Sulfur as Hydrogen Bond Acceptor

Sanjay Wategaonkar
Tata Institute of Fundamental Research, Colaba, Mumbai
sanwat@tifr.res.in

Amino acids consisting of sulfur atom show a variety of interactions in proteins that are hydrogen bonding as well as non-hydrogen bonding.[1,2] Among them the prominent interactions are O-H---S, N-H---S, and C-H---S. Despite the fact that sulfur is a biologically abundant element (amino acids, disulfide bridges, etc.) and is a well established constituent of the therapeutic agents (penicillins, thionucleosides, etc.) and agrochemicals, not much experimental investigations have been done on the $X-\mathrm{H}-\mathrm{S}$ hydrogen bonding interactions, where $X=\mathrm{N}$ or O atom. In recent times we have been investigating the weakly bound complexes between p-cresol, indole and several sulfur containing solvent molecules from the perspective of investigating the H -bonding interaction between XH donor and S acceptor, the salient features of which will be presented.

In the case of $\mathrm{X}=\mathrm{O}$ we have also investigated the similarities and differences in the XH O vs $\mathrm{XH}-\mathrm{S}$ interaction, using a variety of analogous solvent molecules. It turns out that although the $\mathrm{XH}-\mathrm{S}$ interaction is largely dominated by the dispersion component, it also exhibits a fair amount of the charge transfer component as envisaged by the large red shifts in the XH stretching frequency. The $\mathrm{OH}-\mathrm{S}$ interaction in the p-cresol-dimethylsulfide complex and the $\mathrm{NH}-\mathrm{S}$ interaction in indole-dimethylsulfide complex shows yet another aspect of the interaction that in the later interaction the charge transfer component is almost two times as large as that in the $\mathrm{OH}-\mathrm{S}$ interaction.[3,4]

References:

1) L.M. Gregoret, S.D. Rader, R.J. Fletterik, and F.E. Cohen, PROTEINS: Structure, Functions, and Genetics 9, 99 (1991).
2) D. Pal and P. Chakrabarty, J. Biomol. Struct. Dyn. 19, 115 (2001).
3) H.S. Biswal, S. Chakraborty, and S. Wategaonkar, J. Chem. Phys. 129, 184311 (2008).
4) H.S. Biswal and S. Wategaonkar, J. Phys. Chem. A 113, 12763 (2009).
