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IP326. Lecture 1. Thursday, Jan. 3, 2019 

 

 

● What is time-dependent statistical mechanics?  

       

       As the name suggests, time-dependent statistical mechanics is a generalization of 

time-independent statistical mechanics in which time is an additional variable. But this 

generalization is not a simple matter of introducing time dependence into the various 

functions that appear in time-independent statistical mechanics, and we’ll spend rest of 

the lecture trying to understand what it does entail. And to do that, we’ll first need to 

recall some facts about time-independent statistical mechanics.    

      

       Broadly speaking, time-independent statistical mechanics is the study of the 

connection between the macroscopic properties of matter in equilibrium and the 

microscopic properties of its constituent elements. The operative words here are: 

macroscopic, microscopic, and equilibrium, and we’ll need to be clear about what these 

words connote before moving on. The following example will be helpful:  

 

 

● Consider a gas of N independent distinguishable non-interacting particles enclosed in a 

sealed container, and imagine mentally dividing the container into two equal halves. A 

snapshot of  the particles in this arrangement might look like this: 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

where the dots represent the positions of individual gas particles. (You have to imagine 

that these dots are actually distributed randomly throughout the box.)  

  

          Looking at these positions, we can obviously say that every particle is located in 

either the left half of the box or the right half. In a sense, then, every particle can be 

thought of as existing in two states – left or right. And one way of saying something 

about the state of the gas at a given instant of time is to say something about every 

particle in the box. Another way is to talk about the number of such particles in the left 

half of the box, without worrying about which one is located there. The first description 

applies at a microscopic level and the second at a macroscopic level, and in each the state 
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of the system varies with time because the particles are constantly moving from one side 

to the other through collisions with themselves or with the walls of the box. However,  on 

average, if N is large enough, the number of gas molecules on the left is just N/2, and it 

doesn’t change at all. In other words, if we were to track this number over time, this is 

what we would see, in graphical form 
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where )(tnL
 is the number of particles in the left half of the box at time t , with 

Ln , the 

average of this number, which will be approximately N/2.  How do we arrive at this 

average? Experimentally, in the following way: by taking snapshots of the gas at a series 

of distinct times; making a note of the number of molecules in the left half of the box at 

these times; adding the numbers together and dividing by the number of snapshots. That 

is,  
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and it corresponds to what we call a time average. If the time interval over which these 

measurements of particle number are made is large enough, and the intervals between 

successive measurements small enough, this average effectively becomes 
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where 0t  is the time at which the measurements are started and  is the interval over 

they’re made. The RHS of this equation is really only meaningful when  is much greater 

than the time it takes for the system to rearrange itself. Ideally, we’d like  to be 

infinitely large, in which case 
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independent of  . And if additionally, the system is in equilibrium, it won’t matter when 

the measurement is started, and there’s then no dependence on 0t  either, which can be set 

to 0. Hence, 
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● Time averages are what we tend to obtain automatically when we make experimental 

measurements of some macroscopic quantity because such measurements usually always  

take much, much longer than the time it takes for individual atoms or molecules to adopt 

new configurations. During the course of an experimental measurement, in other words, 

the system will have had more than enough time to  make numerous transitions between 

different microscopic arrangements. 

  

      We could have thought about this average somewhat differently. Instead of recording  

the values of )(tnL
 at separate instants of time, we could have started with a large 

collection, say, M,  of distinct containers of the same gas, all of them prepared with the 

same number of molecules under the same macroscopic conditions, and each divided into 

two halves by an imaginary partition. At some common instant of time, the situation, 

pictorially, is like the one below for a gas of 10 molecules. 
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Some boxes have less than N/2 molecules in the left half, some have more, but if you 

added them together and divided by M, you’d expect the result to be approximately N/2, 
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so long as both N and M were large. This way of calculating the average number of 

molecules in the left half of the box is called an ensemble average, and we’ll denote it 

Ln . So, in other words  
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The factor of  M/1 in the above expression can be thought of as a weight factor, the 

fraction of replicas in the ensemble that have a given microscopic arrangement. In this 

example, each replica has the same weight, meaning, in effect, that there is no preference 

for any particular arrangement. Being a weighting factor, M/1 can also be interpreted as 

a probability of occurrence of that arrangement. So the ensemble average can also be 

more generally written as 
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Ensemble averages are what we typically perform when we determine averages via 

statistical mechanics, and intuition suggests that there should be no difference between 

the time average of 
Ln  and its ensemble average, and now we’ll actually assert, as a 

fundamental postulate that  

 

                                               LL nn               (ergodic hypothesis) 

 

● In the above illustrative example, we can think of 
Ln  as a descriptor of the 

macroscopic state of the gas, that is, a state of the gas that makes no reference at all to 

anything about the gas molecules that it’s made up of. Such a state is a called a 

macrostate of the gas, and we regard the gas to be in equilibrium if the property that 

characterizes its macrostate completely doesn’t change with time. Here, the variable 
Ln  is 

the relevant property, and to all intents and purposes it is time-independent, because 

2/Nnn LL  ; in other words, if 
Ln  were measured today, and then again tomorrow, 

and then yet again, say, a year from now, there would be no change at all in its value.  

