HYDROGEN BOND RADII: FROM MI CROWAVE SPCETROSCOPIC, AB INITIO AND AIM STUDIES

E. Arunan

Inorganic and Physical Chemistry Department Indian Institute of Science Bangalore. 560012 INDIA

IUPAC DISCUSSION MEETING
September 18, 2006
Indian Institute of Science. Bangalore.

Acknowledgements

- P. K. Mandal, Mausumi Goswami, B. Raghavendra, Aiswarya Lakshmi and Dharmendar Ramdass (FTMW work)
- B. Lakshmi and Sujeetha (CSD analysis)
- DST, CSIR, Director IISc.
- Profs. S.R.Gadre, A.G.Samuelson, and P.C. Mathias

Outline

- Pulsed Nozzle Fourier Transform Microwave Spectrometer.
- 'Hydrogen bonded complexes':
$-\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{H}_{2} \mathrm{~S}(\mathrm{~S}-\mathrm{H} \bullet \cdots \pi)$
- $\mathrm{Ar}_{2}-\mathrm{H}_{2} \mathrm{~S}$ (H bond?)
- Definition of a Hydrogen bond radius for several HX donors and acceptors:
- Empirical, ab initio and AIM studies
- Recommended radii for H, C, F, N, O, S for strong, medium and weak hydrogen bonds
- Conclusions

Pulsed Nozzle Fourier Transform Microwave Spectrometer

Similar to FT-NMR. Instead of RF, a microwave pulse is applied. Double superheterodyne detection is used by which the signal In 2-26 GHz range is brought down to $\leq 1 \mathrm{MHz}$ before digitization

E. Arunan et al. Curr. Sci. 2002

Pankaj Mandal

$\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{H}_{2} \mathrm{~S}$

- $\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{HX}(X=\mathrm{F}, \mathrm{Cl}$, and OH$)$ all have Π-hydrogen bonded structures.
- Is $\mathrm{H}_{2} \mathrm{~S}$ strong enough as a Π hydrogen bond donor?
- Compare $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{~S}$ complexes.
- Where to look for $\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{H}_{2} \mathrm{~S}$ transitions?

Rotational constants (MHz) for similar complexes

B	HF	$\mathrm{H}_{2} \mathrm{O}$	HCl	$\mathrm{H}_{2} \mathrm{~S}$		
Ar	3065.7	2988.2	1678.5	1681.4		
Ar_{2}	3576.5	3457.2	1733.9	1733.1		
	1739.1	1731.8	1667.9	1617.7		
	1161.0	1144.6	844.5	830.3		
Ar_{3}	1188.2	1172.1	843.9	819.0		
$\mathrm{C}_{6} \mathrm{H}_{6}$	2048.5	1994.8	1237.7	1168.5		Weak
:---						
acceptors						
$\mathrm{C}_{2} \mathrm{H}_{4}$	24122 acrong	aceptor				
:---						

MP2 level predictions

Constant (MHz)	$6-31$ G^{*}	$6-311$ $++\mathrm{G}^{* *}$
A	22884	22945
B	1967	2000
C	1858	1917

Search for $\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{H}_{2} \mathrm{~S}$

- $1_{01} \rightarrow 2_{02}$ for $\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{HCl}$ is at 8951.4 MHz
- Mausumi started searching for the same transition for $\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{H}_{2} \mathrm{~S}$ from 8950 MHz down. Ab initio predictions at 7650 and 7834 MHz
- After a long, long search, she observed it at 7685.3 MHz (closer to $\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{Ar} 7655.7$ MHz reported last year).
- Other lines could be predicted and observed.
- Each line was split in to four (two doublets).

Observed transitions for $\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{H}_{2} \mathrm{~S}$

