Hydrogen bond without borders

- N. Sathyamurthy
- Department of Chemistry, Indian Institute of Technology Kanpur
- Collaborators: V. Subramanian,
 - R. Parthasarathi, M. Elango,
- Central Leather Research Institute, Chennai B. K. Mishra, IIT Kanpur Funded by: CSIR, New Delhi

Importance of Hydrogen Bonding

- Hydrogen bonding is an intensely studied interaction in physics, chemistry and biology and its significance is conspicuous in various real life examples
 - liquid water, solution structure and hydration shell ionic and non-ionic solutes
 - protein folding
 - purine/pyrimidine (GC/AT(U)) base-pairing in nucleic acids
- H-bond is a key interaction in molecular recognition chemical and enzymatic reactions

Hydrogen Bond

Definition: a proton/hydrogen atom covalently bonded to one electronegative atom(X) interacting with another electronegative atom (Y):

 $X^{\delta\text{---}H^{\delta+}} \dots Y^{\delta\text{--}}$

- The 'simple' Pauling definition
 - partially electrostatic
 - partially covalent
 - geometry dependent
- Characteristics of Hydrogen Bonding
 - Strength: 5-10 kcal/mol, compared to 50-100 kcal/mol for a covalent bond and 0.5-1 kcal/mol for van der Waals interaction
 - Directionality: within a few degrees deviation from collinearity
 - H...O length: 1.6 2.6Å (compared to 0.96Å for O-H)
 - Stretching frequency: red shift on hydrogen bond formation

Experimental Evidence

Heat of vaporization for strength
 Example: ΔH_{vap} = 9.72 kcal/mol for water
 Two hydrogen bonds around each oxygen
 atom. So, ~ 5 kcal/mol for each hydrogen
 bond

X-ray and neutron diffraction for geometry
 IR and Raman spectra for stretching frequencies

How about theory?

- Supermolecule approach: ∆E = E_{supermolecule} E_{molecules}
 Hartree-Fock, large basis set including polarization and diffused functions 6-311++g**
- Density functional theory, but not really satisfactory because it does not include dynamic correlation
- (second order) Møller-Plesset perturbation theory (MP2) works out better
- AIM theory (R F W Bader)

- The concept of AIM was evolved to define the molecular properties as an average of atomic properties
 - \clubsuit Electron density $\rho(r_c)$,
 - Gradient vector field of electron density $(\nabla \rho)$,
 - Critical points (at which $\nabla \rho$ vanishes) and
 - Second derivative of electron density or Laplacian $(\nabla^2 \rho(r_c))$

$$\rho(r) = N \sum_{\sigma} \int |\psi(x, x_2, ..., x_N)|^2 d^3 r_2 ... d^3 r_N$$
$$\nabla^2 \rho = \nabla . \nabla \rho = \frac{\partial^2 \rho}{\partial x^2} + \frac{\partial^2 \rho}{\partial y^2} + \frac{\partial^2 \rho}{\partial z^2}$$

Critical Points

- (3, –3) CP ρ is the local maximum at r_c
- (3, -1) CP ρ is maximum at r_c in the plane defined by their corresponding axes – bond critical point
- (3, +1) CP ρ is minimum at r_c in the plane defined by their corresponding axes – ring critical point
- (3, +3) CP ρ is the local minimum at r_c –cage critical point

Characterization of atomic interactions

- In covalent interactions, $\rho(r_c)$ is high at BCP (>10⁻¹ a.u.). The $\nabla^2 \rho(r_c)$ is usually large with negative Laplacian.
- In nonbonding interactions $\rho(r_c)$ is quite small and $\nabla^2 \rho(r_c)$ is positive (~10⁻² a.u. or 10⁻³ a.u.).

Electron Density Topography Analysis of Hydrogen bonding in water clusters

- Hydrogen bonding between water molecules is a classical example
- Only the most stable conformation obtained by *ab initio* calculations selected for electron density analysis
- All AIM calculations have been made using the AIM 2000 software
- R. Parthasarathi and V. Subramanian, Characterization of Hydrogen Bonding: From van der Waals interactions to Covalency, In Hydrogen Bonding-New Insight, (Challenges and Advances in Computational Chemistry and Physics Series); Grabowski, S. J, Ed.; Kluwer: 1-58, 2006.

