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IP326. Lecture 4. Tuesday, Jan. 15, 2019 

 

         The 1-d harmonic oscillator is one of the few systems for which the phase space 

trajectory can be worked out in complete detail. We can’t expect to do likewise for an N 

particle system in 3-d, which would involve finding the solutions to 6N coupled 

differential equations, an essentially impossible task. We can at best, therefore, hope to 

develop a statistical description of the system’s dynamics, which means doing no more 

than stating how likely the system is to be in some microstate at time t, if it had started 

out in some other microstate at time 0. But how do we do even this? 

         The answer is to adopt Gibbs’s ensemble approach, which focuses not on the single 

thermodynamic system of interest, but on a large collection of replicas of this system, 

each one of which at some instant of time t is macroscopically identical to every other, 

but is generally different from them microscopically. Thus, if the given system were 

prepared at certain values of, say, T, V and N, every other member of the ensemble would 

share exactly the same values of these parameters, but they would, in general, occupy 

different microstates. The figure below is a schematic sketch of a few of the replicas in 

such a system: 
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where MiNNi ,,2,1},,,,,,{ 11   ppqq . Because the ensemble is large (i.e., 

)1M , it contains a distribution of microstates, meaning at a given time t some 

number of all the microstates are in one particular microstate, some other number are in 

another microstate, and so on for all the systems in the ensemble.  

 

        Consider this ensemble in phase space. Schematically, it might look something like 

this at some instant of time: 

 

 

  

                                                                                                                                                                  

                                                                                                                                                  

                                                                                                          

                                                                                             

                                                                                             

                                                                                        

                                          

                                                  

The box in the middle of the figure represents a hypercube in phase space; its volume is 
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N
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 , and at that instant of time it contains some number of the 
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members of the ensemble. Let’s assume the box is located at the phase point 

},{},,,,,{ 11

NN

NN pqppqq   , where the density of phase points is  

),,( tNN
pq  . If dn  denotes the number of phase points in the given volume 

(assumed to be small, hence the infinitesimal notation), we have the relation 

 

                                               NNNN ddtdn pqpq ),,(                                                   (1) 

 

and if we added up these numbers in all such volume elements, we’d find that                                                

  Mddt NNNN
pqpq ),,( .   Since M is a number that we can’t really fix (we only 

know it has to be large), it’s convenient at this point to introduce the function 

Mttf NNNN /),,(),,( pqpq  , which represents the fraction of the ensemble that have 

the density ),,( tNN
pq . The advantage of working with f is that it is normalized to 

unity: 

 

                                                   1),,( NNNN ddtf pqpq                                                (2) 

 

and it can therefore also be interpreted as a probability density function.  

         Now as time evolves, the positions and momenta at all these phase points will 

evolve too, in accordance with the Hamiltonian equations of motion: 
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So all the microstates (phase points) i in our ensemble move as well. And as they follow 

their individual trajectories, some of them will enter the box, and some will leave, 

changing the number that were there originally. The situation that has to be imagined 

looks a bit like this: 
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which might lead to a situation like this: 
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We’ll now try and determine how the number of microstates in the given phase space 

volume element changes with time. For this purpose it helps to first consider a system 

consisting of just a single particle in 1-d. The phase space of this system is 2-dimensional, 

and a phase “volume” element in this space is a rectangular area. If the width of the 

rectangle along q is dq and that along p is dp , the relevant volume element is as shown 

below: 
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Now consider the left face of this rectangle where q is fixed at the value 2/dqq  . In an 

interval of time dt , the number of systems in the ensemble that enter the rectangle 

through this face is  

 

 (density of phase points at 2/dqq  )  (width of face)  (rate of change of q at 

2/dqq  )  dt  
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In the same interval of time, some number of systems in the ensemble leave the rectangle 

through the opposite face, at 2/dqq  . That number is 

 

                   dttpdqqqdptpdqq  ),,2/();,2/(   

 

           dtdqO
q

qdq
tpqqdpdqO

q

dq
tpq 



























 )(

2
),,()(

2
);,( 22 




  

