CONTENTS

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Topic</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Books</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Book chapters</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>Review articles</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>Structural Ceramics</td>
<td>6</td>
</tr>
<tr>
<td>5.</td>
<td>Catalysts</td>
<td>33</td>
</tr>
<tr>
<td>6.</td>
<td>Optical Materials</td>
<td>90</td>
</tr>
<tr>
<td>7.</td>
<td>Electroceramics</td>
<td>155</td>
</tr>
<tr>
<td>8.</td>
<td>Energy Materials</td>
<td>208</td>
</tr>
<tr>
<td>9.</td>
<td>Miscellaneous</td>
<td>234</td>
</tr>
<tr>
<td>10.</td>
<td>Patents</td>
<td>273</td>
</tr>
</tbody>
</table>

Appendix

- Ph.D. Theses on Solution combustion synthesis from Indian Institute of Science | 282
While preparing the bibliography from Scopus and Web of Science database, the keywords for the subject were used. In the process some papers might have been missed or repeated more than once. The authors would like to apologize for this lapse. Papers of particular interest, published on solution combustion synthesis have been highlighted as: interesting (*), very interesting(**) and of special interest (***) . Papers cited more than 100 times have been highlighted.
1. Books

Comprehensive account of all the work on SCS carried out at Indian Institute of Science, Bengaluru.

2. Book Chapters

3. Review articles

6)*** Aruna, S.T., Mukasyan, A.S., Combustion synthesis and nanomaterials (2008) *Current Opinion in Solid State and Materials Science, 12* (3-4), pp. 44-50. *(No. of citations = 483)* **This review article described the developments and trends in combustion science towards the synthesis of nanomaterials with emphasis on various applications of combustion synthesized nanosized products**

7)*** Rajeshwar, K., De Tacconi, N.R., Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation (2009) *Chemical Society Reviews, 38* (7), pp. 1984-1998. *(No. of citations =148)* **This review article summarizes the research on the solution combustion synthesis of oxide semiconductors for applications related to photovoltaic solar energy conversion, photoelectrochemical hydrogen generation, and heterogeneous photocatalytic remediation of environmental pollutants**

8)***Hegde, M.S., Madras, G., Patil, K.C., Noble metal ionic catalysts (2009) *Accounts of Chemical Research, 42* (6), pp. 704-712. *(No. of citations =205)* **This account describes the role of SCS method for synthesizing noble metal ions substituted in ceria and their catalytic properties. Application of this catalyst as three-way catalyst for auto exhaust as well as H2-O2 recombination at room temperature forming water.**

10)* Bera, P., Hegde, M.S., Recent advances in auto exhaust catalysis (2010) *Journal of the Indian Institute of Science, 90* (2), pp. 299-305. *(No. of citations =25)* **This review documents**
SCS approach of substituting metal ions over CeO₂ and TiO₂ by solution combustion technique resulting in Ce₁₋ₓMₓO₂₋₅ and Ti₁₋ₓMₓO₂₋₅ (M = Pd, Rh and Pt) catalysts.

15) ***Li, F.-T., Ran, J., Jaronec, M., Qiao, S.Z., Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion (2015) Nanoscale, 7 (42), pp. 17590-17610. (No. of citations = 98) This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells.

17) ***Varma, A., Mukasyan, A.S., Rogachev, A.S., Manukyan, K.V., Solution combustion synthesis of nanoscale materials (2016) Chemical Reviews, 116 (23), pp. 14493-14586. (No. of citations = 137) This is the latest review on SCS with 792 references which focuses on the analysis of new approaches and results in the field of versatile SCS. It describes the basic principles for controlling the composition, structure of SCS products, routes to regulate the size and morphology of the nanomaterials and several application categories of SCS produced materials.

4. Structural Ceramics

Alumina and related oxides

Zirconia and related oxides

29) Lei, Z., Zhu, Q.-S., Solution combustion synthesis and characterization of nanocrystalline La\textsubscript{0.6}Sr\textsubscript{0.4}Co\textsubscript{0.2}Fe\textsubscript{0.8}O\textsubscript{3-δ} cathode powders (2007) Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 23 (2), pp. 232-236.

31) Tahmasebi, K., Paydar, M.H., The effect of starch addition on solution combustion synthesis of Al\textsubscript{2}O\textsubscript{3}-ZrO\textsubscript{2} nanocomposite powder using urea as fuel (2008) Materials Chemistry and Physics, 109 (1), pp. 156-163.

36) Reddy, B.M., Reddy, G.K., Ganesh, I., Ferreira, J.M.F., Microwave-assisted synthesis and structural characterization of nanosized Ce$_{0.5}$Zr$_{0.5}$O$_2$ for CO oxidation (2009) *Catalysis Letters*, 130 (1-2), pp. 227-234.

International Conference and Exhibition of the European Ceramic Society 2009, 2, pp. 574-578.

50) Vijaya Lakshmi, V., Bauri, R., Phase formation and ionic conductivity studies on ytterbia co-doped scandia stabilized zirconia (0.9ZrO$_2$-0.09Sc$_2$O$_3$-0.01Yb$_2$O$_3$) electrolyte for SOFCs (2011) Solid State Sciences, 13 (8), pp. 1520-1525.

71) Singhania, A., Gupta, S.M., Low-temperature CO oxidation over Cu/Pt co-doped ZrO\textsubscript{2} nanoparticles synthesized by solution combustion (2017) *Beilstein Journal of Nanotechnology*, 8 (1), art. no. 156.

75) Prakashbabu, D., Ramalingam, H.B., Krishna, R.H., Nagabhushana, B.M., Shivakumara, C., Munirathnam, K., Ponkumar, S., A potential white light emitting cubic ZrO\textsubscript{2}:Dy3+, Li+ nano phosphors for solid state lighting applications (2017) *Journal of Luminescence*, 192, pp. 496-503.

