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IP326. Lecture 2. Tuesday, Jan. 8, 2019 

 

 

●  After the long introductory remarks of Lecture 1, we’re finally in a position to say 

something definite about the kinds of questions  that time-dependent statistical mechanics 

will try and address. The first thing to recognize is that time-dependent statistical 

mechanics, like its time-independent counterpart seeks to understand the results of 

experiments or simulations in microscopic/molecular terms. (In other words, it’s looking 

to explain phenomena theoretically.) So we have to first ask what kinds of experiments 

fall within the purview of the subject.  

 

One kind of experiment is the kind we introduced at the outset to illustrate what we 

meant by microstate, macrostate and equilibrium. We’ll now revisit that example but in 

somewhat more general terms. So this is the experiment (adapted from notes provided by 

Hans Anderson, Stanford University): 

 

– Take some system (solid, liquid, gas), prepare it in some specific way (e.g., by fixing its 

temperature, or placing it in a magnetic field), and then let it attain equilibrium (where its 

macroscopic variables stop changing.)   

– At this point, set the time to 0, and record the value of a dynamical variable A. From 

what we’ve said about the duration of experimental measurements, this value is 

effectively a time average of A, but we won’t worry about what this value actually 

corresponds to; we’ll simply regard it as an experimental data point taken at time 0, and 

refer to it as )0(A .   

– Repeat these steps several times. (To check reproducibility.) Average the set of )0(A  

values so obtained. The average is the experimental estimate of A, and we’ll call it 

exp)0(A . (Deviations from this average in individual measurements can be reported as 

error bars.) We  will now assert, as we did earlier, that the same estimate is obtained from 

an ensemble average of A, which can be determined using statistical mechanics. 

Specifically, 

 

                                                   )0()0( exp AA    

                                                                  ))0(())0(()0( PAd   

                                                                  )()( PAd NN dpdqdpdqd 11(  ) 

 

where )(P  is the probability that at 0t  the system is in the microstate  . In the 

illustrative example of the gas, MP /1)(  ,  every microstate being equally likely. But 

in general, that needn’t be the case, and some microstates will be more likely than others. 

The precise form of )(P  is fixed by the macroscopic constraints on the system (such as 

constant T or P, etc.) 

 

In another kind of experiment, we’ll do the following: 

– Prepare the system in some specific way. 
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– Allow the system to equilibrate. 

– When the system has equilibrated, set the time to 0.  

– Allow the system to evolve for a time t.     

– Record the value of some property A at this time. Denote this value )(tA . 

– Repeat these steps several times, and average the different values of )(tA  to obtain the 

experimental estimate of this quantity, which can be denoted 
exp)(tA . The same result is 

can be obtained from a statistical mechanical calculation according to the prescription 

below: 

 

                                           )()( exp tAtA    

                                                         ))(())(()( tPtAtd     

 

We’ll prove later that since the system is in equilibrium, ))0(())((  PtP . (This seems 

intuitively reasonable.) We’ll also prove that )0()(  dtd . Therefore, 

 

                                             ))0(()()0()( PtAdtA   

                                                        )()( PtAd  

 

Now what we mean by )(tA  is the value of A at t given that it had started at 0t , where 

the system was in the microstate  )0( . This circumstance can be made explicit by 

writing A(t) as );( tA . Hence 

 

                                                 )();()( PtAdtA   

 

Now the implication of the integration in this expression is that the variable A assumes a 

range of different values. Because the system is in equilibrium, there’s no reason why the 

range of values at time t should be different from the corresponding range of values at 

any other time. Referring to the above equation, this means, in effect, that 

 

                                                                 )0()( AtA    

 

Notice that what is being asserted is not that )0();( AtA   but that their averages over 

the same equilibrium distribution of microstates are equal. Again, this seems intuitively 

reasonable. As we pointed out earlier, a measurement of some property A (and by 

measurement I mean effectively a time average) that is carried out today should produce 

the same result if it were carried out tomorrow, provided the system is in equilibrium.  

 

       This general circumstance, that )0()( AtA   for equilibrium averages is called the 

property of stationarity.  
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In both the above experiments, the method used to determine an ensemble average 

coincides exactly with the general formalism of equilibrium statistical mechanics. So the 

s)'(P are nothing but the various probability distributions we’ve encountered before, 

such as the canonical distribution or the grand canonical distribution, and so on.   

 

We’ll conduct one other type of experiment: 

– Prepare the system in some specific way. 

– Allow the system to equilibrate. 

– When the system has equilibrated, set the time to 0. 

– Allow the system to evolve for a time t and measure A at this time; denote its value is 

)(tA . 

– Allow the system to evolve to time t  and measure another property, say B, at this time, 

denoting it )(tB  . 

– Multiply the two measured values together. 

