The Long and Short of Weak Hydrogen Bonds

Eluvathingal D. Jemmis Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India

> jemmis@ipc.iisc.ernet.in http://ipc.iisc.ernet.in/~jemmis

Hydrogen Bond (HB)

X-H.....Y

HB Donor

HB Acceptor

Usually electronegativity of X > H And Y is rich in electron density

Bond strength ~40 kcal/mol and below.

Weakest in the range of 4 kcal/ mol and below

Standard Explanation

Electrostatic:

Covalent: Negative Hyperconjugation

X-H

X-H...Y Y

Manifestation of HB

Lengthening and Weakening of X-H bond Red shift of X-H stretching mode Increase of Intensity of X-H stretching mode in IR spectrum Lower the redshift, weaker the H-Bond Lengthening and Weakening of X-H bond Red shift of X-H stretching mode Increase of Intensity of X-H stretching mode in IR spectrum

Weaker the H-Bond, Lower the redshift minimal lengthening of X-H bond

Shortening of X-H bond and blue-shift in in X-H frequency is counter-intuitive even for the weakest of H-Bonds Yet many examples are now known where

Shortening and Strengthening of X-H bond Blue shift of X-H stretching mode Decrease of Intensity of X-H stretching mode in IR spectrum

How do we understand the reversal?

H ₃ C-HOH ₂	$H_2C=CH-HOH_2$
F ₃ C-HC ₆ H ₆	C ₆ H ₅ -H…C ₆ H ₆
F ₃ Si-HNH ₃	F₄P-HFH
F ₂ N-HFH	F-Kr-HCO

Plan of the talk

How we got interested in the problem

Review of explanations available

Detailed analysis of PES

Electron Density Shifts

Generalizations

Acknowledgements

How we got interested in the problem

Fig. 1 The C-H \cdots π interactions in 1

Fig. 2 Pseudo-octahedral arrangement of CHCl₃ around the $C(1)\equiv C(1')$ ethyne bond in 2, showing the C-H··· π interactions

Mingos, D. M. P et al. J. Chem. Soc., Chem. Commun, 1994, 1787

All	results	at	MP2/6-31	1+G(d,p)	levels
-----	---------	----	----------	----------	--------

K. S. Viswanathan 1996

J. Mol. Str. 1999, 510,59

SCF	-0.23	-0.69	-0.69
MP2	-1.44 (-1.57+0.14)	-1.86 (-1.06-0.80)	-2.31 (-0.72-1.59)
Total	-1.67	-2.55	-3.00

The decrease of the C-H bond lengths of the CH₃Cl, CH₂Cl₂ and CHCl₃ in the complexes considered here in relation to the isolated molecules is in tune with the theoretical and experimental result on J. Mol. Str. 2000, 556,315. the 1:1 CHCl₃-acetylene complex [16]. Such decrease of the C–H bond length on formation of the C–H... π bond has forced the term anti-H-bond in literature [23]. The decrease in the C-H bond length is an attempt to increase the dispersion energy by bringing electrons in the two molecules as close as possible. This is to be contrasted with the conventional H-Bond where the interactions are dominated by electrostatics. This is enhanced by the stretching of the X-H bond.

Some Experimental Results

Experimental wavenumber shifts of ν (CH) and relative intensities (in parentheses) observed for complexes of HCCl_{3-x}F_x with oxygen-containing bases in liquefied rare gases

Base	Solvent	HCF ₃	HCClF ₂	$\mathrm{HCCl}_{2}\mathrm{F}$	HCCl ₃
(CH ₃) ₂ O	Ar	+17.7 (0.09)	+14.0 (0.86)	+4.8 (33)	- 8.3 (56)
(CD ₃) ₂ O	Ar	+18(0.14)			
(CD ₃) ₂ CO	Kr	+26.7(0.08)	+24.1(0.61)	+15.5(3.8)	+0.6(58)
C_2D_4O	Kr	+24.1 (0.13)	+20.7 (0.48)	+14.2 (4.5)	+1.3(69)

van der Veken, B. J. *et al. JACS*, **2001**, 123, 12290. JACS, **2002**, 124, 7490. JACS, **2002**, 124, 11854.