 

            dtq
q

dqdpdt
q

q
dqdpdtqdp 

















2

1

2

1
                                                    (5) 

 

So the net inflow of systems into the rectangle through these two opposite faces in dt is 

the difference between Eqs. (4) and (5), which is 
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In exactly the same way, we can determine the flux of systems entering the rectangle 

through the face 2/, dppq   and the flux of systems leaving the square through the 

opposite face 2/, dppq  . And as a result of these fluxes, we find that the net number of 

systems pdn that have entered the rectangle in the interval of time dt  is 
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Adding Eqs. (6) and (7), we get the total number of systems that have entered the 

rectangle in the time dt . And the rate of change of this number  with time is 
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the subscript 2 denoting the fact that we’re dealing with a phase space of 2 dimensions.  

 

        This 2-dimensional example should make it obvious what the corresponding result 

will be for a system consisting of N particles in 3 dimensions; it is  
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where the dot products have their usual meaning.   

 

         Recall that the positions and momenta in the above equation are governed by 

Hamilton’s equations, and so 
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which is 0 because mixed partial second derivatives are equal. Using this result in Eq. (9), 

along with Hamilton’s equations, and then dividing both sides of the equation by 
NN dMd qp , we find the following result (after recalling the definitions of f  and  ): 
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This is the Liouville equation, and it is one of the key equations of time-dependent 

statistical mechanics. It is usually written in the following operator form 
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where i is the square root of -1, and L is the so-called Liouvillian, defined as   
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L is purely imaginary. The factor of i in the definition of the Liouvillian is entirely a 

matter of convention, but its introduction makes it possible to connect with various 

results in quantum mechanics. Equation (12a) is also often rewritten in the following 

shorthand notation: 
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          We’ll soon use the Liouville equation in the averages that define time correlation 

functions, but before we do that, we’ll quickly derive an equation in f that gives us an 

idea of what its time evolution physically means. For this purpose, consider Eq. (10), and 

rewrite it as follows: 
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Now recall that ),,( tff NN
pq , so if we make infinitesimal changes to the independent 

variables in this relation, we find that 
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If we divide this equation by dt and then use Eq. (13) in the result, we end up with  
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This tells us that the fractional phase space density in the neighbourhood of any selected 

moving phase point is a constant along the trajectory of that phase point (McQuarrie.) So 

the cloud of phase points moves like a flowing incompressible liquid. Note that the partial 

derivative of f with respect to t, tf  / , is not 0, meaning at a fixed location in phase 

space f can change its value.  
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• Time Evolution of Dynamical Variables 

 

           Having found how the density distribution function f evolves in time, we’re now in 

a position to determine how dynamical variables evolve in time. But we first need to 

understand a few other things about the Liouville equation and the Liouville operator. 

Recall that   
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Now if L were an algebraic quantity, independent of t, we could easily solve the above 

equation for a definite interval of time between, say, 0t  and tt  ; the solution would 

read 
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where );()(  tftf and )()0(  ff . Even though L is actually an operator, we’ll 

continue to regard Eq. (16) as the formal solution of the Liouville equation, with the 

understanding that iLte  is always to be interpreted in terms of the series expansion of the 

exponential. In other words,  
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With this understanding, we can write down some formal expressions for the time 

dependence of dynamical variables. Consider one such variable, say, B. We’ll assume 

that B is not explicitly a function of time, but depends on time through its dependence on 

positions and momenta. So, in general, we can write  

 

                                     ))(())(),(()( tBttBtB NN  pq   

 

If we now use the chain rule to differentiate this equation with respect to time, we obtain 
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where we defined the operator  /  in (12b). Referring to that equation, we see that 
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and so formally, 
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                                                 )0()( BetB iLt                                                                (19) 

 

where );()(  tBtB   and )()0(  BB . 

 

       Equations (16) and (19) will be important in the derivation of expressions for phase 

space averages of dynamical variables.   

 

   

 

 

 

 

                          