	Freq (MHz)	Res. (kHz)	Freq (MHz)	Res. (kHz)	Freq (MHz)	Res. (kHz)	Freq (MHz)	ReI.I (kHz)
$0_{00}-1_{01}$	$\mathbf{3 8 3 9 . 2 8 8 7}$	6.6	$\mathbf{3 8 3 9 . 5 2 8 9}$	3.3	$\mathbf{3 8 4 2 . 5 7 8 9}$	9.1	$\mathbf{3 8 4 2 . 8 4 4 1}$	3.9
$1_{11}-2_{12}$	$\mathbf{7 5 6 7 . 9 8 9 5}$	2.0	$\mathbf{7 5 6 8 . 2 0 7 1}$	-5.6	$\mathbf{7 5 7 3 . 8 0 4 6}$	-5.1	$\mathbf{7 5 7 4 . 0 4 4 7}$	-4.7
$1_{01}-2_{02}$	$\mathbf{7 6 7 7 . 8 7 4 6}$	4.2	$\mathbf{7 6 7 8 . 3 6 2 0}$	6.5	$\mathbf{7 6 8 4 . 4 7 8 6}$	12.1	$\mathbf{7 6 8 5 . 0 0 8 2}$	3.1
$1_{10}-2_{11}$	$\mathbf{7 7 7 9 . 9 8 3 2}$	-1.5	$\mathbf{7 7 8 0 . 7 4 3 4}$	0.8	$\mathbf{7 7 8 8 . 0 7 5 0}$	-5.5	$\mathbf{7 7 8 8 . 9 2 1 9}$	-5.1
$2_{12}-3_{13}$	$\mathbf{1 1 3 5 0 . 9 4 9 0}$	-3.6	$\mathbf{1 1 3 5 1 . 2 8 8 3}$	-1.5	$\mathbf{1 1 3 5 9 . 7 3 5 1}$	-6.7	$\mathbf{1 1 3 6 0 . 0 9 4 7}$	-5.6
$2_{21}-3_{22}$	$\mathbf{1 1 4 9 1 . 0 7 7 0}$	-7.6	$\mathbf{1 1 4 9 1 . 8 3 6 4}$	-7.1	$\mathbf{1 1 5 0 3 . 1 9 5 2}$	-6.8	$\mathbf{1 1 5 0 4 . 0 1 7 1}$	-10.2
$2_{20}-3_{21}$	$\mathbf{1 1 4 9 2 . 4 4 0 2}$	-5.8	$\mathbf{1 1 4 9 3 . 2 0 1 9}$	-8.2	$\mathbf{1 1 5 0 4 . 5 6 6 2}$	-9.1	$\mathbf{1 1 5 0 5 . 4 0 0 4}$	-8.0
$2_{02}-3_{03}$	$\mathbf{1 1 5 1 5 . 0 7 5 8}$	4.4	$\mathbf{1 1 5 1 5 . 8 0 5 1}$	10.9	$\mathbf{1 1 5 2 5 . 0 2 7 5}$	10.1	$\mathbf{1 1 5 2 5 . 8 3 4 6}$	15.0
$2_{11}-3_{12}$	$\mathbf{1 1 6 6 8 . 8 5 0 1}$	-1.7	$\mathbf{1 1 6 6 9 . 9 7 9 7}$	-6.2	$\mathbf{1 1 6 8 1 . 0 5 3 9}$	-5.2	$\mathbf{1 1 6 8 2 . 3 2 0 6}$	-4.6
$3_{13}-4_{14}$	$\mathbf{1 5 1 3 2 . 6 7 9 6}$	-4.8	$\mathbf{1 5 1 3 3 . 1 3 0 1}$	-2.6	$\mathbf{1 5 1 4 4 . 5 0 3 3}$	-4.3	$\mathbf{1 5 1 4 4 . 9 7 7 2}$	-6.4
$3_{22}-4_{23}$	$\mathbf{1 5 3 1 9 . 6 0 3 3}$	7.2	$\mathbf{1 5 3 2 0 . 6 1 4 3}$	7.9	$\mathbf{1 5 3 3 5 . 8 7 7 5}$	8.9	$\mathbf{1 5 3 3 6 . 9 7 5 9}$	10.9
$3_{21}-4_{22}$	$\mathbf{1 5 3 2 3 . 0 0 5 2}$	6.4	$\mathbf{1 5 3 2 4 . 0 3 0 5}$	8.4	$\mathbf{1 5 3 3 9 . 3 1 1 1}$	9.8	$\mathbf{1 5 3 4 0 . 4 2 6 9}$	10.0
$3_{03}-4_{04}$	$\mathbf{1 5 3 5 0 . 1 9 5 4}$	3.5	$\mathbf{1 5 3 5 1 . 1 4 8 7}$	1.8	$\mathbf{1 5 3 6 3 . 5 5 6 8}$	6.8	$\mathbf{1 5 3 6 4 . 6 2 4 6}$	15.6
$3_{12}-4_{13}$	$\mathbf{1 5 5 5 6 . 3 6 4 6}$	-3.1	$\mathbf{1 5 5 5 7 . 8 7 1 6}$	-3.5	$\mathbf{1 5 5 7 2 . 7 5 7 6}$	-5.4	$\mathbf{1 5 5 7 4 . 4 3 7 3}$	-6.9
$4_{14}-5_{15}$	$\mathbf{1 8 9 1 2 . 7 7 3 0}$	-0.5	$\mathbf{1 8 9 1 3 . 3 2 9 3}$	-2.5	$\mathbf{1 8 9 2 7 . 7 1 8 5}$	-1.5	$\mathbf{1 8 9 2 8 . 3 1 0 8}$	-1.1
$4_{04}-5_{05}$	$\mathbf{1 9 1 8 2 . 5 3 9 8}$	0.09	$\mathbf{1 9 1 8 3 . 7 1 9 6}$	0.2	$\mathbf{1 9 1 9 9 . 3 9 1 2}$	-1.7	$\mathbf{1 9 2 0 0 . 6 3 9 4}$	-6.2
$4_{13}-5_{14}$	$\mathbf{1 9 4 4 2 . 0 7 9 2}$	-1.6	$\mathbf{1 9 4 4 3 . 9 5 5 9}$	-1.4	$\mathbf{1 9 4 6 2 . 7 6 4 5}$	-1.3	$\mathbf{1 9 4 6 4 . 8 5 5 2}$	-1.2