78) Lokesha, H.S., Chauhan, N., Nagabhushana, K.R., Singh, F., Dosimetric properties of ZrO\textsubscript{2} and ZrO\textsubscript{2}:Sm3+ exposed to beta rays (2018) *Ceramics International*, 44, pp. 18871-18877

Cordierite, Mullite, NASICON and Synroc Materials

Chromites

1) Chick, L.A., Pederson, L.R., Maupin, G.D., Bates, J.L., Thomas, L.E., Exarhos, G.J., Glycine-nitrate combustion synthesis of oxide ceramic powders (1990) Materials Letters, 10 (1-2), pp. 6-12. (No. of citations = 998) This is the first paper which demonstrated the use of glycine as fuel and henceforth the process is most popularly known as glycine nitrate process (GNP process).

4) Manoharan, S.S., Patil, K.C., Combustion synthesis of metal chromite powders (1992) Journal of the American Ceramic Society, 75 (4), pp. 1012-1015. (No. of citations=168) This paper describes the SCS of fine-particle metal chromites (MCr₂O₄, where M = Mg, Ca, Mn, Fe, Co, Ni, Cu, and Zn)

8) Fino, D., Russo, N., Saracco, G., Specchia, V., The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot (2003) Journal of Catalysis, 217 (2), pp. 367-375. (No. of citations=228) This paper highlights the SCS of high specific-surface-area bulk perovskites (18–25 m2/g) as catalysts for the combustion of soot.

11) Biamino, S., Badini, C., Combustion synthesis of lanthanum chromite starting from water solutions: Investigation of process mechanism by DTA-TGA-MS (2004) Journal of the European Ceramic Society, 24 (10-11), pp. 3021-3034. (No. of citations=106) *The mechanism of combustion synthesis of lanthanum chromite was investigated by carrying out simultaneous differential thermal analysis (DTA), thermal-gravimetric analysis (TGA) and quadrupole mass spectrometry measurements (MS).*

38) Bonet, A., Travitzky, N., Greil, P., Synthesis of LaCrO$_3$ and La$_{0.9}$Ca$_{0.1}$CrO$_3$ by modified glycine nitrate process (2014) *Journal of Ceramic Science and Technology*, 5 (2), pp. 93-100.

Ln$_{1-x}$M$_x$Cr$_{0.9}$Ni$_{0.1}$O$_3$ (Ln = La and/or Nd; M = Sr and/or Ca; $x \leq 0.25$) perovskites for SOFCs anodes (2018) *Ceramics International*, 44 (2), pp. 2240-2248.

5. Catalysts

9) Bera, P., Aruna, S.T., Patil, K.C., Hegde, M.S., Studies on Cu/CeO₂: A new NO reduction catalyst (1999) *Journal of Catalysis*, 186 (1), art. no. jcat.1999.2532, pp. 36-44. *(No. of citations=146) Fine particle and large surface area Cu/CeO₂ catalysts of crystallite sizes in the range of 100–200 Å were synthesized by SCS ans were investigated for NO reduction.*

This paper highlights the importance of adding \(\text{NH}_4\text{NO}_3 \) to get rid off the carbonaceous matter formed during the SCS of LaMnO\(_3\) using urea as fuel.

37) Gayen, A., Priolkar, K.R., Sarode, P.R., Jayaram, V., Hegde, M.S., Subbanna, G.N., Emura, S., Ce\(_{1-x}\)Rh\(_x\)O\(_{2-\delta}\) solid solution formation in combustion-synthesized Rh/CeO\(_2\) catalyst studied by XRD, TEM, XPS, and EXAFS (2004) *Chemistry of Materials*, 16 (11), pp. 2317-2328.

38) Xiao, L., Sun, K., Yang, Y., Xu, X., Low-temperature combustion of CH\(_4\) over CeO\(_2\)-MO\(_x\) solid solution (M = Zr\(^{4+}\), La\(^{3+}\), Ca\(^{2+}\), or Mg\(^{2+}\)) promoted Pd/\(\gamma\)-Al\(_2\)O\(_3\) catalysts (2004) *Catalysis Letters*, 95 (3-4), pp. 151-155.

Nanosize WO$_3$ powder was synthesized by SCS.

62) Baidya, T., Gayen, A., Hegde, M.S., Ravishankar, N., Dupont, L., Enhanced reducibility of Ce$_{1-x}$Ti$_x$O$_2$ compared to that of CeO$_2$ and higher redox catalytic activity of Ce$_{1-x}$Ti$_x$Pt$_x$O$_{2-\delta}$ compared to that of Ce$_{1-x}$Pt$_x$O$_{2-\delta}$ (2006) *Journal of Physical Chemistry B*, 110 (11), pp. 5262-5272.

67) Fino, D., Russo, N., Saracco, G., Specchia, V.M., Catalytic removal of NOx and diesel soot over nanostructured spinel-type oxides (2006) *Journal of Catalysis*, 242 (1), pp. 38-47. *(No. of citations=135)* This study showed that the activity order for soot combustion was $\text{CoCr}_2\text{O}_4 > \text{MnCr}_2\text{O}_4 > \text{CoFe}_2\text{O}_4$, whereas the activity order for NO$_x$ reduction was $\text{CoFe}_2\text{O}_4 > \text{CoCr}_2\text{O}_4 > \text{MnCr}_2\text{O}_4$.

70) Sharma, S., Hegde, M.S., Single step direct coating of 3-way catalysts on cordierite monolith by solution combustion method: High catalytic activity of $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{O}_{2-\delta}$ (2006) *Catalysis Letters*, 112 (1-2), pp. 69-75.

