can knot and unknot DNA.

5. Drawing and Experimenting with Knots and
Links

A computer programme called KnotPlot, for drawing
knots is available for free. Using it, one can draw and
experiment with knots and links. It can be downloaded
from http://knotplot.com. It is developed and main-
tained by Robert G Scharein. Using it one can draw
two dimensional representations of knots/links. In ad-
dition, it has a catalogue of knots and other interesting

Figure 15. Templated syn-
thesis of the Borromean
rings. The red circle is a
metal ion (in actual syn-
thesis, Zn?* ions) which
acts as atemplate causing
the rod like and bow like
parts (molecules) to
assemble in the correct
orientation, thus facilitat-
ing the synthesis. For de-
tails see the reference [5].

KnotPlot is an
interesting software
which can be used to
play with knots. All
the knots in this
article were drawn
using KnotPlot.

objects.
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An elementary
introduction to
knots may be
found in the book
by Sossinsky [4]
for which an Indian
edition is available.

Once drawn, the knot’s shape in three dimensions can
be changed, so that it has the optimum shape (based
upon an energy criteria that one can choose). The pro-
gram can also calculate the HOMFLY polynomial. All
the knots/links shown in this article have been drawn
using this software. To determine whether a given two-
dimensional representation of a knot is equivalent to the
unknot is a rather tedious thing to find out manually.
For not too complex knots, this can be easily done using
the KnotPlot. All that is needed is to draw it using the
software, and then allow the knot’s shape to change dy-
namically. One can imagine that the knot is immersed
in a liquid and its shape is allowed to change so that
it has the least energy. The resultant shape, usually is
simpler. The reader is urged to try the following exer-
cise using the software: Draw the knot in Figure 6 using
KnotPlot and evolve it to show that it reduces to the
unknot.

Further Reading

Plenty of information on knots and links is available on
the web. Interesting and more recent information as
well as movies of the hagfish too can be found. A few
elementary books on knots are available, of which the
most interesting is the book by Adams [3]. It contains a
lot of material and is written for the uninitiated. It even
has knot jokes and pastimes. An even more elementary
level book is the one by Sossinsky, for which an Indian
edition has come out [4] recently. But it contains far
fewer topics than the book by Adams. In Resonance
itself, there has been an article on the mathematics of
knots by Sunder [2]. An intermediate level book is by
Livingston [14]. At a more advanced level is the book by
Kauffman [12], who has made significant contributions
to knot theory. A brief and concise introduction to knots
is given in the book by Kleinert [13], but it is by no
means elementary.
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V [ TheTurk’s-Headisatubular knot that isusually made around acylindrical
J object, such asarope, astanchion, or arail. It isone of the varieties of the
| i Binding Knot, and serves a great diversity of practical purposes but it is
| — |

perhaps even more often used for decoration only; for which reason, it is
usually classedwith“fancy knots.” Representationsof the Turk’s-Head are

often carved in wood, ivory, bone, and stone.

Clifford W Ashley in The Ashley Book Of Knots
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