

Weak Intermolecular interactions: Insights from experimental and theoretical charge densities.

T. N. Guru Row

Solid State and Structural Chemistry Unit Indian Institute of Science, Bangalore 560012,INDIA Email: ssctng@sscu.iisc.ernet.in website http://144.16.75.32

***R. F. W. Bader,** *Atoms In Molecules*: A Quantum Theory, Oxford, **1990.**

Characterization of Hydrogen Bonds

8 Criteria of Koch and Popelier

- 1. **Bond Critical Point (BCP) between** a donor atom and an acceptor atom linked via a bond path.
- 2. Charge density evaluated at the BCP and its relationship with the bonding energy.
- Positive value of the Laplacian at 3. the BCP and correlation with the bonding energy.
- Mutual penetration of 4. the hydrogen and the acceptor atom

Koch, U.; Popelier, P. L. A. J. Phys. Chem. 1995, 99, 9747; P. L. A. Popelier, Atoms in Molecules. An Introduction, Prentice Hall, UK. 2000, pp150-153.

F

Τ

R

S

Т

C

R

Ι

Т

E

R

C(3)

→H(3)

$$\mathbf{V}(\mathbf{r}_{\rm CP}) = \left(\frac{1}{4}\right) \nabla^2 \rho(\mathbf{r}_{\rm CP}) - 2\mathbf{G}(\mathbf{r}_{\rm CP})$$

$$\mathrm{E}(\mathrm{r}_{\mathrm{CP}}) = \mathrm{G}(\mathrm{r}_{\mathrm{CP}}) + \mathrm{V}(\mathrm{r}_{\mathrm{CP}})$$

 $r_A \to BCP$

Bonding radius

and $\Delta r_{\rm D} + \Delta r_{\rm A} > 0$

Evaluation of integrated properties over the basin of the H atoms

5. Increased net charge on the H-atom due to loss of electrons; the difference in charge between the crystal and the bare molecule should be positive

 Δq (crystal – isolated) > 0

6. The energetic destabilization of the H atom

 ΔE (crystal – isolated) > 0

7. Decrease of dipolar polarization of the H atom

 ΔM (crystal – isolated) < 0

8. Depletion of atomic volume H atom

 $\Delta V (crystal - isolated) < 0$

Experimental Requirements

• Equipment:

- ✓ good quality crystals
- ✓ Electron Density Model (Multipole)

Experimental data quality

- high resolution data for accurately fixing atomic position and thermal parameters
- $\Rightarrow \sin\theta/\lambda > 1.0 \text{ Å}^{-1} (d < 0.5 \text{ Å})$
- small thermal motion, to better deconvolute the electron density
- \Rightarrow low temperature
- extensive and complete datasets, for allowing refinement of additional parameters and properly account for aspherical distribution of the density
- \Rightarrow large redundancy
- accurate corrections of the diffracted intensities measured
- \Rightarrow extinction, absorption, TDS, background etc.

The atomic density

 $\rho_{atom}(\mathbf{r}) = \rho_{core} + \rho_{valence}(\mathbf{r})$ **Routine Refinement**

- κ = Contraction and expansion parameter, scales the radial coordinates r.
- P_{v} = Population variable of the valence shell.

Modified Spherical Atom Model

Radial Refinement

$$\rho_{atom}(\mathbf{r}) = \rho_{core} + \rho'_{valence}(\kappa \mathbf{r}) = \rho_{core} + P_v \kappa^3 \rho_{valence}(\kappa \mathbf{r})$$

P. Coppens, T. N. Guru Row, P. Leung, P. J. Becker, Y. W. Yang, E. D. Stevens, *Acta cryst.* **1979**, *A35*, 63. Multipole Model

Hansen & Coppens multipole formalism*

The atomic density

Aspherical Refinement

 P_{v} = Population variable

 κ , κ' = Contraction and expansion parameter

 R_1 = Radial function

 $P_{lm\pm}, d_{lm\pm}$ = Spherical Harmonic functions

*N. K. Hansen and P. Coppens, *Acta Cryst.* **1978**, *A34*, 909.