71) Gayen, A., Baidya, T., Biswas, K., Roy, S., Hegde, M.S., Synthesis, structure and three way catalytic activity of $\text{Ce}_{1-x}\text{Pt}_x\text{Rh}_{2}\text{O}_{2-\delta}$ (x = 0.01 and 0.02) nano-crystallites: Synergistic effect in bimetal ionic catalysts (2006) *Applied Catalysis A: General*, 315, pp. 135-146.

81) Baidya, T., Marimuthu, A., Hegde, M.S., Ravishankar, N., Madras, G., Higher catalytic activity of nano-Ce$_{1-x-y}$Ti$_x$Pd$_y$O$_{2-\delta}$ compared to nano-Ce$_{1-x}$Pd$_x$O$_{2-\delta}$ for CO oxidation and N$_2$O and NO reduction by CO: Role of oxide ion vacancy (2007) *Journal of Physical Chemistry C*, 111 (2), pp. 830-839.

84) Roy, S., Marimuthu, A., Hegde, M.S., Madras, G., High rates of CO and hydrocarbon oxidation and NO reduction by CO over Ti$_{0.99}$Pd$_{0.01}$O$_{1.99}$ (2007) *Applied Catalysis B: Environmental*, 73 (3), pp. 300-310.

97) Liu, W., Luo, L., Min, W., Effect of stoichiometric ratio of organic fuel to oxidizer on performance of La$_{0.8}$Sr$_{0.2}$CoO$_3$ catalysts in methane combustion (2007) Petrochemical Technology, 36 (11), pp. 1093-1098.

124) Baidya, T., Gupta, A., Deshpandey, P.A., Madras, G., Hegde, M.S., high oxygen storage capacity and high rates of co oxidation and no reduction catalytic properties of Ce1-xSnxO2 and Ce0.78Sn0.2Pd0.02O2-δ (2009) Journal of Physical Chemistry C, 113 (10), pp. 4059-4068.

129) Reddy, B.M., Reddy, G.K., Ganesh, I., Ferreira, J.M.F. Microwave-assisted synthesis and structural characterization of nanosized Ce$_{0.5}$Zr$_{0.5}$O$_2$ for CO oxidation (2009) *Catalysis Letters*, 130 (1-2), pp. 227-234.

131) Ding, J., Luo, L. Preparation of spinel type Co$_{0.7}$Ce$_{0.3}$Co$_2$O$_4$ catalysts and their catalytic performances in methane combustion (2009) *Xiyou Jinshu / Chinese Journal of Rare Metals*, 33 (3), pp. 386-390.

142) Gupta, A., Kumar, A., Waghmare, U.V., Hegde, M.S., Origin of activation of lattice oxygen and synergistic interaction in bimetal-ionic Ce$_{0.89}$Fe$_{0.1}$Pd$_{0.01}$O$_{2-\delta}$ catalyst (2009) Chemistry of Materials, 21 (20), pp. 4880-4891.

147) Bensaid, S., Russo, N., Fino, D., Saracco, G., Specchia, V., Diesel particulate traps based on Li-Cr delafossite soot-combustion catalysts (2009) 8th World Congress of Chemical Engineering: Incorporating the 59th Canadian Chemical Engineering Conference and the 24th Interamerican Congress of Chemical Engineering, pp. 522bc.

152) Jiang, H., Nagai, M., Kobayashi, K. Enhanced photocatalytic activity for degradation of methylene blue over V$_2$O$_5$/BiVO$_4$ composite (2009) *Journal of Alloys and Compounds*, 479 (1-2), pp. 821-827. (*No. of citations= 111*) *This paper describes the synthesis of V$_2$O$_5$/BiVO$_4$ composite photocatalysts by the one-step SCS method.*

164) Wu, Y.-H., Luo, L.-T., Liu, W., Catalytic properties of La_{0.8}Sr_{0.2}Co_{0.5}M_{0.5}O_{3} (M = Co, Ni, Cu) in methane combustion (2010) Russian Journal of Physical Chemistry A, 84 (3), pp. 405-408.

183) Ziaei-Azad, H., Khodadadi, A., Esmaeilnejad-Ahranjani, P., Mortazavi, Y., Effects of Pd on enhancement of oxidation activity of LaBO₃ (B=Mn, Fe, Co and Ni) pervoskite catalysts for

188) Sam, S.P.C., Prasad, V.S., Kumar, K.S., Rapid synthesis of pure and Pr-doped TiCeO4 nanopigments by solution combustion method (2011) Nano, 6 (2), pp. 139-144.

215) Guan, B., Lin, H., Zhu, L., Tian, B., Huang, Z., Effect of ignition temperature for combustion synthesis on the selective catalytic reduction of NO x with NH$_3$ over Ti$_{0.9}$Ce$_{0.05}$V$_{0.05}$O$_{2-δ}$ nanocomposites catalysts prepared by solution combustion route (2012) Chemical Engineering Journal, 181-182, pp. 307-322.
216) Shinde, V.M., Madras, G., Kinetics of carbon monoxide oxidation with Sn$_{0.95}$M$_{0.05}$O$_{2-\delta}$ (M = Cu, Fe, Mn, Co) catalysts (2012) Catalysis Science and Technology, 2 (2) pp.437-446.

Lei, Z., Sun, Y., Han, M.-F., Wang, Q.-B., Preparation, characterization and catalytic activities of La_{0.8}Sr_{0.2}Fe_{1-x}Sc_{x}O_{3-δ} catalysts for methane combustion (2012) *Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica*, 28 (9), pp. 2129-2134.

Narayanappa, M., Dasireddy, V.D.B.C., Friedrich, H.B., Catalytic oxidation of n-octane over cobalt substituted ceria (Ce_{0.90}Co_{0.10}O_{2-δ}) catalysts (2012) *Applied Catalysis A: General*, 447-448, pp. 135-143.