Molecular electron density topography of water clusters $(H_2O)_2$ $(H_2O)_3$ $(H_2O)_4$ $(H_2O)_5$ $(H_2O)_{ij}$ $(H_2O)_{15}$ $(H_2O)_{i\delta}$ $(H_2O)_{17}$ $(H_2O)_i$ $(H_2O)_7$ $(H_2O)_S$ $(H_2O)_9$ $(H_2O)_{18}$ $(H_2O)_{19}$ $(H_2O)_{10}$ $(H_2O)_{11}$ $(H_2O)_{12}$ $(H_2O)_{13}$

Bond critical points are denoted by red dots and yellow dots denotes the ring critical points

 $(H_2O)_{20}$

Density and the Laplacian at the bond critical points for hydrogen bonds in water clusters

•			

 $\rho_{c}/(e/a_{0}^{3}) \nabla^{2}\rho_{c}/(e/a_{0}^{5})$

- Dimer 0.02
- Trimer 0.021
- Tetramer 0.026
 covalent 0.39
 bond

• $p_c/(c/a_o)$ 0.016 0.017 per H bond 0.023 -0.611 for comparison

Linear Relationship between stabilization energy and (a) total $\rho(r_c)$ and (b) total $\nabla^2 \rho(r_c)$ (inset) for water clusters.

Interaction of water molecules with other molecules

Phenol, for example
 PhOH...OH₂ mixed dimer
 PhOH...OH₂...OH₂ or (PhOH)₂...OH₂ cyclic mixed trimer
 mixed tetramer

Parthasarathi, R.; Subramanian, V.; Sathyamurthy, N. Hydrogen Bonding in Phenol, Water, and Phenol-Water Clusters *J. Phys. Chem. A.* 2005,*109*, 843-850.

Optimized molecular structure of various phenol, water and phenol-water clusters

Electron density $\rho(r_c)$ and Laplacian of Electron density $(\nabla^2 \rho(r_c))$ for various phenol-water clusters

Clusters	Electron density (e/a_o^3)	Laplacian of electron density (e/a_o^{-5})	Electron density (e/a_o^{-3})	Laplacian of electron density (e/a _o ⁵)	
	Primary (strong) hydrogen bond		Secondary (weak) hydrogen bond		
P ₂	0.021	0.019	0.003 - 0.004	0.004 - 0.005	
W ₂	0.021	0.018	-		
PW	0.025	0.022	0.004	0.005	
P ₃	0.021 - 0.022	0.019 - 0.020	0.002	0.002	
W ₃	0.022 - 0.024	0.019 - 0.020	-	-	
PW ₂	0.017 - 0.028	0.015 - 0.024	-	-	
P ₂ W	0.018 - 0.027	0.016 - 0.023	-	-	
P ₄	0.025 - 0.028	0.022 - 0.024	0.002 - 0.003	0.002 - 0.003	
W ₄	0.029	0.025	-	-	
PW ₃	0.024 - 0.033	0.020 - 0.028	0.005	0.005	
P_2W_2	0.025 - 0.032	0.022 - 0.027	0.005	0.005	
P ₃ W	0.024 - 0.033	0.021 - 0.028	0.003 - 0.004	0.002 - 0.005	

Interaction of Water with Ionic Species

- In addition to its fundamental importance to aqueous chemistry, these strong interactions are implicated in ionic crystals and clusters, ion solvation, electrolytes and acid-base chemistry.
- The importance of this interaction in proton solvation, surface phenomenon, self-assembly process in supramolecular chemistry and biomolecular structure and function has also been recognized.
- $H_3O^+ \dots (H_2O)_{1-6}$
- OH⁻ ...(H₂O)₁₋₄
- To predict the structure and strength of ionic hydrogen bonds in the clusters of $H_3O^+W_n$ and OH^-W_m where n =1-6 and m =1-4.
- To probe the power of AIM method to differentiate hydrogen bonding in the first and second solvation shells in ionic clusters and quantification of H-bonding.