• Refinement strategy:

- \Rightarrow spherical, aspherical (multipole) formalism
- ⇒ multipole expansion upto hexadecapole/octapole for non H atoms and dipole for H atoms
- \Rightarrow H atom treatment: refined isotropically with bond values from neutron data
 - Residual density:

$$\Delta \rho(\mathbf{r}) = \rho_{obs}(\mathbf{r}) - \rho_{calc}(\mathbf{r}) = \frac{1}{V} \sum_{H} \Delta F \exp(-2\pi i H \cdot \mathbf{r})$$

Deformation density:

 \Rightarrow standard deformation density:

$$\Delta \rho(\mathbf{r}) = \rho(\mathbf{r}) - \rho_{pro}(\mathbf{r})$$

⇒ static and dynamic deformation density

Single Crystal X-ray Diffraction Data at 90K

Compounds	Coumarin	1-thiocoumarin	2-thiocoumarin	dithiocoumarin
Formula	$C_9H_6O_2$	C ₉ H ₆ OS	C ₉ H ₆ OS	$C_9H_6S_2$
Crystal size/mm	0.60×0.17×0.09	0.40×0.21×0.18	0.60×0.37×0.10	0.40×0.26×0.06
Formula weight	146.14	162.2	162.2	178.28
Crystal system	Orthorhombic	Monoclinic	Orthorhombic	Triclinic
Unit cell dimensions/Å				
a	5.6091(13)	3.8056(3)	4.0515(2)	7.4510(5)
b	7.7343(19)	8.4552(7)	10.1749(6)	7.5751(4)
С	15.478(4)	11.3651(10)	17.6519(9)	8.2553(5)
lpha /°	90	90	90	83.268(3)
$oldsymbol{eta}$ /°	90	95.629(4)	95.629(4) 90	
γ/°	90	90	90	114.414(3)
$Z; V/\text{\AA}^3$	4;671.5(3)	2;363.93(5)	4;727.67(7)	2;391.31(4)
Space group	$Pc 2_1 b$	Pc	$P 2_1 2_1 2_1$	P 1
$D_{\rm c}/{\rm g~cm}^{-1}$	1.446	1.48	1.481	1.513
μ/mm^{-1}	0.103	0.369	0.369	0.599
$(\sin\theta/\lambda)_{\rm max}/{\rm \AA}^{-1}$	1.08	1.08	1.08	1.08
Reflection nos. (unique)	6288	6373	6878	5689
$R(F); R_{w}(F)$	0.0278 ; 0.0251	0.0158 ; 0.0145	0.0202 ; 0.0204	0.0208 ; 0.0208
S	2.1	1.41	1.64	1.45
$N_{\rm obs}/N_{\rm par}$	14.68	20.14	21.7	19.03
Range of residuals/eÅ ⁻³	-0.241; 0.174	-0.203; 0.324	-0.206; 0.346	-0.282; 0.472

LAPLACIAN MAP

Exponential dependence of ρ_b [eÅ⁻³] on the interaction length R_{ii} [Å]

Exponential dependence of total local electron density $E(r_{CP})$ [kJ mol⁻¹bohr⁻³] on R_{ij} [Å]

Exponential fitting of $V(r_{CP})$ [kJ mol⁻¹bohr⁻³] and local kinetic energy density $G(r_{CP})$ [kJ mol⁻¹bohr⁻³] values on R_{ij} [Å]

Morse-like dependence of Laplacian $[\nabla^2 \rho_b]$ (eÅ⁻⁵) on R_{ii} [Å]

Coumarin

C R I T E R I O N 5

interactions	atom	q (cr	ystal)	q (isol	ated)	d) Δq (crystal – isolated)			d)	
		expt.(E)	theo.(T)	HF	DFT	E-HF	E-DFT	T–HF	T-DFT	
C(4)H(2) ^a	H(2)	0.2569	0.1080	0.0144	0.0441	0.2425	0,2128	0.0936	0.0639	
$C(9) \ldots H(2)^a$	T								4	
O(1)H(3) ^b	H(3)	0.0991	0.1280	-0.0083	0.0222	0,1074	0,0769	0,1291	0.0986 <mark>1</mark>	
O(1)H(4) ^b C(7)H(4) ^c	H(4)	0.0957	0.0792	-0.0305	0.0074	0,1262	0,0883	0,1097	0.0718 <mark>3</mark>	
C(7)H(4) ^d C(7)H(5) ^e	H(5)	0.0331	0.0655	-0.0317	0.0080	0.0648	0.0251	0.0972	0.0575	
C(8)H(5)°	Ť								5	
O(1)H(6) ^r O(2)H(6) ^g	H(6)	-0.0292	0.0859	-0.0241	0.0128	-0.0051	-0.0420	0,1100	0.0731 2	
$C(4)H(7)^h$ $C(5)H(7)^h$	H(7)	0.0662	0.0902	0.0026	0.0353	0,0636	0.0309	0,0876	0.0549 <mark>6</mark>	
O(1)H(3) ⁱ	H(3)	0.0991	0.0980	-0.0164	0.0155	0,1155	0.0836	0.1144	0.0825 2	
$O(1) H(4)^i$	H(4)	0.2872	0.1092	-0.0334	0.0058	0.3206	0.2814	0.1426	0.1034 <mark>1</mark>	
O(1)H(6) ^j	H(6)	0.3029	0.0809	-0.0250	0.0126	0.3279	0.29.3	0,1059	0.0683 3	
$C(2)H(6)^k$ $C(4)H(7)^k$ $C(5)H(7)^k$	H(7)	0.2810	0,0561	-0.0193	0.0185	0,3003	0,2625	0,0754	0.0376 <mark>4</mark>	
Symmetry codes: ^h (x-1,y,z), ⁱ (x,-y+2,z)	$^{a}(x,y+1/2,z)$	z+3/2), ^b (x+1,y -1,z), ^k (x,-y+1,z	≈1/2,∗z+3/2), ' ≈1/2).	°(x+1,y,z), °(->	x+1,y=1/2,=z+	+1), "(•x+1,y-1	/2,-z+1), "(-x;	y,z-1/2), ⁸ (->	s,y=1/2,=z+1),	