Mukri, B.D., Dutta, G., Waghamare, U.V., Hegde, M.S., Activation of lattice oxygen of TiO_{2} by Pd^{2+} ion: Correlation of low-temperature CO and hydrocarbon oxidation with structure of Ti_{1-x}Pd_{x}O_{2-δ} (x=0.01-0.03) (2012) *Chemistry of Materials*, 24 (23), pp. 4491-4502.

Yin, S., Zhang, W., Xue, L., Yan, Y., Effects of reaction parameters on solution combustion synthesis of lepidocrocite-like $K_{0.80}Ti_{1.733}Li_{0.267}O_4$: Phase formation and morphology evolution (2013) *Journal of Materials Science*, 48 (4), pp. 1533-1542.

259) Baidya, T., Bernhard, A., Elsener, M., Kröcher, O., Hydrothermally stable \(\text{WO}_3/\text{ZrO}_2-\text{Ce}_{0.6}\text{Zr}_{0.4}\text{O}_2 \) catalyst for the selective catalytic reduction of NO with \(\text{NH}_3 \) (2013) *Topics in Catalysis*, 56 (1-8), pp. 23-28.

264) Mistri, R., Llorca, J., Ray, B.C., Gayen, A., \(\text{Pd}_{0.01}\text{Ru}_{0.01}\text{Ce}_{0.98}\text{O}_{2-\delta} \): A highly active and selective catalyst for the liquid phase hydrogenation of p-chloronitrobenzene under ambient conditions (2013) *Journal of Molecular Catalysis A: Chemical*, 376, pp. 111-119.

269) Mukri, B.D., Waghmare, U.V., Hegde, M.S., Platinum ion-doped \(\text{TiO}_2 \): High catalytic activity of \(\text{Pt}^{2+} \) with Oxide Ion Vacancy in \(\text{Ti}^{4+}\text{Pt}_{3-x}\text{O}_{2-x} \) Compared to \(\text{Pt}^{4+} \) without Oxide Ion Vacancy in \(\text{Ti}^{4+}\text{Pt}_{3+x}\text{O}_2 \) (2013) *Chemistry of Materials*, 25 (19), pp. 3822-3833.

291) Chen, T., Lin, H., Cao, Q., Huang, Z., Solution combustion synthesis of Ti₀.75Ce₀.15Cu₀.05W₀.05O₂₋δ for low temperature selective catalytic reduction of NO (2014) RSC Advances, 4 (109), pp. 63909-63916.

295) Mistri, R., Rahaman, M., Llorca, J., Priolkar, K.R., Colussi, S., Ray, B.C., Gayen, A., Liquid phase selective oxidation of benzene over nanostructured Cu$_x$Ce$_{1-x}$O$_{2-y}$ ($0.03 \leq x \leq 0.15$) (2014) *Journal of Molecular Catalysis A: Chemical*, 390, pp. 187-197.

330)Piumetti, M., Fino, D., Russo, N., Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs (2015) *Applied Catalysis B: Environmental*, 163, pp. 277-287. (No. of citations=104) Three mesoporous manganese oxide catalysts (Mn$_2$O$_3$, Mn$_3$O$_4$ and Mn$_x$O$_y$) have been prepared by SCS and Mn$_3$O$_4$ showed better catalytic activity.

351) Jamale, A.P., Shanmugam, S., Bhosale, C.H., Jadhav, L.D., Physiochemical properties of combustion synthesized La$_{0.6}$Sr$_{0.4}$Co$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$ perovskite: A role of fuel to oxidant ratio (2015) Materials Science in Semiconductor Processing, 40, pp. 855-860.

Liu, R., Fan, J., Zhang, Y., Wang, P., Shen, X., Immobilization and characterization of penicillin G acylase (PGA) immobilized on Magnetic Ni$_{0.5}$Zn$_{0.5}$Fe$_{2}$O$_{4}$ nanoparticles (2016) *Journal of Nanoscience and Nanotechnology*, 16 (1), pp. 182-188.

Aliotta, C., Liotta, L.F., Deganello, F., La Parola, V., Martorana, A., Direct methane oxidation on La$_{1-x}$Sr$_x$Cr$_{1-y}$Fe$_y$O$_{3-i}$ perovskite-type oxides as potential anode for intermediate temperature solid oxide fuel cells (2016) *Applied Catalysis B: Environmental*, 180, pp. 424-433.

Cwele, T., Mahadevaiah, N., Singh, S., Friedrich, H.B., Yadav, A.K., Jha, S.N., Bhattacharyya, D., Sahoo, N.K., CO oxidation activity enhancement of Ce$_{0.95}$Cu$_{0.05}$O$_{2-\delta}$ induced by Pd co-substitution (2016) *Catalysis Science and Technology*, 6 (22), pp. 8104-8116.

387) Maiti, S., Llorca, J., Dominguez, M., Colussi, S., Trovarelli, A., Priolkar, K.R., Aquilanti, G., Gayen, A., Combustion synthesized copper-ion substituted FeAl$_2$O$_4$ (Cu$_{0.1}$Fe$_{0.9}$Al$_2$O$_4$): A superior catalyst for methanol steam reforming compared to its impregnated analogue (2016) *Journal of Power Sources*, 304, pp. 319-331.

410) Xiao, J., Wang, W., Luo, D., Zhang, J., Purification of PM and NO\textsubscript{x} using LiCo\textsubscript{0.9}O\textsubscript{2} catalyst and non-thermal plasma coordination (2016) *Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition)*, 44 (9), pp. 129-132.

411) Cao, Q.-H., Lin, H., Guan, B., Chen, T., Investigation of TiCe\textsubscript{0.2}W\textsubscript{0.2}O\textsubscript{x} coating for selective catalytic reduction (2016) *Neiranji Gongcheng/Chinese Internal Combustion Engineering*, 37 (5), pp. 86-92.