– Repeat these steps a number of times and average the data. The result is exp)()( tBtA  , 

and as before, we’ll assert that it can be obtained from statistical mechanics via an 

ensemble average: 

 

                               )()()()( exp tBtAtBtA             

                                                     )();();( PtBtAd   

 

And again, because these measurement are made under equilibrium conditions,  it doesn’t 

really matter when you start the clock ticking – what matters is how much later the 

measurement of B is in relation to A, i.e., only the difference in time between these 

measurements is important. And so 

                         

                                         )()0()()( ttBAtBtA   

                                                             )();()0( PttBAd   

 

An equilibrium average of the kind 

 

                                                 )()()( tBtAttCAB
  

 

is called an equilibrium time correlation function (TCF), and it is this quantity and others 

like it that will be the focus of time-dependent statistical mechanics. We’ll see that TCFs 

play somewhat the same kind of role in time-dependent statistical mechanics that 

partition functions play in equilibrium statistical mechanics, and we’ll find that even 

though we’re dealing with systems in equilibrium, TCFs are descriptive of a large 

number of experimentally relevant situations. If in the above correlation function, the 

property B happens to be A itself, the result, )( ttCAA  , is referred to as an equilibrium 

time autocorrelation function.  
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● Time Evolution of Microstates 

 

It should be clear from the foregoing discussion that to calculate an equilibrium time 

correlation function, we’ll need the following ingredients: 

 

– An expression for the distribution function )(P , which tells you the likelihood 

(probability) that a system of N particles under some set of fixed control parameters (like 

constant T or P, etc.) is found in some definite microstate },,,,{ 11 NN pqpq  , 

– The value of some property A of the system at the time t when the system had started 

out at 0t  in the microstate  , i.e., we need an expression for the function );( tA . If 

the TCF we’re calculating is )()( tBtA  , we’ll need an expression for );( tB  too. 

 

We’ll look first at the problem of calculating the value of a dynamical variable A at some 

time t. Now A is a function of  , i.e., it depends on the positions and momenta of the 

particles that make up the system. We’ve assumed these particles to be classical, so their 

motion is governed, in general, by Newton’s laws, viz., 

 

                                               Nit
dt

d
m iii

i
i ,,2,1),,,(

2

2

  rrF
r

                             (1) 

 

where im  is the mass of the ith particle, ir  is its position (in Cartesian coordinates), and 

iF  is the net force acting on it. Given the initial positions and velocities of these particles 

and the forces on them, these equations can be solved in principle for the positions and 

velocities at any future time. So if it’s known how A depends on the ir , in principle, its 

value at t, viz., );( tA  can be determined.  

 

          But Newton’s laws aren’t always easy to apply. For one thing, the position  ir  must 

be a Cartesian vector in Euclidean space. It can’t be some more general variable, like an 

angle, which might be a more appropriate or natural variable to use in certain 

circumstances. (If we did use such variables, their evolution equations wouldn’t 

necessarily take the familiar maF  form of Newton’s laws.)  A second shortcoming of 

the Newtonian approach is that it can be difficult to correctly identify all the forces that 

act on a particle. 

 

         Fortunately, there are other formulations of classical mechanics besides Newton’s 

that don’t suffer from these limitations. One of them is Lagrangian mechanics. It’s based 

on what’s come to be known as the principle of least action, which states that the motion 

of a system of particles is such that it minimizes a quantity called the action, S, which is 

defined as follows: 

 

                                             

t

NN tLtdS
0

11 ),,,,,,( qqqq                                          (2) 
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where L is the difference between the kinetic energy K and the potential energy V of the 

system, i.e., 

 

                                                              VKL  ,                                                          (3) 

 

and is referred to as the Lagrangian. The coordinates and velocities in L need not be 

Cartesian coordinates in Eucidean space – they can be any convenient parameters that 

uniquely specify the configuration of the system. And they are represented as vectors to 

indicate that they’re not restricted to 1d. Most of the time we’ll be interested in 3d 

systems. 

 

The requirement that S be a minimum under the least action principle will impose 

conditions on these generalized positions and velocities that will determine how they 

evolve in time. But how do we minimize a function like S that involves an integral? We 

know that for an ordinary function like  

 

                                                                   )(txx   

 

the necessary condition for it to have a minimum is that its first derivative be 0, i.e., 

0)( tx . The solution of this equation is some particular value of t, say, atm  . But S is  

not a simple function – it’s an integral over another function, which makes it something 

we call a functional. Minimizing or maximizing a functional, or finding the condition that 

minimizes or maximizes it means finding a function that when put back in the expression 

for it leads to a value that is an extremum (i.e., a maximum or a minimum.) How do we 

find this function, or what are the conditions that determine it? 