Fitted parameters for $\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{H}_{2} \mathrm{~S}$

Parameters	L 1	L 2	U 1	U 2
$\mathrm{~A}(\mathrm{MHz})$	$25961(34)$	$25968(42)$	$26189(55)$	$26204(61)$
$\mathrm{B}(\mathrm{MHz})$	$1972.682(2)$	$1972.937(2)$	$1974.891(3)$	$1975.178(3)$
$\mathrm{C}(\mathrm{MHz})$	$1866.658(2)$	$1866.646(2)$	$1867.732(3)$	$1867.715(3)$
$\mathrm{d}_{1}(\mathrm{kHz})$	$-0.80(2)$	$-0.82(2)$	$-0.74(3)$	$-0.76(4)$
$\mathrm{d}_{2}(\mathrm{kHz})$	$-0.21(2)$	$-0.22(2)$	$-0.24(3)$	$-0.24(3)$
$\mathrm{D}_{\mathrm{J}}(\mathrm{kHz})$	$14.30(2)$	$14.31(2)$	$13.26(3)$	$13.28(3)$
$\mathrm{D}_{\mathrm{JK}}(\mathrm{MHz})$	$1.0587(2)$	$1.0575(3)$	$0.9691(4)$	$0.9684(4)$
$\mathrm{Sd}(\mathrm{kHz})$	4.4	5.6	7.1	8.1

$\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{HDS} / \mathrm{H}_{2} \mathrm{~S}$ studies

- $\mathrm{D}_{2} \mathrm{~S}$ showed both splitting, small became smaller and large became larger.
- HDS showed only the smaller splitting, comparable to $\mathrm{D}_{2} \mathrm{~S}$.
- Obviously the smaller splitting is due to $\mathrm{C}_{2} \mathrm{H}_{4}$ tunneling.
- Larger splitting is due to internal rotation of $\mathrm{H}_{2} \mathrm{~S}$. In general tunneling splitting decreases on deuteriation.

Fitted Parameters for $\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{H}_{2}{ }^{34} \mathrm{~S}, \mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{HDS}, \mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{D}_{2} \mathrm{~S}$

IISC

		$\mathrm{A}(\mathrm{GHz})$	$\mathrm{B}(\mathrm{MHz})$	$\mathrm{C}(\mathrm{MHz})$	$\mathrm{D}_{\mathrm{J}}(\mathrm{kHz})$	$\mathrm{D}_{\mathrm{JK}}(\mathrm{MHz})$	$\mathrm{Sd}(\mathrm{kHz})$
	L 1	$25.9(16)$	$1922.87(1)$	$1822.06(1)$	$13.7(5)$	$1.011(17)$	34.1
$\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{H}_{2}{ }^{34} \mathrm{~S}$	L 2	$25.9(16)$	$1923.11(1)$	$1822.05(1)$	$13.8(5)$	$1.010(17)$	35.0
	U 1	$25.9(14)$	$1924.73(1)$	$1822.85(1)$	$12.6(5)$	$0.928(15)$	31.5
	U2	$26.0(14)$	$1925.00(1)$	$1822.83(1)$	$12.7(5)$	$0.927(15)$	30.9
	L1	$25.7(9)$	$1927.60(1)$	$1830.31(1)$	$11.9(2)$	$0.924(13)$	45.5
$\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{D}_{2} \mathrm{~S}$	L 2	$25.6(9)$	$1927.67(1)$	$1830.30(1)$	$11.8(3)$	$0.925(13)$	46.9
	U1	$25.7(10)$	$1931.52(1)$	$1832.60(1)$	$12.0(3)$	$0.904(15)$	53.4
	U2	$25.7(10)$	$1931.60(1)$	$1832.60(1)$	$12.0(3)$	$0.904(16)$	54.8
	L	$25.9(10)$	$1964.60(1)$	$1859.51(1)$	$11.1(4)$	$0.882(18)$	46.7
$\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{HDS}$	U	$25.9(10)$	$1964.68(1)$	$1859.50(1)$	$11.1(4)$	$0.882(18)$	47.8

