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IP326. Lecture 3. Thursday, Jan. 10, 2019 

 

 

Having seen how to extremize functionals in Lecture 2, we’re now in a position to apply 

the procedure to the expression for the action S, which you’ll recall is given by 

 

                                               
2

1

),,,,,( 11

t

t

NNdtLS ppqq                                           (1) 

 

The extremization of S leads to these conditions on the positions and velocities:  
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which are the so-called Euler-Lagrange equations. In 3-d they lead to 3N  second order 

differential equations, and if these equations are supplemented by 6N  initial conditions 

on the positions and velocities, they can in principle be solved. (When the coordinates are 

Cartesian, the   refer to x, y and z components.) 

 

As an illustration of the application of the above Lagrangian formalism to a specific 

system, consider the dynamics of a single mass point in 3-d in the presence of a 

conservative potential (i.e., a potential that depends only on positions, not velocities.) 

When Cartesian variables are used to describe the system, the kinetic and potential 

energies are given by 
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and       
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After constructing the Lagrangian of this system as VKL  , and then extremizing the 

associated action following the methods just described, the resulting E-L equations are 
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which are nothing but Newton’s laws. The important point to note here is that the form of 

the dynamical equations – as given in Eq. (2) – are not changed by the use of non-

Cartesian coordinates.  

 

 

 



 2 

● Hamiltonian Dynamics 

 

        Although Lagrangian dynamics removes the special status that Newtonian 

mechanics attaches to Cartesian coordinates, it can still be difficult to apply because the 

second order differential equations that describe its equations of motion aren’t always 

easy to solve. So Hamilton developed another formulation of classical mechanics based 

on first order differential equations. His approach also takes the Lagrangian L as its 

starting point, but replaces the independent variables iq  in that expression by new 

independent variables ip  called generalized or conjugate momenta, and defined as the 

slope of L with respect to iq . That is,  
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The new function H that has ip  and 
i

q  as the independent variables instead of iq  and 

iq  is defined as follows 
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H, referred to as the Hamiltonian of the system, is said to be the Legendre transform of L 

with respect the 3N iq , and it becomes a function solely of the ip  and iq  once the iq  

are eliminated from (5) using the definitions in (4).  

 

         We’ve encountered Legendre transforms before, most notably in thermodynamics, 

where they are used to define new thermodynamic potentials that contain the same 

information as the so-called fundamental equation, this equation being a relation between 

the energy U of a system and its entropy S, volume V and number of particles N, i.e., 
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This is a fundamental equation in the sense that knowing this equation, one knows 

everything one can know about the thermodynamics of the system. But because the 

independent variables in this equation aren’t always the most easy to control in 

experimental settings (S in particular), it helps to have equivalent representations of this 

equation in which the independent variables are more experimentally accessible, like 

temperature or pressure. Now T is just the slope of U with respect to S, i.e., 

NVSUT ,)/(  , and we can construct a new function, say, F, that has T as an 

independent variable in place of S by means of the Legendre transform. The definition of 

this new function is 
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and you will, of course, recognize it as the definition of the Helmholtz potential. F                                          

becomes a function of T, V and N once S is eliminated from (7) using U from (6) and the 

definition of the slope. Once that’s done we have ),,( NVTFF  , which is also a 

fundamental relation, and all the thermodynamic properties of a system can be derived 

from this relation too. (To understand why the Legendre transform has the definition it 

has, read Sec. 5-2 in Callen.) 

 

More than one variable in the fundamental equation of (6) can be eliminated in favour of 

the corresponding slopes; for instance, both S and V can be eliminated from (6) in favour 

of T and P, where P, the pressure, is given by 
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To construct a function (say, G) with T and P (and N) as the independent variables and 

that is equivalent in content to Eq. (6), we Legendre transform U with respect to S and V 

according to the definition  
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which identifies G as the Gibbs potential. G becomes a function of T, P and N , i.e., 

),,( NPTGG  , once S and V are eliminated from (6) and (9) using the definitions of T 

and P.  This expression for G is also a fundamental relation, and it also tells you 

everything you can know thermodynamically about the system.  

 

● In the same way, the Hamiltonian of Eq. (5) is equivalent to the Lagrangian but is 

expressed in terms of new independent variables: 
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What are the equations of motion that we derive from this function? To keep things 

simple, let’s first consider the case of a system with just a single particle; according to our 

definition of the Legendre transform we have  
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Suppose we now make infinitesimal changes to the variables p, q, q  and t; then the 

change in H is given by 
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Since L depends on q, q  and t, the amount it changes by, dL, is 
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Substitute (12) into (11) to get 
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Recall the Euler-Lagrange equation: 
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In terms of the conjugate momentum p, this reduces to 
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and so Eq. (13) becomes 
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Now, in general, as we’ve seen, ),,( tqpHH  , so changing its independent variables by 

infinitesimal amounts leads to  
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Comparing (14) and (15), we can make the identifications 
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These are the Hamiltonian equations of motion.  
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● The generalization of these equations to a system of N particles in 3d is 

straightforward; the new conjugate momentum variables are 

 

                                 zyxNi
q

L
p

i

i ,,,,,1, 



 



 


                                          (17) 

 

and the Legendre transform of L with respect to the iq  is now defined as  
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Changing the variables in this expression by infinitesimal amounts, and following the 

same steps as before, one can show that the equations of motion are now given by 
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These correspond to 6N first order differential equations, and if one is given 6N initial 

conditions on the positions and momenta, these equations can be solved, in principle, for 

any future time t. These first order equations are often easier to solve than Lagrange’s 

second order equations. 