 

        But as this example shows, equilibrium as we’ve defined it is not a static condition; 

it’s actually a dynamic one; things are constantly happening at the microscopic level: 

particles are moving from one side of the box to the other; they’re bouncing off the sides 

of the container; they’re colliding with each other and exchanging energy. So at this 

level, the state of the gas – what we call the microstate – is constantly changing. And just 

as we characterized the macrostate of the gas by the variable Ln , we can identify an 

appropriate set of variables that characterize its microstate. Recall that in this example, 

every particle had just two states – it could either be in the left half of the box or the right. 

So one way to specify the gas’s microstate is to specify the state – left or right – of every 
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molecule in it. So at these two levels of description, macro and micro, the associated 

states are the following:  

 

            Macrostate:     
Ln  

            Microstate:     { },,3,2,1  n , RL or , 
1tt   

 

 

At equilibrium, 
LL nn   is a constant, even though the microstate changes from instant to 

instant.      

 

          So, to repeat, a macrostate of a system is some set of properties that characterizes 

the system in the bulk, without reference to the atoms or molecules it’s made up of, a 

microstate of the system is a specification of some property of every single atom or 

molecule in the system at some instant of time, and equilibrium is the condition of time 

independence of the macrostate.   

 

● Digression: some terminology. We’ll need to decide what properties must be specified 

to identify macro- and microstates unambiguously. To do that, it will help to make a 

quick detour into some terminology, so that we know precisely what we mean by certain 

terms that we’ll use over and over again in statistical mechanical contexts. These terms 

may seem familiar, but they are to be understood in a definite way.  Let’s look at some of 

them: (see Castellan, Physical Chemistry.) 

 

System. Any part of the physical universe we’re interested in studying. 

 

Surroundings. That part of the universe lying outside the system. 

 

Boundary. The physical surface enclosing the system and separating it from the 

surroundings. Boundaries can be of several kinds: 

    –  Rigid or movable, 

    – Permeable (to matter flow) or impermeable or semi-permeable, 

    – Adiabatic (preventing heat flow) or diathermal (permitting heat flow).  

 

Internal constraint. Any boundary within a system that divides it into two or more parts, 

called sub-systems. A system divided in this way into sub-systems is said to be 

composite. A system without internal constraints is said to be simple.  

 

Closed system. One that is separated from the surroundings by a boundary that prevents 

any interaction between the two (Callen’s definition; see his Thermodynamics and an 

Introduction to Thermostatistics). A closed system is completely isolated from its 

surroundings, and produces no observable effect or disturbance on it. (N.B. Other authors 

define a closed system as one in which no matter can pass through the boundary, though 

energy can, and an open system as one in which both energy and matter can pass through 

boundary.)  
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A system is said to have properties, which are those physical attributes that are perceived 

by the senses or can be made perceptible by certain methods of measurement. Different 

kinds of properties can be distinguished: 

    – Non-measurable, as the kinds of substances composing a system and the states of 

aggregation of its parts, 

    –  measurable, to which a number can be assigned, 

    –  extensive, which change in direct proportion to the size of the system, 

    – intensive, which are independent  of the size of the system  

 

A phase is a region within a simple system throughout which all of its properties  are 

uniform. 

 

A system is said to be in a definite state when each of its properties has a definite value.  

 

A change in state of a system occurs when at least one of its properties changes its value. 

The change in state is completely specified when the initial and final states are specified. 

Systems initially in equilibrium will not change their state unless internal constraints are 

removed, or they are otherwise made to interact with their surroundings. 

 

During a change of state, a system traverses a definite path, which is the ordered 

sequence of intermediate states lying between the initial and final states. If all the 

intermediate states in the path are equilibrium states, the path is said to be quasi-static. 

Physically, quasi-static means that if at any instant of time during the course of the 

change in state the system were isolated from its surroundings, all properties would be 

fixed at the values they had just prior to isolation. The path is said to be reversible if after 

the change of state, both system AND surroundings are returned to their initial states. 

Reversible paths are idealizations, but can be approximated by quasi-static paths.  