Molecular topography of protonated water clusters (Calculated stabilization energies (kcal/mol) (MP2/6-311++G** level))

Electron density $(\rho(r_c))$ and Laplacian of Electron density $(\nabla^2 \rho(r_c))$ at HBCP for various protonated water clusters in first and second solvation shells

Cluster	Solvation shell	$\rho(r_c) \ (e/a_o^3)$	$\nabla^2 \rho(\mathbf{r}_c) \ (e/a_o^{5})$
H ₃ O ⁺ W	First	0.1607	-0.1077
$H_3O^+W_2$	First	0.0739	0.0467
		0.0739	0.0467
$H_3O^+W_3$	First	0.0575	0.0456
		0.0575	0.0456
		0.0575	0.0456
$H_3O^+W_6$	First	0.0644	0.0467
		0.0641	0.0468
		0.0641	0.0467
	Second	0.0335	0.0352
		0.0337	0.0356
		0.0335	0.0356

Molecular topography of $OH^-W_{n=1-4}$ clusters

OH-W1

OH W2

Calculated stabilization energies (SE) (MP2/6-311++G** level)

Cluster	Number of H-bo	SE kcal/mol	
	OHW WW		
OH ⁻ W ₁	1(1.38)		32.18
OH ⁻ W ₂	2(1.54)		49.30
OH-W ₃	3(1.5-1.7)	1(2.5)	65.52
OH-W ₄	4(1.73)	4(2.47)	222.12

Electron density ($\rho(r_c)$) and Laplacian of Electron density ($\nabla^2 \rho(r_c)$) at HBCP

Cluster	Electron density (e/a_o^3)	Laplacian of Electron density (e/a_o^5)	Electron density (e/a_o^3)	Laplacian of Electron density (e/a_0^5)
	OH	W	W	···W
OH ⁻ W ₁	0.1003	0.0287		
OH ⁻ W ₂	0.0648	0.0427		
	0.0648	0.0427		
OH-W ₃	0.057	0.0422	0.00797	0.0075
	0.0424	0.0368		
	0.0548	0.0419		
OH-W4	0.0401	0.0356	0.00896	0.0084
	0.04	0.0355	0.00903	0.0085
	0.0401	0.0356	0.00896	0.0084
	0.04	0.0355	0.00904	0.0085

Stronger the hydrogen bond

- Larger is the value of the density and its Laplacian at the hydrogen bond critical point.
- How strong can a hydrogen bond get?
- How weak can a hydrogen bond get?
- Will the strength be still reflected in the density and the Laplacian at the HBCPs?

Hydrogen bonding without borders

- In continuation of our efforts to understand the hydrogen bonded complexes and clusters, a diverse class of intermolecular complexes ranging from van der Waals interaction to covalent bonding was examined
- Strength of some H-bond is nearly that of a covalent bond
- A variety of weak H-bonds has also been observed
- Hence, an attempt has been made to understand the concept of hydrogen bonding without borders using the topological properties of electron density and also to quantify the transition from weak to moderate to strong H-bonding to develop a unified picture of the nature of H-bond

Stabilization energy (SE) (MP2/aug-cc-pVDZ) and Electron density ($\rho(r_c)$) for various H-bonded complexes

H-bonded Complexes	SE (kcal/mol)	$ \begin{array}{c} \rho(r_c) \\ (e/a_o^{-3}) \end{array} $		H-bonded Complexes	SE (kcal/mol)	$\begin{array}{c}\rho(r_{c})\\(e/a_{o}^{3})\end{array}$
$H_3O^+H_2O$	49.7	0.1517		PH ₃ HF	4.48	0.0196
OH⁻H₂O	31.7	0.0883		H ₂ OH ₂ O	4.46	0.022
NH ₃ …NH ₄	28.6	0.0667		C ₂ H ₄ HF	4.16	0.0183
NH ₄ …H ₂ O	19.8	0.0453		PH ₃ HCl	3.08	0.0163
NH ₃ …HF	12.4	0.0482		PH ₃ …H ₂ O	2.17	0.0119
NH ₃ …HCl	9.33	0.0497		H_2SH_2S	1.55	0.0102
HCNHF	6.88	0.0266		SH ₂ HF	1.54	0.0093
C ₆ H ₅ OHH ₂ O	6.28	0.0262		H ₂ S…PH ₃	1.37	0.0091
CH ₃ OHCH ₃ OH	5.22	0.0264		HClHCl	1.22	0.0068
CH ₃ OHH ₂ O	5.16	0.0198		SeH ₂ HF	0.91	0.0093
HClH ₂ O	5.09	0.0258		CH ₄ NH ₃	0.54	0.0073
NH2COHH ₂ O	4.85	0.0193		CH ₄ …HF	0.25	0.0047
CHOHH ₂ O	4.81	0.0234]	CH ₄ SH ₂	0.23	0.0045
HCNHCl	4.68	0.0211		CH ₄ Ar	0.11	0.0038

The electron density at the bond critical point varies smoothly over the entire range

There is a gradual change in the magnitude of the Laplacian also – until one goes over to the covalent bond, at which stage the Laplacian changes sign!