Other $\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{HX}(\mathrm{X}=\mathrm{F}, \mathrm{Cl})$ show no doubling of energy levels! Hydrogen bond is too strong. Larger the barrier smaller the splitting!

Splitting observed for $\mathrm{H}_{2} \mathrm{~S}$, HDS and $\mathrm{D}_{2} \mathrm{~S}$

Isotop- Omer	Smaller MHz	Larger MHz
$\mathrm{H}_{2} \mathrm{~S}$	0.14	1.67
$\mathrm{H}_{2}{ }^{34} \mathrm{~S}$	0.12	1.33
HDS	0.035	-
$\mathrm{D}_{2} \mathrm{~S}$	0.035	3.11

SH bond in $\mathrm{H}_{2} \mathrm{~S}$ moves as $\mathrm{C}_{2} \mathrm{H}_{4}$ rotates

Deuterium bond is stronger than Hydrogen bond

$\mathrm{J}=0 \rightarrow 1$ spectrum of $\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{HDS}$ showing D quadrupole coupling and $\mathrm{C}_{2} \mathrm{H}_{4}$ tunneling splitting

Substitution analysis

$\mathrm{H}_{2} \mathrm{~S} / \mathrm{HDS} / \mathrm{D}_{2} \mathrm{~S} / \mathrm{H}_{2}{ }^{34} \mathrm{~S}$ rotational constants can give substitution distances for both H and S from c.m.:

$$
|r|=\left[\left(\frac{1}{2 \mu}\right)\left(\Delta I_{a}+\Delta I_{b}+\Delta I_{c}\right)\right]^{\frac{1}{2}}
$$

They are $1.034 \AA, 1.852 \AA$, and
 $2.163 \AA$, respectively

Is $\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{H}_{2} \mathrm{~S}$ a hydrogen bonded complex?

- Geometry is nearly the same as $\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{H}_{2} \mathrm{O}$
- Binding energy ($\mathrm{kcal} \mathrm{mol}^{-1}$) is less! MP2 results

	$6-311++$ $G^{* *}$	$6-311++$ $\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p})$	$6-311++$ $\mathrm{G}(3 \mathrm{df}, \mathrm{pd})$	$6-311++$ $\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$	Aug-cc- pVTZ
$\Delta \mathrm{E}$	-0.9	-1.53	-1.48	-1.43	-1.0
$\Delta \mathrm{E}_{\text {ZPE }}$	$\mathbf{0 . 1 7}$	-0.75	-0.68	-0.63	-0.63
BSSE	$\mathbf{1 . 2 6}$	0.59	0.61	0.81	$\mathbf{1 . 2 1}$

S-H stretching frequency

	S-H symmetric stretching	S-H asymmetric stretching
$\mathrm{H}_{2} \mathrm{~S}$	2818	2838
$\mathrm{Ar}-\mathrm{H}_{2} \mathrm{~S}$	2817	2836
$\mathrm{Ar}_{2}-\mathrm{H}_{2} \mathrm{~S}$	2818	2837
$\mathrm{H}_{2}{\mathrm{~S}-\mathrm{H}_{2} \mathrm{~S}(\mathrm{a})}^{\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{H}_{2} \mathrm{~S}(\mathrm{~d})}$	2817	2836
$\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{H}_{2} \mathrm{~S}$	2806	2830

Thiophenol in benzene solution shows a $16 \mathrm{~cm}^{-1}$ red shift!

$\mathrm{Ar}_{2}-\mathrm{H}_{2} \mathrm{~S}$

- $\mathrm{Ar}_{\mathrm{m}}-\mathrm{H}_{2} \mathrm{O}$ complexes have been investigated in detail.
- Studies on analogous $\mathrm{H}_{2} \mathrm{~S}$ complexes would be useful for proper understanding
- Are these hydrogen bonded or van der Waals complexes?