 

● With these preliminaries, we can start looking at more realistic situations than the one 

we considered for illustrative purposes. And the first thing we’d like to do is identify the  

variables that we think are sufficient to completely specify the state of a system at both 

the macroscopic and microscopic levels. For the moment, we’ll restrict our attention to 

classical systems that are simple, that are not translating or rotating, and that are not 

subject to external fields. Such systems can be placed under a range of different 

conditions that are relevant to experiment. Here are some common possibilities, shown 

schematically 
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The first system is a closed system, completely isolated from its surroundings by a rigid, 

adiabatic, immovable boundary (the double lines). We’ll state as a postulate (see Callen) 

that its macrostate is completely specified by U, V, N. (U is its internal energy – all the 

energy it possesses by virtue of the motion of molecules and their interactions with each 

other.) 

 

The second is a closed composite system. The system of interest is the inner container; 

it’s assumed to interact with a heat bath or thermal reservoir. A heat bath is any system so 

large or so designed that no matter how much heat flows into or out it, its temperature T 

remains the same. Here, the system and reservoir are separated by a diathermal boundary, 

so heat flows freely between the two. The macrostate of the system is T, V and N.  

 

The third is a closed composite system. The system of interest is the inner container; its 

surroundings constitute a temperature and pressure reservoir. A pressure reservoir is a 

system so large or so designed that no matter how much its volume changes, its pressure 

stays the same. The system and surroundings are separated by a diathermal, movable 

boundary. The macrostate of the system is P, T, N. 

 

The last is a closed composite system. The system of interest is the inner container; its 

surroundings constitute a temperature and particle reservoir. A particle reservoir is a 

system so large or so designed that no matter how many particles enter or leave it, its 

chemical potential remains the same. The system and surrounding are separated by a 

diathermal semi-permeable boundary. The macrostate state of the system is T, V,  . 

 

Apart from the first kind of system, which by itself is not very interesting since nothing 

happens to it, the others are slightly more complex realizations of our first illustrative 

example, in the following sense. Consider the system at T, V, N. Because the boundary is 

diathermal and energy U is freely exchanged between system and reservoir, the system 

has different amounts of energy at different instants of time, and a graph of U vs t would 

look like this:  
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As in the case of the gas, the variable U constantly changes from instant to instant, but 

the changes typically are very small if the system is large, and its average value, U , 

obtained by adding up the energy values at different times and dividing by the number of 

measurements, is time-independent. Again, by virtue of this time independence of U  

(and the other macro variables), we say that the system is in equilibrium. An 

experimental measurement of U, because it takes longer than atomic/molecular 

timescales, is a time average of this variable.  

 

A similar situation obtains for the system at constant T, V,  . Now both energy and 

matter can flow across the boundary, which is diathermal and semi-permeable. So in this 

system, the macroscopic variables U and N fluctuate in time about an average value, 

which is the value that is recorded when that variable is measured physically, in a 

laboratory experiment. This average is time independent, and that being the case, the 

system is in equilibrium.   

 

All of what we’ve just described refers to the macrostates of these systems. What about 

their microstates? We shall postulate that at the microscopic level, the system is 

completely specified by specifying the positions and momenta of every single particle in 

the system. If these variables are denoted q and p, we can now make the following 

identifications:   

 

Macrostate: ),,( NVU  or ),,( NVT  or ),,( NPT . 

Microstate:  },,,,,,{ 2211 NN pqpqpq   

 

Macrostate: ),,( VT  

Microstate:   ,3,2,1},,,,,,,{ 2211 ipqpqpq ii  

 

● Phase space. It’s customary to think of these positions and momenta as spanning what 

we call a phase space, which for a collection of N particles in 3 dimensions is an abstract 

space made up of 6N mutually perpendicular axes, each axis corresponding to a particular 

Cartesian component of  q or  p for a particular particle.  A point in this space is one 

possible microstate of the system. So, for example, if our system consisted of just a single 

particle in 1 dimension, its phase space would like this: 
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p and q are called phase space variables, and as a matter of notation, we’ll use the symbol 

 to represent the collection of phase space variables that define a particular microstate. 

That is, },,,,,,{ 2211 NN pqpqpq  . (In 3d, the p’s and q’s become vectors.) 

 

Quantities that we measure experimentally are in general functions of phase space 

variables, and we refer to them as dynamical variables. They are fundamentally 

mechanical (as opposed to statistical, like a distribution), and they depend, in general on 

time, because the p’s and q’s depend on time. So if A denotes the dynamical variable in 

question, we have 
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which for notational simplicity we often simply write as )(tA .  

 

Examples of dynamical variables: 

 

     – Velocity of ith particle, iv    

     – Kinetic energy, or potential energy, or total energy  

     – Distance between particles i and j, || ji rr      

     – Density of particles at some point,  

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