413) Mahammadunnisa, S.K., Akanksha, T., Krishnamurty, K., Subrahmanyam, C. Catalytic decomposition of N\textsubscript{2}O over CeO\textsubscript{2} supported Co\textsubscript{3}O\textsubscript{4} catalysts (2016) *Journal of Chemical Sciences*, 128 (11), pp. 1795-1804.

415) Xu, X., Pan, Y., Zhou, W., Chen, Y., Zhang, Z., Shao, Z., toward enhanced oxygen evolution on perovskite oxides synthesized from different approaches: a case study of Ba\textsubscript{0.5}Sr\textsubscript{0.5}Co\textsubscript{0.8}Fe\textsubscript{0.2}O\textsubscript{3–δ} (2016) *Electrochimica Acta*, 219, pp. 553-559.

437) Singhania, A., Gupta, S.M., Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion (2017) Beilstein Journal of Nanotechnology, 8 (1), art.no. 156.

465) Kumar, A., Rout, L., Achary, L.S.K., Dhaka, R.S., Dash, P., Greener Route for Synthesis of aryl and alkyl-14H-dibenzo [a.j] xanthenes using Graphene Oxide-Copper Ferrite
Nanocomposite as a Recyclable Heterogeneous Catalyst (2017) *Scientific Reports*, 7, art. no. 42975.

479) Mukri, B.D., Hegde, M.S., High rates of catalytic hydrogen combustion with air over Ti$_{0.97}$Pd$_{0.03}$O$_{2-δ}$ coated cordierite monolith (2017) *Journal of Chemical Sciences*, 129 (9), pp. 1363-1372.

485) Mpungose, P.P., Sehloko, N.I., Cwele, T., Maguire, G.E.M., Friedrich, H.B. Pd$_{0.02}$Ce$_{0.98}$O$_{2-δ}$: A copper- and ligand-free quasi-heterogeneous catalyst for aquacatalytic

Pandey, A., Jain, G., Vyas, D., Irusta, S., Sharma, S. Nonreducible, basic La$_2$O$_3$ to reducible, acidic La$_{2-x}$Sb$_x$O$_3$ with significant oxygen storage capacity, lower band gap, and effect on the catalytic activity (2017) *Journal of Physical Chemistry C*, 121 (1), pp. 481-489.

Deorsola, F., Armandi, M., Bonelli, B., Pirone, R. Textural and surface properties of nanostructured Mn oxides for the NOx SCR at low temperature (2017) *Advanced Science Letters*, 23 (6), pp. 5934-5937.

513) Dwivedi, R., Sharma, P., Sisodiya, A., Batra, M.S., Prasad, R., A DFT-assisted mechanism for evolution of the ammoxidation of 2-chlorotoluene (2-CLT) to 2-chlorobenzonitrile (2-CLBN) over alumina-supported V$_2$O$_5$ catalyst prepared by a solution combustion method (2017) *Journal of Catalysis*, 345, pp. 245-257.

526) Winiarska, K., Klimkiewicz, R., Winiarski, J., Szczygiel, I., Mn$_{0.6}$Zn$_{0.4}$Fe$_2$O$_4$ ferrites prepared by the modified combustion method as the catalyst for butan-1-ol dehydrogenation (2017) *Reaction Kinetics, Mechanisms and Catalysis*, 120 (1), pp. 261-278.

545) Voskanyan, A.A., Li, C.-Y.V., Chan, K.-Y., Catalytic Palladium Film Deposited by Scalable Low-temperature aqueous combustion (2017) ACS Applied Materials and Interfaces, 9 (38), pp. 33298-33307.

590)Hiebler, K., Lichtenegger, G.J., Maier, M.C., Park, E.S., Gonzales-Groom, R., Binks, B.P., Gruber-Woelfler, H., Heterogeneous Pd catalysts as emulsifiers in Pickering emulsions for

615) Devaraji, P., Jo, W.-K., Noble metal free Fe and Cr dual-doped nanocrystalline titania (Ti$_{1-x-y}$M$_{x+y}$O$_2$) for high selective photocatalytic conversion of benzene to phenol at ambient temperature (2018) *Applied Catalysis A: General*, 565, pp. 1-12.
6. Optical Materials

Phosphors

3) Shea, L.E., McKittrick, J., Lopez, O.A., Sluzky, E., Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process (1996) Journal of the American Ceramic Society, 79 (12), pp. 3257-3265. (No. of citations=262) In this paper, the effects of processing parameters such as type of fuel, fuel to oxidizer ratio, furnace temperature, and batch water content were studied.

composition for maximum blue emission was found to be \(Y_{2.93}Tm_{0.07}Al_{5}O_{12} \) doped with 1.0 at% Li.

17) McKittrick, J., Shea, L.E., Bacalski, C.F., Bosze, E.J., The influence of processing parameters on luminescent oxides produced by combustion synthesis (1999) *Displays*, 19 (4), pp. 169-172. (No. of citations=209) *This paper describes the fabrication of complex host phosphor compositions such as \(Y_2SiO_5 \), \(Y_3Al_5O_{12} \), \(Y_2O_3 \), and \(BaMgAl_{10}O_{27} \) along with controlled amounts of the activators \(Cr^{3+}, Mn^{2+}, Ce^{3+}, Eu^{2+}, Eu^{3+}, Tb^{3+}, Tm^{3+} \).*

This paper reports a detailed analysis of the emission spectra associated with Er$^{3+}$ in the structurally well characterized solution combustion synthesized cubic Y$_2$O$_3$ nanocrystals.