$\mathrm{Ar}_{2}-\mathrm{H}_{2} \mathrm{~S}$ asymmetric top

* Assuming $\mathrm{H}_{2} \mathrm{~S}$ to be effectively spherical, implies that only a dipole is present
$e e \leftrightarrow e o$ and $o o \leftrightarrow o e$
* $C_{2 v}$ symmetry and two indistinguishable Ar nuclei imply that some rotational levels will be missing
$o o$ and oe levels are not allowed.

The Ar_{2} center to H distances are $1.547 \AA$ and $1.401 \AA$ Both H are closer to Ar_{2}

Barrier for internal rotation of $\mathrm{H}_{2} \mathrm{~S}$

Potential is anisotropic, rotation about axes that break "H bonds" have higher barrier

Now that we have reliable distances, what do we do with them?

Can we determine a hydrogen bond radius?

Pauling defined different radii for atoms

(L. Pauling, The Nature of the Chemical Bond,Cornell University Press, Ithaka, 1960)

Covalent Radius
Ionic Radius
Metallic Radius
van der Waals Radius
Bonding:

Covalent
Ionic
Metallic
van der Waals
Hydrogen bonding

Is there a Hydrogen bond radius??

CAN THERE BE A HYDROGEN BOND RADIUS?

- Jeffrey in his book "Introduction to hydrogen bonding" Oxofrd University Press 1997, page 14 comments: "it is not possible to separate hydrogen bond distances into hydrogen bond atomic radii, as Pauling did so successfully for covalent and ionic radii in The Nature of Chemical Bond"

CAN THERE BE A HYDROGEN BOND RADIUS?

- A. J. Stone in his book "The Theory of Intermolecular Forces" Oxofrd University Press 1996, page 116 comments on the BuckhinghamFowler (Can. J. Chem. 1985) model: "The Hydrogen atom forming the hydrogen bond is not assigned a radius; it is contained within the van der Waals sphere of the heavy atom to which it is attached"

Why no hydrogen bond radius so far?

IISC

- Unlike other 'bonding' involving two atoms, hydrogen bond involves at least 3 if not more, $\mathrm{X}-\mathrm{H} \bullet \bullet$ Y.
- Li Bian (JPC-A 2003, 107, 11517) says H bond donors dominate the properties and acceptors don't. Can we define it for various donors?

Is that the only problem?

- No, locating H is not easy. X-ray data is unreliable.
- Neutron data is reliable but scarce.
- Microwave structural data are limited to gas phase complexes. Location of H is difficult, but possible.
- Quadrupole coupling, dipole moment, spinspin coupling and rotational constants

Pauling's H bond FHF-

Two F^{-}interacting simultaneously with H^{+} Size of H^{+}is 0.66 fm . F-F distance nearly the twice the fluoride ion radii

What about HF complexes?

Which of the two cartoons represent $\mathrm{H}_{2} \mathrm{O}---\mathrm{HF}$ complex truly?

Buckingham and Fowler
van der Waals spheres of F and O
Gadre, Arunan
Hydrogen occupies some space in contact. H is immersed in F

H in HF is certainly not H^{+}
B---HX

B: H-bond acceptor HX: Donor
Buckingham and Fowler interpreted the intermolecular distances between A and HX as the sum of the van der Waals radii of A and X.
(Can. J. Chem.1985, 62, 2018)

\mathbf{B}	B--HF		B--HCl		B--HBr	
	$\mathrm{r}(\mathrm{A}---\mathrm{F})$	$\sigma(\mathrm{A})+\sigma(\mathrm{F})$	$\mathrm{r}(\mathrm{A}---\mathrm{Cl})$	$\sigma(\mathrm{A})+\sigma(\mathrm{Cl})$	$\mathrm{r}(\mathrm{A}--\mathrm{Br})$	$\sigma(\mathrm{A})+\sigma(\mathrm{Br})$
$\mathbf{H}_{\mathbf{2}} \mathbf{S}$	3.246	3.20	3.809	3.65	3.991	3.80
$\mathbf{H C N}$	2.805	2.85	3.405	3.30	3.610	3.45
$\mathbf{C H}_{\mathbf{3}} \mathbf{C N}$	2.751	2.85	3.294	3.30	3.494	3.45
$\mathbf{H}_{\mathbf{2}} \mathbf{O}$	2.684	2.75	3.215	3.20	3.414	3.35
$\mathbf{H}_{\mathbf{3}} \mathbf{N}$	2.71	2.85	3.136	3.30	3.255	3.45

A is the atom in B, H-bonded to HX. For $\mathrm{B}---\mathrm{HF}, \mathrm{r}(\mathrm{A}--\mathrm{X})$ is within $0.1 \AA$ of the sum of the van der Waals radii of A and X . For

*Do A---H distances mean anything?