Classification of various types of hydrogen bonded interactions based on stabilization energy and $\rho(r_c)$

$\rho(\mathbf{r}_{c})$ in covalent limit > $\rho(\mathbf{r}_{c})$ in strong > $\rho(\mathbf{r}_{c})$ in medium > $\rho(\mathbf{r}_{c})$ in weak

R. Parthasarathi, V. Subramanian, and N. Sathyamurthy, Hydrogen Bonding Without Borders: An Atoms-In-Molecules Perspective, J. Phys. Chem. A 110 (2006) 3349.

Summary

There is a linear relationship between the electron density and the Laplacian of the electron density at the HBCP and the strength of the H-bond; the variation is smooth in going from van der Waals to classical H-bonding to strong Hbonding.

π - π Stacking in Aromatic Systems

Benzene-Benzene

- How do they interact?
- Is stacking preferred?
- Look at graphite sheets. They are stacked with about 3.5 Å between them
- Do they (benzene molecules) behave like closed shell systems?
- No dipole moment, but they have quadrupole moment. Do they matter?
- Experiment and theory: stacking and T-shaped are comparable in energy
- For a recent review see M.O. Sinnokrot and C. D. Sherrill, J. Phys. Chem. A2006, 110, 10656

Six (3, -1) critical points

Two (3, -1) critical points

Interaction energy: 2-3 kcal/mol

Pyridine Dimer and Trimer Pyridine has permanent dipole moment!

Brijesh Kumar Mishra and N. Sathyamurthy J. Phys. Chem. A, 109, 6, (2005)

-1.91 kcal/mol

-1.47 kcal/mol

The most stable geometry of pyridine dimer (antiparallel-displaced orientation)

Most stable

Stacking, anti-parallel, displaced!
Same is true for the trimer

MP2/6-311++G** (BSSE corrected) $R_2 = 3.6 \text{ Å}$ $R_2 = 3.6 \text{ Å}$ $R_2 = 3.6 \text{ Å}$ 0.2 $R_1 = 3.6 \text{ Å}$ R = 3.6 ÅR = 3.6 Å

-3.18 kcal/mol

-6.14 kcal/mol

-8.04 kcal/mol
Experimental evidence?

•Yes, from the lab of Dr. R.N. Mukherjee

V. Balamurugan et al. Chem. Eur. J. 2004, 10, 1683-1690

Pyrazine Dimer:

Pyrazine has no dipole moment, but it has quadrupole moment. It should prefer T-shape or parallel displaced

Brijesh K. Mishra and N. Sathyamurthy J.T.C.C. 5, 2006, 1-11

-5.5

Interaction energies for different geometries of pyrazine dimer using cc-pVDZ basis set

Geometries	<i>R</i> (Å)	<i>r</i> (Å)	MP2	MP4	CCSD(T)
			(kcal/mol)	(kcal/mol)	(kcal/mol)
N-N-axial-	3.1	1.2	-4.54	-1.19	-2.24
displaced					
Cross-displaced	3.1	1.6	-6.56	-2.57	-3.78
T _{N-ring}	4.2	-	-5.48	-3.21	-3.98
W _{C-C}	4.8	-	-3.51	-2.24	-2.78

Molecular topography of pyrazine dimers obtained from theoretical charge density.

Summary

Stacking interaction in benzenoid systems influenced by multipole (dipole and quadrupole) moments of the molecules.

Electron density and the Laplacian at the bond critical points are comparable to those obtained for hydrogen bonding and follow the same linear relation between the strength and density

Spreading in N-Heterocyclic Aromatic Ring: Weak Hydrogen Bonding

Method : MP2/6-311G** BSSE correction AIM Analysis

Pyrazine dimer and trimer: stabilization energy in kcal/mol

Dimer -3.64

Trimer-2 -7.19

Trimer-2

Tetrazine dimer and trimers

Trimer-2 -8.60

Same story

Electron density at the BCPs in spreading and stacking interaction is comparable to that for hydrogen bond

Its magnitude and Laplacian reflect the strength

THANK YOU

Preference of Orientation in Van der Waals Complexes

MP2/6-311++G**
BSSE correction using counterpoise method
Packages:
Gaussian 03
CADPAC
Orient 3.2

Benzene

Hexafluorobenzene

1,3,5 trifluorobenzene

-8.38 debye Å

+9.24 debye Å

0.81 debye Å

-3.15 kcal/mol (-5.42) +0.91 kcal/mol (-0.14)