 

As an illustration of the general procedure, let’s consider this representative problem in 

1d. We have some function f  that depends on these variables: the time t, a generalized 

coordinate  x that itself depends on t,  and a generalized velocity v, which is just the time 

derivative of x, and which also depends on t. In other words, 

 

                                                   ),,( txxff    

 

Given this function, let’s construct the following integral: 

 

                                              
2

1

)),(),((

t

t

ttxtxfdtI                                                           (4) 

 

and then ask how x would have to depend on t in order that I have a stationary value 

when the limits 1t  and 2t  are fixed. What we mean by stationary will become clear 

shortly. But what should immediately be clear is that the value of this integral depends on 

how x gets from 1t  to 2t  as t is continuously varied between these limits, i.e., it depends 

on x’s path. The largest or smallest such value of I is obtained for one special path,  

which we’ll denote x(t) and refer to as the stationary path. Now consider some other path 

that x could have taken – call it X(t) – and assume that it’s not all that different from the 
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stationary path  along the entire length of the given time interval. What that means is 

schematized in the figure below: 

 

   

 

 

 

 

                    

                                                                     X(t)              )(tx  

                                                                                

                                                                     )(tx               
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                                                   t1                                                          t2             

 

 

Here )()()( txtXtx  , that is, the difference between the “adjacent” path and the 

stationary path for all t in the interval between 
1t  and 

2t , with both paths starting and 

ending at the indicated points. We’ll assume that )(tx  is small, in fact, infinitesimal. 

Given these two neighbouring paths, we’ll introduce another infinitesimal quantity, viz.,  

 

                                                        ),,(),,( txxftXXff                                          (5) 

 

In the above expression as well as in the expression for )(tx , the symbol  stands for 

“variation”,  and it represents the change in the value of a function when the function is 

displaced from its original path for some fixed value of t.   

 

Consider the variation of the derivative of  x,  xdtdx / . By definition 

 

                                         x
dt

d
xX

dt

d

dt

dx

dt

dX

dt

dx
  )(                                      (6) 

 

So in a formal sense, the operations of variation and differentiation “commute”. Now 

consider the variation of f itself, as defined by Eq. (5): 

 

                                       ),,(),,( txxftxxxxff     
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If we Taylor expand this expression around 0x  and 0x , we get 

 

                                     ),,(),,( txxfx
x

f
x

x

f
txxff 


 









          

                                       x
x

f
x

x

f













                                                                           (7) 

 

which shows that rules for calculating variations are formally the same as those for 

calculating differentials.  

 

         To return to the question of  what condition determines whether the integral I in Eq. 

(4) is at a maximum or a minimum (i.e., whether it is stationary),  it is clearly that I 

evaluated along the extremum path x(t) must be yield the same value as I evaluated along 

the infinitesimally displaced neighbouring path xx  . In other words, 

 

                                        ),,(),,(
2

1

2

1

txxfdttxxxxfdt

t

t

t

t

                                           (8)  

 

That is, 

 

                                                     0),,(
2

1

 txxfdt

t

t

                                                          (9) 

 

This is the counterpart of the condition that determines stationarity in ordinary calculus, 

viz., 0dx . If you substitute (6) and (7) into (9), the result is 
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
                                                (10) 

 

and if you then integrate the second term in (10) by parts, you get 
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The surface term vanishes at the upper and lower limits because there the extremal path 

and the displaced path both coincide (by construction, see the fig.) So Eq. (11) reduces to 
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
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Now, one way this equation could be satisfied is if the product of the deviation x and the 

term in parentheses were positive in some interval of time and negative in some others, 

such that in the entire interval between 
1t  and 

2t  the negative and positive contributions 

exactly cancelled one another. But x is arbitrary, so it could be chosen to have values in 

certain time intervals that ensured that its product with the parenthetical term didn’t 

produce counterbalancing positive and negative terms, making the integral in (12) non-

zero. Therefore, the only way the integral is guaranteed to vanish identically for all x is 

if the following condition holds 

 

                                                            0









x

f
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d

x

f


                                                    (13) 

 

The solution of this equation provides the functional form of the extremal path. Eq. (13) 

is known as the Euler equation. 

 

 

● Several dependent variables 

 

       Suppose the integral to extremize is a functional of several dependent variables, as in   

 

                                      
2

1

),,,,,,,,(

t

t

tzyxzyxfdtI                                            (14) 

 

What condition now determines the structure of the extremal paths )(tx , )(ty , )(tz , etc.? 

If the same steps are followed as before, that is, if x, y, z etc., representing the extremal 

path, are displaced by small amounts x , y , z , etc., it’s easy to show that the 

stationarity condition is given by 

 

                                    0),,,,,,,,(
2

1

 tzyxzyxfdt

t

t

                                               (15) 

 

where  
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If you substitute (16) into (15), use partial integration again, and eliminate the surface 

terms, what you’re left with is 
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Again, the only way this relation can be satisfied for arbitrary x , y , z , etc., is if each 

of the parenthetical terms vanishes independently 
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