 $\mathrm{B}---\mathrm{HCl}$ and $\mathrm{B}---\mathrm{HBr}$ it is within $0.2 \AA$ or more.
Gadre and Bhadane

- $R_{A-H}=R_{E}(A)+R_{V}(H)$
$R_{E}(A)$ is the distance from the acceptor atom/centre to the electrostatic minimum in the monomer $R_{V}(H)$ van der Waals radius of H

JCP 107, 5625 (1997)

Mandal and Arunan

- $R_{A-H}=R_{E}(A)+R_{H}(D H)$
$R_{E}(A)$ is the distance from the acceptor atom/centre to the electrostatic minimum in the monomer $R_{H}(\mathrm{DH})$ is the hydrogen bond radius for DH

JCP, 114, 3880 (2001) Empirical analysis with experimental distances and theoretical $R_{E}(A)$

$R_{A-H}-R_{E}(A)$ vs $R_{E}(A)$ plots

Fully theoretical analysis, Raghavendra, Mandal and Arunan PCCP, accepted

Models of $\mathrm{H}_{2} \mathrm{O}---\mathrm{HX}$

$\mathrm{H}_{2} \mathrm{O}---\mathrm{HF}$

$\mathrm{H}_{2} \mathrm{O}--\mathrm{HCl}$

$\mathrm{H}_{2} \mathrm{O}---\mathrm{HBr}$

Hydrogen in HX has certain effective size $\left(\mathrm{r}_{\text {eff }}\right)$ and it increases from HF to HI .
(Figures are not to scale)

Hydrogen bond radius vs dipole moment

Covalent radius of H is $0.32 \AA$ van der Waals radius of H atom $1.2 \AA$ Hydride ion radius is $1.5 \AA$

Atoms in Molecules Theory and Hydrogen bond radius

The average distance between H and CP could be compared to the H bond radius
The distance between acceptor atom/centre and CP can be compared to $R_{E}(A)$ assumed to be constant in ab initio/empirical analysis

H bond radius vs dipole moment
 IISC

Comparison

Donor	Empirical	Ab initio	ATM
HF	0.51 ± 0.09	$0.52=0.04$	0.65 ± 0.07
HCl	0.70 ± 0.10	$0.74=0.08$	0.78 ± 0.09
$\mathrm{H}_{4} \mathrm{O}$	0.75 ± 0.09	0.77 ± 0.05	$0.78=0.08$
HBr	$0.77=0.13$	$0.78=0.11$	0.81 ± 0.11
HCN	0.89 ± 0.12	$0.89=0.05$	0.85 ± 0.08
HCCH	1.07 ± 0.08	$1.01=0.05$	$0.92=0.07$
$\mathrm{H}_{4} \mathrm{~S}$	-	1.08 ± 0.16	0.97 ± 0.13
DH^{*}		1.41	1.12

For ab initio and AIM $\mathrm{R}_{\mathrm{A}---\boldsymbol{H}}$ distance is the same. The fact that H bond radius is smaller for weak Donors such as HCCH and $\mathrm{H}_{2} \mathrm{~S}$ implies the Acceptor radius must be larger

AIM Results

Donor radius plateaus, approaches a maximum always below Van der Waals radius of H atom

Table V. Comparison of $R_{(A)}(A)$ for the monomers with $R_{\text {ac }}$ from ADM theoretical calculations.