 

It is the Hamiltonian form of the equations of motion that we will appeal to in our study 

of time-dependent statistical mechanics because they are expressed in terms of the 

variables – positions and momenta – that are used to specify the microstates of a system.    

 

 

 

● Phase Space Dynamics    

 

          Recall that to calculate a time correlation function we said we needed expressions 

for the probability )(P  and the function );( tA . We now know how the positions and 

momenta of individual particles in a system evolve in time, and now we’d like to know 

how the system as a whole, consisting of N particles, evolves in time. That is, we’re 

interested in the fate of the microstate },,,,,{ 11 NN ppqq   as time progresses. 

 

         In the 6N dimensional space that defines phase space, the microstate   is a single 

point at a given instant of time. At some later time, the positions and momenta assume 

new values, and so   moves to a new point in phase space. As time continues to 

advance, the successive points in phase space that correspond to the new locations of   

trace out a trajectory called the phase space trajectory. This trajectory is uniquely 

determined by the microstate at the starting time because the equations of motion of the 

s'ip  and s'iq  are deterministic. In other words, two points in phase space with distinct 
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initial conditions produce distinct non-intersecting trajectories. The trajectories don’t 

intersect because if they did it would mean that from the point of intersection onwards, 

the trajectories would end up in different final states, which contradicts the uniqueness of 

the solutions to the equations of motion.  

 

         The figure below is a schematic drawing of a phase space trajectory that evolves 

from some microstate at 0t  to one at tt  . 
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● Example of a phase space trajectory 

 

        There is one system for which the phase space trajectory can be determined exactly: 

this is a single harmonic oscillator in 1d, and it’s instructive to work through the details of 

its dynamics. A harmonic oscillator is any object that moves back and forth about an 

equilibrium position with a constant amplitude and a constant frequency (which is 

independent of the amplitude.) When displaced from its equilibrium position, a harmonic 

oscillator experiences a restoring force F that is linear in the displacement. That is, 
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where k is a constant that is a measure of how strong the tendency is for the oscillator to 

be restored to its original position. If we were to use Newton’s laws to describe the 

dynamics of the oscillator, we would work with the following equation: 
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which is easy to solve, but we’ll consider these dynamics from the point of view of 

Hamiltonian mechanics. For this purpose, we’ll need the system’s Lagrangian, which in 

turn requires expressions for the kinetic and potential energies of the oscillator. The 

kinetic energy K  is given by the familiar relation 
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The potential energy V is related to F by the equation xVF  / , and so by integration 

we obtain  
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The Lagrangian is therefore 
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The corresponding Hamiltonian H is obtained using a Legendre transform to eliminate x  

in L in favour of  its conjugate variable xmxLp   / . From the definition of 

Legendre transforms we have  
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We can now determine the equations of motion; they are  
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These are two first order ordinary differential equations, and once we specify their initial 

conditions (which correspond to assigning definite values to x and p at 0t ), they’re 

readily solved for x and p as a function of t. But we’re more interested in the system’s 

phase space trajectory (the variation of p with x), and it turns out that to calculate this 

function we don’t really need to explicitly solve the equations of motion. What we do 

instead is the following: first rewrite the equations of motion as 
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and 
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Then divide one equation by the other, to get 
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This equation can be solved by first separating the variables as  
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and then integrating, which leads to 
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where C is a constant of integration. This equation can be rearranged to 
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From the structure of the LHS of this equation, it’s obvious that the integration constant 

C  is nothing but the total energy of the system U.  That is, 
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This is the required equation for the phase space trajectory, and it corresponds to the 

equation of an ellipse, which is defined as 
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So the phase space trajectory will look like this  
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But this trajectory also has a direction associated with it, meaning the phase points move 

in either a clockwise or anti-clockwise direction as time increases at fixed U.  Which of 

these two directions is selected can be worked out. Imagine displacing the oscillator from 

its equilibrium position to its maximum extension in the positive (rightwards) x direction. 

When it reaches this point, its velocity is 0, and the phase point corresponding to this 

situation is shown as the black dot on the figure above. If the oscillator is now released, it 

starts moving to the left, that is, in the negative x direction, so its velocity decreases. This 

particular direction corresponds to a clockwise movement of the phase point along its 

elliptical trajectory.  

 

A few points to note: The constant energy U of this oscillator represents its macrostate, 

while every point on the ellipse represents one of its possible microstates having this 

energy. The phase space trajectory of an oscillator with a different energy, say UU  , 

would follow a different elliptical trajectory, but it would be concentric with the first 

(since phase space trajectories cannot intersect.) Specifically, 
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The shape of these trajectories makes it clear that no matter where the system starts out 

from initially, eventually it returns to its starting point, which is what you would expect 

of an object that executes periodic motion. The time it takes to do this can be calculated 

from the actual solutions to the equations of motion (which are trigonometric functions.)  