Coumarin

C R I T E R I O N 6

interactions	atom	P.E. (crystal)		P.E. (is	olated)	$\Delta P.E.$ (crystal – isolated)			
		expt.(E)	theo.(T)	HF	DFT	E–HF	E-DFT	T–HF	T-DFT
C(4)H(2)	H(2)	-1.0446	-1.1936	-1.2514	-1.2189	0.2068	0.1743	0.0578	0.0255
C(9)H(2)									
O(1)H(3)	H(3)	-1.2564	-1.1901	-1.2733	-1.2368	0.0169	-0,0196	0.0832	0.0467
O(1)H(4)	H(4)	-1.2461	-1.2245	-1,2916	-1,2486	0.0455	0.0025	0,0671	0.0241
C(7)H(4)									
$\mathrm{C}(7)\mathrm{H}(4)^{\P}$									
C(7)H(5)	H(5)	-1.3213	-1.2410	-1.2932	-1.2502	-0.0281	-0.0711	0.0522	0.0092
C(8)H(5)									
O(1)H(6)	H(6)	-1.4029	-1.2230	-1.2886	-1.2474	-0.1143	-0.1555	0,0656	0.0244
O(2)H(6)									
C(4)H(7)	H(7)	-1.2700	-1.2091	-1.2608	-1.2247	-0.0092	-0.0453	0.0517	0.0156
C(5)H(7)									
O(1)H(3)	H(3)	-1.2408	-1.2098	-1.2865	-1.2461	0.0457	0.0053	0.0767	0.0363
0/1) 11/0	ша	1.0206	1 2061	1 2060	1.2408	0.2654	0.2102	0.0200	0.0427
U(1)H(4)	H(4)	-1.0306	-1,2001	-1,2960	-1,2498	0.2034	0.2192	0,0899	0.0437
O(1)H(6)	H(6)	-0.9684	-1.2293	-1.2887	-1.2454	0.3203	0.2770	0.0594	0,1610
C(2)H(6)									
C(4)H(7)	H(7)	-0,9787	-1.2526	-1.2837	-1,2400	0,3050	0,2613	0.0311	-0.0126
C(5)H(7)									

Coumarin						
<u> </u>		\land				

O

interactions	atom	M (cr	ystal)	M (iso	lated)	ΔM (crystal – isolated)			
		expt.(E)	theo.(T)	HF	DFT	E-HF	E-DFT	T–HF	T-DFT
C(4)H(2)	H(2)	0.0540	0,1006	0,0978	0,1209	-0.0447	-0.0669	0.0019	-0.0203
C(9)H(2)									
O(1)H(3)	H(3)	0.0251	0.0652	0.0972	0,1236	-0.0736	-0.0985	-0.0320	-0.0584
O(1)H(4)	H(4)	0.0588	0.1013	0.0978	0,1258	-0.039	-0.0670	0.0035	-0.0244
C(7)H(4)									
C(7)H(4)									
C(7)H(5)	H(5)	0.0386	0.0768	0.0975	0,1237	-0.0589	-0.0851	-0.0207	-0.0469
C(8)H(5)									
O(1)H(6)	H(6)	0.0725	0.0969	0.0970	0,1230	-0.0245	-0.0505	-0.0001	-0.0261
O(2)H(6)									
C(4)H(7)	H(7)	0,1076	0,1126	0,0975	0,1218	0.0101	-0.0142	0.0151	-0.0092
C(5)H(7)									
O(1)H(3)	H(3)	0,1033	0.0953	0,0986	0,1253	0.0047	-0.0220	-0.0300	-0.0300
O(1)H(4)	H(4)	0.0478	0.0505	0,0978	0,1260	-0.0500	-0.0782	-0.0755	-0.0755
O(1)H(6)	H(6)	0.1021	0.0743	0.0969	0.1230	0.0052	-0.0209	-0.0487	-0.0487
C(2)H(6)									
C(4)H(7)	H(7)	0.1561	0.0943	0.0971	0.1233	0.0590	0.0328	-0.0290	-0.0290
C(5)H(7)									