Benzene-molecule interaction

+1.11 kcal/mol (-0.17)

-1.31 (-2.89)

-0.85 (-2.66)

-2.70

-1.60

Hexafluorobenzene-molecule interaction

-3.14

-1.25

-2.62 (-3.06)

-2.87 (-4.44)

Sym-trifluorobenzene-molecule interaction

-2.93 (-4.16)

-0.90 (-2.64)

The Solvation of H_3O^+ by phenol: Hydrogen bonding vs π complexation

 $C1 \rightarrow -72.99$

 $C2 \rightarrow -55.35$

- Noncovalent Bonding: anything other than covalent!
- We are considering hydrogen bonds and other weak interactions stacking, π -OH and π between π neutral and ionic atoms/molecules

Electron Density Map of Hydrogen Bonds

Chemical Laboratory Central Leather Research Institute

SCHEMATICS

Introduction

- Hydrogen bonding
- State-of-the-art computational approaches and AIM theory
- The usefulness of electron density topography in eliciting the strength of H-bonding interaction in a variety of systems

Number of Hydrogen Bonds (nH), Hydrogen Bonded Critical Points(nHBCP), Ring Critical Points(nRCP), Cage Critical Points(nCCP), Stabilization Energies (SE, kcal/mol), Sum of Electron density $\rho(r_c)$ and Laplacian of Electron density ($\nabla 2\rho(r_c)$) for the Most Stable Water Clusters

molecule		n _H	nHBCP	nRCP	nCCP	SE	$\rho(r_c) (e/a_o^{-3})$	$\nabla^2 \rho(\mathbf{r_c}) (e/a_o^{5})$
(H ₂ O) ₂		1	1			5.5	0.02	0.0157
(H ₂ O) ₃		3	3	1		17.1	0.065	0.0524
(H ₂ O) ₄		4	4	1		29.1	0.1083	0.0916
(H ₂ O) ₅		5	5	1		37.7	0.1401	0.1216
(H ₂ O) ₆	prism	9	9	5	1	49.6	0.1892	0.1566
(H ₂ O) ₇	7A	10	10	5	1	60.53	0.2317	0.1927
(H ₂ O) ₈	8A	12	12	6	1	76.01	0.2925	0.2416
(H ₂ O) ₉	9A	13	13	6	1	85.05	0.3262	0.2724
(H ₂ O) ₁₀	10A	15	15	7	1	96.75	0.3718	0.3097
(H ₂ O) ₁₁	11A	16	18	8	1	105.69	0.4014	0.3318
(H ₂ O) ₁₂	12A	20	20	11	2	122.39	0.4677	0.3857
(H ₂ O) ₁₃	13A	21	21	11	2	128.33	0.4903	0.4034
(H ₂ O) ₁₄	14A	23	23	12	2	144.78	0.4998	0.4124
(H ₂ O) ₁₅	15A	25	25	13	2	154.82	0.595	0.4968
(H ₂ O) ₁₆	16A	28	28	16	3	169.33	0.6389	0.5245
(H ₂ O) ₁₇	17A	29	30	17	3	176.51	0.6717	0.5517
(H ₂ O) ₁₈	18A	31	32	18	3	188.64	0.7018	0.5735
(H ₂ O) ₁₉	19A	33	33	18	3	199.69	0.7645	0.6381
(H ₂ O) ₂₀	20A	36	36	21	4	216.28	0.8433	0.6905

Number of hydrogen bonds (N_{HB}) and stabilization energies (SE) for P_m , W_n and $P_m W_n$ clusters as obtained from different levels of calculation using 6-31G* basis set

Clusters]	N _{HB}	SE (kcal/mol)		
	Primary	Secondary	HF	MP2	DFT/B3LYP
P ₂	1	2	4.3	5.7	4.8
W ₂	1	-	4.7	5.2	5.4
PW	1	1	6.3	7.3	7.7
P ₃	3	1	12.8	17.7	15.6
W ₃	3	-	14.1	16.6	18.9
PW ₂	3	-	14.5	17.1	18.9
P ₂ W	3	-	13.5	16.8	17.0
P ₄	4	4	22.2	31.6	27.9
W ₄	4	-	25.3	30.7	35.2
PW ₃	4	1	25.0	30.1	33.6
P ₂ W ₂	4	2	24.9	31.1	32.7
P ₃ W	4	2	23.6	30.9	30.4