Accetor	Re(A)	$\mathrm{SR}_{\text {A }}{ }^{3}$	FAct (1)	Rac(2)	Race(3)	Rac
$\mathrm{H}_{2} \mathrm{O}$	1.22	1.29 ± 0.07	1.16	126	1.36	1.43 ± 0.07
$\mathrm{H}_{4} \mathrm{CO}$	1.24	1.32 ± 0.08	1.19	128	1.40	
HF	1.30	1.32 ± 0.05	1.23	132	1.36	1.43 ± 0.05
HN	1.30	1.33 ± 0.10	1.20	126	1.44	1.48 ± 0.13
CH CN	1.34	1.38 ± 0.08	1.25	135	1.46	1.55 ± 0.08
SO_{2}	1.34	136 ± 0.12	1.24	131	1.37	
HCN	1.40	1.42 ± 0.08	1.26	138	1.48	
$\mathrm{N}_{2} \mathrm{O}$	1.41	1.38 ± 0.04	1.32	137	1.42	
CO_{2}	1.44	138 ± 0.06	1.30	137	1.44	
OC	1.60	1.60 ± 0.09	1.43	158	1.68	
N_{2}	1.60	1.51 ± 0.06	1.41	150	1.57	
${ }^{+} \mathrm{CHH}_{6}$	1.61	1.55 ± 0.08	1.47	150	1.64	
${ }_{+} \mathrm{C}_{2} \mathrm{H}_{2}$	1.62	1.60 ± 0.07	1.46	157	1.67	1.76 ± 0.07
${ }_{+} \mathrm{C}_{2} \mathrm{H}_{4}$	1.64	1.60 ± 0.08	1.46	157	1.69	1.77 ± 0.09
$\mathrm{H}_{2} \mathrm{~S}$	1.80	1.76 ± 0.07	1.63	1.73	1.83	1.91 ± 0.07

1 for $\mathrm{HF}, 2$ for $\mathrm{HCl}, \mathrm{HBr}$ and $\mathrm{H}_{2} \mathrm{O}$ and 3 for $\mathrm{HCN}, \mathrm{HCCH}$ and $\mathrm{H}_{2} \mathrm{~S}$

SIGNIFICANT OBSERVATIONS

- Both donor and acceptor radii are different for strong, medium and weak hydrogen bonds.
- Using a single van der Waals radius should be discouraged.
- Results from 105 complexes have been condensed to recommend donor and acceptor radii for several atoms

H bond radii for donor and acceptor atoms

Atom	Strong	Mediam	Weak	Limit	Pauling
H	0.73	0.89	1.07	1.26	1.20
F	1.23	1.32	1.36	1.43	1.35
O	1.25	1.32	1.40	1.43	1.40
N	1.24	1.33	1.46	1.55	1.50
C	1.46	1.55	1.67	1.77	1.70
C	1.43	1.58	1.68	1.77	
S	1.63	1.73	1.83	1.91	1.85

Strong for HF, medium for $\mathrm{HCl}, \mathrm{HBr}$ and H 2 O and weak for $\mathrm{HCN}, \mathrm{HCCH}$ and H2S Raghavendra, Mandal and Arunan PCCP accepted for publication

What about condensed phase?

- Is hydrogen bond radii transferable to condensed phase?
- Can we determine it for NH donors for which gas phase data are scarce?
- CCSD analysis answers in the affirmative for both questions

$\mathrm{N} \cdot \bullet \cdot \mathrm{H}$ distance in O-H---pyrdinic N contact

The peak distance could be used to determine the H bond radius

Important observations

- For OH , the condensed phase radius is typically 0.1-0.2 \AA smaller than that of gas phase.
- For CH, the radii for condensed phase and gas phase are closer.
- For NH, the radius from condensed phase data yields $0.8 \pm 0.1 \AA$
- Directionality is observed for all!

PyN---H-O

Hydrogen bond peak

PyN---H-O
$\left(\mathrm{B}_{1}>2.4 \AA\right)$

PyN---H-CH2 $-\mathrm{CH}_{2}$
$\left(\mathrm{B}_{1}>2.6-3.0 \AA\right)$

PyN---H-CH2 $-\mathrm{CH}_{2}$
$\left(\mathrm{B}_{1}>3.0-3.5 \AA\right)$

Is H bond radius real?

- Klein, has come to similar conclusions recently based on electron density topology
- R. Klein J. Computational Chem. 2003, Chem. Phys. Lett. 2006
- Gillespie has come to a similar conclusion i.e. the radius of H is different for OH, NH and CH by analyzing structural data for several ligands and they are amazingly close
- Gillespie Inorg. Chem. 2004

Is H bond radius needed? IISC

- Desiraju and Steiner's book argues that there can be H bonds at $\mathrm{C}-\mathrm{O}$ distances of 3.25 to $3.3 \AA$
- According to our H bond radius

$$
\begin{aligned}
\mathrm{R}_{\mathrm{C}-\mathrm{O}} & =\mathrm{R}_{\mathrm{CH}}+\mathrm{R}_{\mathrm{H}}(\mathrm{CH})+\mathrm{R}_{\mathrm{H}}(\mathrm{CO}) \\
& =1.0+1.1+1.4=3.5 \AA
\end{aligned}
$$

Is H bond radius needed? ${ }^{\text {IIsc }}$

- A recent paper from JACS (2006), 128, 10646-10647 titled "A single CH/ π weak hydrogen bond governs stability and the photocycle of the photoactive yellow protein" notes the following:
The C-C distance is $3.78 \AA$, greater than the reported value for the CH / π hydrogen bond 3.5 (no reference). For this hydrogen bond we get

$$
\begin{aligned}
R_{C-C}= & R_{C H}+R_{H}(C H)+R_{H}(C) \\
& =1.0+1.1+1.7=3.8 \AA
\end{aligned}
$$

Did any one else think about hydrogen bond radius Before?