41) Peng, T., Yang, H., Pu, X., Hu, B., Jiang, Z., Yan, C., Combustion synthesis and photoluminescence of SrAl$_2$O$_4$:Eu,Dy phosphor nanoparticles (2004) *Materials Letters*, 58 (3-4), pp. 352-356. (No. of citations=150) *Eu$^{2+}$, Dy$^{3+}$ co-doped strontium aluminate (SrAl$_2$O$_4$) phosphor nanoparticles with high brightness and long afterglow were prepared by glycine–nitrate SCS at 500 °C,*

52) Ji, Y., Jiang, D., Shi, J., La\textsubscript{2}Hf\textsubscript{2}O\textsubscript{7}: Ti4+ ceramic scintillator for X-ray imaging (2005) *Journal of Materials Research*, 20 (3), pp. 567-570.

80) Takeda, T., Koshiba, D., Kikkawa, S., Gel combustion synthesis of fine crystalline $(Y_{0.95}Eu_{0.05})_2O_3$ phosphor in presence of lithium flux (2006) Journal of Alloys and Compounds, 408-412, pp. 879-882.

85) Yang, Z., Yang, Y., Li, X., Li, X., Combustion synthesis of Y$_2$O$_2$S:Eu$^{3+}$ phosphors (2006) Proceedings of SPIE - The International Society for Optical Engineering, 6029, art. no. 60291V.

88) Khatkar, S.P., Taxak, V.B., Han, S.D., Park, J.-Y., Kumar, D., Combustion synthesis and luminescent properties of MIn$_2$O$_{4-x}$Tb (M = Ca and Sr) phosphors (2006) Materials Chemistry and Physics, 98 (2-3), pp. 528-531.

102) Chen, Z., Xie, H., Yan, Y., Influence of Ba/Mg ratio on crystal structure and luminescent characteristics of Eu$^{2+}$-doped (Ba$_x$Mg)$_2$$_{(x+1)}Al_{10}O_{17}$ blue-emitting phosphors (2007) Guangxue Xuebao/Acta Optica Sinica, 27 (1), pp. 111-115.

104) Yang, C.H., Pan, Y.X., Zhang, Q.Y., Enhanced white light emission from Dy3+/Ce3+ codoped GdAl\textsubscript{3}(BO\textsubscript{3})\textsubscript{4} phosphors by combustion synthesis (2007) Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 137 (1-3), pp. 195-199.

107) Chen, Z., Xie, H., Yan, Y.-W., Influence of Eu2+ content on the spectral characteristics of BaMgAl\textsubscript{10}O\textsubscript{17}:Eu\textsubscript{2+} phosphors (2007) Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 27 (4), pp. 657-659.

108) Chen, Z., Yan, Y., Morphology control and VUV photoluminescence characteristics of BaMgAl\textsubscript{10}O\textsubscript{17}:Eu2+ phosphors (2007) Physica B: Condensed Matter, 392 (1-2), pp. 1-6.

122) Yao, S., Chen, D., Luminescent properties of Li$_2$ (Ca$_{0.99}$, Eu$_{0.01}$) SiO$_4$: B$^{3+}$ particles as a potential bluish green phosphor for ultraviolet light-emitting diodes (2007) *Central European Journal of Physics*, 5 (4), pp. 558-569.

124) Qiu, Z., Zhou, Y., Lü, M., Zhou, J., Zhang, A., Yang, Z., Ma, Q., Combustion synthesis of novel Li$_{0.9}$(Ca$_{0.9-x-y}$Zr$_{0.1}$)O$_2$:Eu, $^{3+}$, Ry$^{3+}$(R = Ce,Bi) red luminescence nanocrystal and emission-mechanism research (2007) *Nanotechnology*, 18 (49), art. no. 495705.

125) Qiu, Z., Zhou, Y., Lü, M., Zhang, A., Ma, Q., Combustion synthesis of long-persistent luminescent MAI$_2$O$_4$: Eu$^{2+}$, R$^{3+}$ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research (2007) *Acta Materialia*, 55 (8), pp. 2615-2620. (No. of citations = 100) Eu$^{2+}$, R$^{3+}$ co-doped alkaline earth aluminates nanoparticles with high brightness and long afterglow have been prepared by solution-combustion synthesis at 600 °C without a post-annealing process.

135) Yao, S., Chen, D., Combustion synthesis and luminescent properties of a new material Li$_2$(Ba$_{0.99}$Eu$_{0.01}$)SiO$_4$:B$^{3+}$ for ultraviolet light emitting diodes (2008) *Optics and Laser Technology*, 40 (3), pp. 466-471.

143) Qiu, Z., Zhou, Y., Lü, M., Zhang, A., Ma, Q., Combustion synthesis of novel red phosphor Li\(_{0.9}\)Y\(_{0.9-x-y}\)Zr\(_{0.1}\)O\(_2\):Eu\(_{x}\)\(^{3+}\),Dy\(_{y}\)\(^{3+}\) nanocrystals and emission-mechanism research (2008) *Materials Chemistry and Physics*, 109 (2-3), pp. 556-559.

169) Yao, S.-S., Li, Y.-Y., Xue, L.-H., You, Y., Yan, Y.-W., Combustion synthesis and luminescent properties of a blue-green emitting phosphor: (Ba1.95, Eu0.05)ZnSi2O7:B3+ (2009) *Central European Journal of Physics*, 7 (4), pp. 800-805.

191) Singh, S. K., Kumar, K., & Rai, S. B. (2009). Multifunctional Er$^{3+}$-Yb$^{3+}$ codoped Gd$_2$O$_3$ nanocrystalline phosphor synthesized through optimized combustion route. Applied Physics B: Lasers and Optics, 94(1), 165-173. *(No. of citations=113) This paper reports the synthesis of high upconversion luminescent Gd$_2$O$_3$: Er$^{3+}$, Yb$^{3+}$ nanophosphor through optimized combustion route using urea & it has been explored as a sensor for temperature and to record the fingerprint in different colors.*

203) Krsmanović, R., Antić, Ž., Zeković, I., Bártová, B., Dramičanin, M.D., (Y$_{0.5}$Lu$_{0.5}$)$_2$O$_3$:Eu$^{3+}$ nanopowders: Combustion synthesis, structure and optical properties (2010) Radiation Measurements, 45 (3-6), pp. 438-440.