Some Experimental Results

cation	anion	"a _{1g} " (cm ⁻¹) Raman	$\Delta \nu$	"e _{1u} " (cm ⁻¹) infrared	$\Delta \nu$
[FeCp ₂] ⁺	[PF ₆] ⁻ [BF ₄] ⁻ [FeCl ₄] ⁻	3130 3126 3116 2114	$^{+10}_{+6}_{-6}$	3124 3103 3102 2103	$^{+14}_{-7}$
[CoCp ₂]+	$[I_3]^-$ $[Co(CN)_6]^{3-}$ $[PF_6]^-$ $[Co(CO)_4]^-$ $[Br_3]^-$ $[I]^-$	3098 3135 3134 3128 3110 3059	-22 +11 +10 +4 -14 -65	3090 3128 av 3128 3119 3100 3057	-20 +13 av +13 +4 -15 -58

Diana, E; Stanghellini, P. L, JACS, 2004, 126, 7418.

Dispersion Energy and Pauli Repulsion

Dispersion energy (Intermolecular correlation energy) major component in the total Interaction energy of the weak complexes. To increase the dispersion energy, molecules have to come closer and this brings H in Pauli/short range repulsive region, so X-H bond shortens.

Several X-H bond contractions are predicted even at HF theory. In many examples, near the equilibrium distance X-H bond Lengthens from a "pre-shortened" form. **Three Examples**

C₆H₅-----HCH3 BLUE SHIFT

CH4-----NH3 RED SHIFT

C6H6-----HCCI3 BLUE SHIFT

Redistribution of Electron Density

Considerable amount of charge transfer from H bond acceptor is 'directed' to remote part of H bond donor . Very less charge transfer to sigma* X-H bond. The charge gain at the remote part triggers an internal rearrangement of H bond donor and its effect is X-H bond shortening.

Why the NBO charge transfer is different for different HB donors? How a rearrangement causes X-H bond contraction? Both Blue-shifting and Redshifting HB's have similar electron density Shifts in several examples.

Electric Field causes the shortening

An X-H bond having a negative dipole derivative shortens under a weak negative electric field. X-H bond shortening is, therefore, due to the weak HB acceptor. Enhanced shortening at equilibrium than 'point charge model prediction' occurs due to Pauly repulsion.

Why different X-H bonds have different dipole derivatives? Why charge transfer causes enhanced X-H bond contraction? Hybridization

% s character at X of the X-H bond increases continuously when a proton acceptor approaches the proton donor. For improper H bond, the lengthening effect of (negative) hyper conjugation is unable to overcome the shortening caused by this hybridization change.

%s character increases in case of proper H bond donors too, but some never shows improper behavior.

A Unified Explanation

Based on Equilibrium Geometry

Proper (Red shift, Bond	Improper (Blue shift, Bond
lengthening)	Shortening)
H ₂ O, HF, NH ₃ , HCl, etc with	CHF ₃ with FH, ClH, OH ₂ , SH ₂ and with
all HB acceptors. ⁴	pi donors such as benzene, acetylene etc. ^{1a,9,14}
HCCH, HCN with H2O, ^{7d} Pi	CHF ₂ Cl, CHFCl ₂ with oxygen donors. ^{1j}
acceptors ^{1b}	CH ₄ with pi donors ^{1g} with H ₂ O, MeOH,
	$H_2CO.^{7a}$
CHF ₃ with electron donor like	Benzene dimer. ^{1b}
Cl ⁻ , F ⁻ , N(CH ₃) ₃ , NH(CH ₃) ₂ . ^{9,14}	X-Ig-H with OC, N ₂ , CO, H ₂ O etc. ^{25,26}
CH_4 with Cl^{1i}	F ₃ SiH with various HB acceptors. ^{9,27}
	F_2NH with $FH^{9, 28}$ F_4PH dimer. ²⁹

Based on HB Donor	
Proper (Red shift, Bond lengthening)	Pro-improper (Blue/Red Shift, Bond shortening/lengthening)
H ₂ O, FOH, HF, NH ₃ , HCl, HF	Alkanes, Alkenes, Aldehydes, CH _x F _{4-x} ,
etc	CH_xCl_{4-x}, C_6H_6
$F_2C=CH_2$	F_3SiH , F_2NH , F_2PH , F_4PH
HCCH, HCN, FCCH,	X-Ng-H, ($X = F$, Cl, OH; Ng = noble gas)