Acta Cryst. (1962). 15, 758

Hydrogen-Bond Radii

By S. C. Wallwork
Department of Chemistry, University of Nottingham, England

(Received 23 October 1961)
A table of classified average intermolecular hydrogen-bond distances $(Y-H \cdots Z)$ is presented. It is shown that these average distances can be represented, to a sufficient degree of accuracy, by the sums of two hydrogen-bond radii, one a constant for each donor group $\mathrm{Y}-\mathrm{H}$ and one a constant (approximately equal to the van der Waals radius) for each acceptor group 2.

Wallwork assumed that the heavy atom distances are sum of van der Waals radii of acceptors and H bond radii of donors. However, he was disappointed not to find any correlation with the donor properties

Conclusions

- A home-made PNFTMW spectrometer has been used to obtain rotational spectrum for several $\mathrm{H}_{2} \mathrm{~S}$ complexes.
- $\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{Ar}_{2}-\left(\mathrm{H}_{2} \mathrm{~S}\right)$ complexes have been identified.
- Both these complexes may be classified as hydrogen bonded, depending on the definition used.
- A hydrogen bond radius has been defined. Consistent with both gas phase and condensed phase structural data.
- Using van der Waals radii for confirming/ruling out hydrogen bonding could be misleading

Evolving definition of hydrogen bond

- Hydrogen bonding occurs when a hydrogen that is covalently bonded to an atom, has an attractive interaction with another electron-rich region either within the same or with another molecular entity
- The hydrogen bond is an attractive interaction between a group $\mathrm{D}-\mathrm{H}$ and an atom or a group of atoms A, in the same or different molecules, when there is evidence of such bond formation.

Thanks for listening

NH and SH groups

- Gas phase data do not exist. And there is not much hope of generating a data base either!
- NH_{3} acts as a proton donor in only two cases $\left(\mathrm{NH}_{3}\right)_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{NH}_{3}$.
- Our laboratory is looking at a series of $\mathrm{H}_{2} \mathrm{~S}$ complexes. Will need a few more years!

X-ray and neutron diffraction

- Cambridge crystal structure database analysis!
- A wealth of information!
- Could define hydrogen bond radius for OH , NH and CCH groups
- How?
- X-ray diffraction is less reliable for locating H. Hence, in the past heavy atom distances were only interpreted!

H---O Distances from the database

X-ray diffraction

Neutron diffraction

$$
\mathrm{O}-\mathrm{H}---\mathrm{O}=\mathrm{C} \text { contacts }
$$

PyN---H-O

PyN---H-C

PyN---H-N

PyN---H-CH2-C

PyN---H- $\mathrm{CH}_{2}-\mathrm{CH}_{2}$

So, what about CH groups

 without electronegative substituents?- Some believed in hydrogen bonding by such groups.
- Others did not. Controversial!
- Desiraju and Steiner looked at the hydrogen bond angles! They were convinced and most others are too!

$\mathrm{N} \bullet \bullet \cdot \mathrm{H}-\mathrm{X}$ angle distribution ${ }^{\text {IISC }}$

Pyridine- $\mathrm{H}_{-} \mathrm{CH}_{2}-\mathrm{CH}_{2}$

Pyridine-HO

H bond radius from X-ray crystal structure database

$\mathrm{H}-\mathrm{X}$	$\mathrm{CN}(1.34)$	Pyridine (1.27)	$\mathrm{C}_{2} \mathrm{O}(1.22)$	$\mathrm{C}=\mathrm{O}(1.26)$
$\mathrm{H}-\mathrm{O}$	0.64	0.59	0.76	0.59
$\mathrm{H}-\mathrm{N}$	0.86	0.83	0.83	0.72
$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}$	-	-	-	1.10
$\mathrm{H}-\mathrm{C}=\mathrm{O}$	-	-	1.30	1.18
HCCl		-	1.10	0.90

Lakshmi, Samuelson, Jovan Jose, and Arunan New J. Chem. 2005