Coumarin							

C R I T E R I O N 8

interactions	atom	V (er	ystal)	V (iso	(isolated) Δ		V (crystal – isolated)			
		expt.(E)	theo.(T)	HF	DFT	E-HF	E-DFT	T–HF	T-DFT	
C(4)H(2)	H(2)	35.10	46.02	46.36	46,66	-11.26	-11.56	-0.34	-0.64	
C(9)H(2)										
O(1)H(3)	H(3)	35.64	40.43	47.95	48.35	-12.31	-12.71	-7.52	-7.92	
O(1)H(4)	H(4)	38.64	41.84	48.89	49.12	-10.25	-10.48	-7.05	-7.28	
C(7)H(4)										
C(7)H(4)										
C(7)H(5)	H(5)	39.47	44.82	48.80	48.84	-9.33	-9.37	-3.98	-4.02	
C(8)H(5)										
O(1)H(6)	H(6)	38.82	43.47	48.54	48.51	-9.72	-9.69	-5.07	-5.04	
O(2)H(6)										
C(4)H(7)	H(7)	42,18	47,22	46.87	47,18	-4.69	-5.00	0.35	0.04	
C(5)H(7)										
O(1)H(3)	H(3)	34,45	41,27	47,44	47,96	-12.99	-13.51	-6.17	-6.69	
O(1)H(4)	H(4)	27.97	40.90	48.53	48.68	-20.56	-20.71	-7.63	-7.78	
O(1)H(6)	H(6)	34.80	43.28	48.54	48.52	-13.74	-13.72	-5.26	-5.24	
C(2)H(6)										
C(4)H(7)	H(7)	38,90	45,16	47.94	48.06	-9.04	-9.16	-2.78	-2.90	
C(5)H(7)										

Continuum of a Strong Hydrogen Bonds to Weak Interactions Munshi, P.; Guru Row, T. N. *CrystEngComm* **2005**, *7*, 608-611.

Exponential dependence of ρ_b [eÅ⁻³] on the interaction length R_{ij} [Å]

Some Recent Literature reports on charge density analysis performed on molecules containing organic fluorine

Hursthouse group, J. Phy. Chem. B., 2004, 108, 3663

Luger group, J. Phys. Chem., A 2001, 105, 7405

Pilati group, Chem. Eur. J., 2003, 9, 1631

Molecules Designed for Charge Density analysis

Laplacian Distribution in the F...F interaction regime

Charge Density Features associated with C-H...O Hydrogen Bonding in Compound (A)

Topological parameters in C-F...F-C interactions [K & P 1-4]

Compound	R _{ij}	$ ho_b$	$ abla^2 ho_b$	G (<i>r</i> _{<i>CP</i>})	V (<i>r</i> _{<i>CP</i>})	E (<i>r</i> _{<i>CP</i>})	$\Delta r_{\rm D} + \Delta r_{\rm A}$
Α	2.809	0.049	1.030	37.752	-24.476	13.276	0.131
В	2.659	0.067	0.926	36.873	-27.869	9.003	0.281
Hursthouse	2.899	0.040	0.700	25.782	-16.884	8.898	0.041
	2.862	0.050	0.820	30.944	-21.264	9.680	0.086
	2.862	0.040	0.800	29.084	-18.535	10.549	0.086
	3.063	0.030	0.500	18.162	-11.553	6.609	-0.123
	3.198	0.020	0.400	14.05	-8.283	5.767	-0.258
Pilati	3.033	0.034	0.600	21.847	-13.969	7.878	-0.093
PFBA	2.627	0.058	1.233	45.668	-30.251	15.417	0.313
	2.628	0.067	1.410	52.858	-35.862	16.996	0.312

Conclusions and future directions

- 1. Hydrogen bonds classified using a universal fit.
- 2. Limit of a hydrogen bond featured in C-H...O and C-H... π contacts.
- 3. Insights into the ubiquitous C-F...F-C contacts.
- 4. Evaluation of the nature of the interaction.
- 5. Calculation of electrostatic potentials leading to surface characteristics.

ACKNOWLEDGEMENT

Parthapratim Munshi Deepak Chopra Angshuman Ray Chaudhuri CSIR, DST India for funds

I I I I ISC-DST IRPHA for CCD