204) Shafia, E., Bodaghi, M., Tahriri, M., The influence of some processing conditions on host crystal structure and phosphorescence properties of SrAl$_2$O$_4$:Eu$^{2+}$, Dy$^{3+}$ nanoparticle pigments synthesized by combustion technique (2010) Current Applied Physics, 10 (2), pp. 596-600.

222) Wang, J., Hao, J.H., Tanner, P.A., Luminous and tunable white-light upconversion for YAG (Yb$_3$Al$_5$O$_{12}$) and (Yb$_2$Y$_2$O$_3$) nanopowders (2010) *Optics Letters*, 35 (23), pp. 3922-3924.

231) Shinde, K.N., Dhoble, S.J., Kumar, A., Combustion synthesis of Ce$^{3+}$, Eu$^{3+}$ and Dy$^{3+}$ activated NaCaPO$_4$ phosphors (2011) Journal of Rare Earths, 29 (6), pp. 527-535.

234) Yao, S.-S., Xue, L.-H., Yan, Y.-W., Synthesis and crystal structures and luminescent properties of divalent europium-doped Ba$_2$ZnSi$_2$O$_7$ and BaZn$_2$Si$_2$O$_7$ (2011) Physica B: Condensed Matter, 406 (2), pp. 250-253.

241) Marí, B., Singh, K.C., Sahal, M., Khatkar, S.P., Taxak, V.B., Kumar, M., Characterization and photoluminescence properties of some $MLn_{2(1-x)}O_4:2xEu^{3+}$ or $2xTb^{3+}$ systems (M=Ba or Sr, Ln=Gd or La) (2011) *Journal of Luminescence*, 131 (4), pp. 587-591.

243) Qiang, Y.-C., Zhang, B.-L., Low temperature combustion synthesis and luminescence of Sr$_{1.93}$Ba$_{0.05}$SiO$_4$:Eu phosphor (2011) Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 42 (5), pp. 1270-1275.

306) Pawade, V.B., Dhoble, N.S., Dhoble, S.J., Synthesis and characterization of Eu$^{2+}$ activated X$_{12}$Al$_{10.6}$Si$_{3.4}$O$_{32}$Cl$_{5.4}$ (X=Sr, Ca) phosphors (2012) *Journal of Luminescence*, 132 (8), pp. 2054-2058.

307) Pekgözli, I., Çakar, S., Photoluminescence properties of Li$_6$CaB$_3$O$_{8.5}$: M$^{3+}$ (M$^{3+}$: Dy and Sm) (2012) *Journal of Luminescence*, 132 (9), pp. 2312-2317.

310) Pawade, V.B., Dhoble, S.J., Blue emission in Eu$^{2+}$ activated MgXAl$_{10}$O$_{17}$ (X = Sr, Ca) phosphors (2012) *Optik*, 123 (20), pp. 1879-1883.

313) Som, S., Sharma, S.K., Eu$^{3+}$/Tb$^{3+}$-codoped Y$_2$O$_3$ nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization (2012) *Journal of Physics D: Applied Physics*, 45 (41), art. no. 415102. *(No. of citations=120)* A wide colour range was achieved starting from green to extreme red in the SCS Eu$^{3+}$/Tb$^{3+}$-codoped Y$_2$O$_3$ nanophosphors.

314) Rakov, N., MacIel, G. S. Three-photon upconversion and optical thermometry characterization of Er$^{3+}$:Yb$^{3+}$-co-doped yttrium silicate powders (2012) *Sensors and Actuators, B: Chemical*, 164(1), 96-100. *(No. of citations=104)* This particular phosphor was synthesized by SCS for photonics applications and the optical temperature sensor performance of this material was also investigated.

335) Yan, M., Xue, L., Yan, Y., Luminescent properties of a novel red-emitting phosphor Ca_{1.95}P_2O_7:0.05Eu^{3+}, B^{3+}, M, (M=Li, Na, K) for white light-emitting diodes (2013) Advanced Materials Research, 634-638 (1), pp. 2481-2484.

440) Shilpa, C.J., Dhananjaya, N., Nagabhushana, H., Sharma, S.C., Shivakumara, C., Sudheer Kumar, K.H., Nagabhushana, B.M., Chakradhar, R.P.S., Gd$_{1.96-x}$Y$_x$Eu$_{0.04}$O$_3$ ($x = 0.0, 0.49, 0.98, 1.47, 1.96 \text{ mol\%}$) nanophosphors: Propellant combustion synthesis, structural and luminescence studies (2014) *Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy*, 128, pp. 730-739.

442) Gawande, A.B., Sonekar, R.P., Omanwar, S.K., Combustion synthesis and energy transfer mechanism of $B^{3+} \rightarrow Gd^{3+}$ and $Pr^{3+} \rightarrow Gd^{3+}$ in YBO_3 (2014) *Combustion Science and Technology*, 186 (6), pp. 785-791.

449) Onani, M.O., Dejene, F.B., Photo-luminescent properties of a green or red emitting Tb$^{3+}$ or Eu$^{3+}$ doped calcium magnesium silicate phosphors (2014) Physica B: Condensed Matter, 439, pp. 137-140.

467) Chen, Y.-B., Pan, Y.-J., Liang, M.-H., Feng, J.-R., Sol-combustion synthesis and analysis of submicron sized Ca$_{24,40}$La$_{0,54}$ScMgSi$_3$O$_{12}$:0.06Ce$^{3+}$ phosphor for white light emitting diodes (2014) *Faguang Xuebao/Chinese Journal of Luminescence*, 35 (1), pp. 73-78.