Α

HO-H...OH2

В

F3C-H...OH2

С

F3C-H...NH3

F3CH---CI-

F3CH---OH2

НЗС-Н 1.0909		
F3C-H 1.0876	НО-Н	0.9709
СНЗ-СС-Н 1.0678	FO-H	0.9813
НСС-Н 1.0677	H2N-H	1.0169
FCC-H 1.0660	F2N-H	1.0293
H2CCH-H 1.0859		
FHCCH-H 1.0834		
F2CCH-H 1.0803		

F2CCF-H 1.0801

Origin of Electron Density Shift

A. Electronegativity of X.

the bond.

1. X.

Η.

- 2. X H
 - δ-----δ+

B. The more electro negative the X, the more electron deficient the RHS of H, the more charged the atoms,

the more electron rich the bond and the more short

C. Electron withdrawing of X, and depletion at RHS of H leads to the distribution as found at free monomer, to make the molecule stable.

D. The remaining 'e.d. at RHS' of H in the free structure is needed to stabilize the molecule.

E. This stabilization can at least be maintained if the 'e.d. at RHS' is replaced by Y.

F. OR, electron withdrawing effect of X withdraw the 'e.d. at RHS' further in presence of Y.

G. B.....the more e.d. deficient the RHS of H, the more charged the atoms, the more electron rich the bond and the shorter the bond.

- 3. X—H.....Y
 - δ-- δ++ δ-

4. X-H bond contraction in presence of Y.

But, Many X-H Bonds are not Contracting....

Α

В

X-H...Y

- A. The more positive the H the stronger the lengthening effect due to Y.
- B. The more positive the H, the less the e.d. available at H, for X to pull.
- C. The more electron rich the bond, the less effect due to the e.d. shift.

- A. The less positive the H the weaker the lengthening effect due to Y.
- B. The less positive the H, the more the e.d. available at H, for X to pull.
- C. The less electron rich the bond, the more effect due to the e.d. shift.

X-H...Y

- F-H...F-F₂C-H Karpfen, A.; Kryachko, E. S. JPC-A, 2003, 107, 9724.
- F-H...F-F₂Si-H Karpfen, A. J. Mol.Str.(Theochem), 2004, 710, 85.
- **F-H...O=CH**₂ Karpfen, A.; Kryachko, E. S. JPC-A, **2005**, 109, 8930.
- F-H...F-FN-H, F-H...F-FP-H, F-H...F-FAs-H Karpfen, A. J. Mol.Str.(Theochem), 2005, 757, 203.
- HO-H...O=S(CH₃)₂ Mrazkova, E.; Hobza, P. JPC-A, 2003, 107, 1032.
- HO-H...O(C4H9)(C2H4OH) Katsumoto, Y.; Komastu, H.; Ohno, K. JACS, 2006, 128, 9278.

Converting pro-improper to proper

H₂N-H (1.0169 Å)

H₃N⁺-H (1.0287 Å)

F₂N-H (1.0293 Å)

Figure 3. Raman spectra, normalized to unit area, of pure cyclohexenone at different temperatures in the vC=O region. The pseudo-isosbestic point is at about 1679 cm⁻¹. Increasing temperature promotes changes in the intensity of the bands that are denoted by the arrows.

Figure 6. FTIR spectra of cyclohexenone in the region of the C–H stretching modes, for pure liquid and CCl₄ solutions.

Nolasco, M. M.; Riberio-Claro, P. J. A. Chem. Phys. Chem. 2005, 6, 496

Figure 4. Room-temperature Raman spectra of cyclohexenone solutions in CCl_4 and in CH_3OH , at different mole fractions (x), in the vC=O region.

Figure 6. FTIR spectra of cyclohexenone in the region of the C–H stretching modes, for pure liquid and CCI_4 solutions.

Nolasco, M. M.; Riberio-Claro, P. J. A. Chem. Phys. Chem. 2005, 6, 496

ACKNOWLEDGEMENTS

PROFESSORS E. ARUNAN K. VISWANATHAN J. LESZCZYNSKI

GIJU SUBRAMANIAN

JORLY JOSEPH

UNIVERSITY OF HYDEABAD INDIAN INSTITUTE OF SCIENCE

THANK YOU FOR YOUR ATTENTION