468) Pawade, V.B., Dhoble, S.J., Trap depth and Dy$^{3+}$ luminescence in BaAl$_2$Si$_2$O$_8$ phosphor (2014) *Journal of Luminescence*, 145, pp. 626-630.

131

nanophosphor with enhanced brightness by Li$^+$ co-doping (2014) RSC Advances, 4 (73), pp. 38655-38662.

509) Naktode, P.K., Shinde, K.N., Kokode, N.S., Effective red-orange emitting CaMgPO$_4$Cl:Sm$^{3+}$ halophosphate phosphor (2016) *Results in Physics*, 6, pp. 869-872.

540) Pekgözülü, I., Synthesis and photoluminescence properties of MSr$_4$(BO$_3$)$_3$:Sm$^{3+}$ (M = Li, Na) (2016) Optik, 127 (8), pp. 4114-4117.

554) Talwar, G.J., Moharil, S.V., Joshi, C.P., Photoluminescence and long after glow in Ba$_2$MgSi$_2$O$_7$: Eu$^{2+}$ and Ba$_2$ZnSi$_2$O$_7$: Eu$^{2+}$ phosphors (2016) AIP Conference Proceedings, 1728, art. no. 020240.

557) Faizan, M., Ahmad, S., Structural and spectroscopic properties of Li$^+$ co-doped MgAl$_2$O$_4$: Eu$^{3+}$ nanophosphors (2016) AIP Conference Proceedings, 1731, art. no. 050100.

570) Tamrakar, R.K., Upadhyay, K., Photoluminescence Behavior of ZrO$_2$: Eu$^{3+}$ with fixed concentration of Eu$^{3+}$ as a function of annealing temperature (2016) Journal of Display Technology, 12 (9), art. no. 7460222, pp. 917-920.

593) Papan, J., Vuković, K., Ahrenkiel, S.P., Jovanović, D.J., Dramičanin, M.D., Detailed study of structural and luminescent properties of Y$_{2-x}$Eu$_{x}$Zr$_2$O$_7$ (0 ≤ x ≤ 1) nanophosphors (2017) *Journal of Alloys and Compounds*, 712, pp. 437-444.

596) Upasani, M., Synthesis of Y$_3$Al$_5$O$_{12}$:Tb & Y$_3$Al$_5$O$_{12}$:Tb,Si phosphor by combustion synthesis: Comparative investigations on the structural and spectral properties (2017) *Optical Materials*, 64, pp. 70-74.

607) Prakash, R., Kumar, S., Kumar, V., Photoluminescence investigation of Dy^{3+} doped α-Al_{2}O_{3} phosphor (2017) *AIP Conference Proceedings*, 1832, art. no. 140016, .

619) Taikar, D.R., Joshi, C.P., Moharil, S.V., Synthesis and luminescence characterization of Y$_2$BaZnO$_5$:RE (RE = Eu$^{3+}$, Tb$^{3+}$, Pr$^{3+}$ and Sm$^{3+}$) phosphors (2017) _Luminescence_, 32 (6), pp. 902-907.

620) Tamboli, S., Dhoble, S.J., Influence of Li$^+$ charge compensator ion on the energy transfer from Pr$^{3+}$ to Gd$^{3+}$ ions in Ca$_{90}$Mg(Po$_{4}$)$_6$F$_2$:Gd$^{3+}$, Pr$^{3+}$, Li$^+$ phosphor (2017) _Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy_, 184, pp. 119-127.

639) Gong, X., Zhao, Q., Mi, X., Lu, L., Effect of the ratio of Er^{3+} to Y^{3+} on up-conversion emission properties of Ba_xNa_yY_zF_{2x+y+3z+3m}:Er^{3+ m} under 1550 nm excitation (2018) Applied Physics A: Materials Science and Processing, 124 (2), art. no. 94.

647) Motloung, S.J., Lephotso, M.A., Tshabalala, K.G., Ntwaeaborwa, O.M., Combustion synthesis and characterization of MV\(_{0.5}\)P\(_{0.5}\)O\(_4\): Sm\(^{3+}\) Tm\(^{3+}\) (M = Gd, La, Y) (2018) *Physica B: Condensed Matter*, 535, pp. 211-215.

146

664) Taikar, D.R., Synthesis and luminescence property of SrY$_2$O$_4$:M (M = Eu$^{3+}$, Tb$^{3+}$, Sm$^{3+}$, Ce$^{3+}$, Bi$^{3+}$) phosphors (2018) *Journal of Luminescence*, 204, pp. 24-29.
Pigments

28) Yang, L., Ye, M., Han, A., Low temperature combustion synthesis and characterization of Pr-CeO$_2$ doped with Zr red ceramic pigments (2012) Advanced Materials Research, 399-401, pp. 514-518.

65) Gilabert, J., Gómez-Tena, M.P., Sanz, V., Mestre, S., Effect of secondary thermal treatment on crystallinity of spinel-type Co(Cr,Al)₂O₄ pigments synthesized by solution

72) Chavarriaga, E.A., Lopera, A.A., Wermuth, T.B., Restrepo, O.J., Bergmann, C.P. Synthesis by solution combustion and optical characterization of violet NASICON-type Mg$_{0.45}$Co$_{0.05}$Ti$_2$(PO$_4$)$_3$ pigment (2018) *Dyes and Pigments*, 157, pp. 1-10.

7. Electroceramics

Dielectric Materials

5) Singh, K., Kotnala, R.K., Singh, M., Study of electric and magnetic properties of (Bi$_{0.9}$Pb$_{0.1}$) (Fe$_{0.9}$Ti$_{0.1}$)O$_3$ nanomultiferroic system (2008) *Applied Physics Letters*, 93 (21), art. no. 212902.

12) Bhattacharjee, K., Ghosh, C.K., Mitra, M.K., Das, G.C., Mukherjee, S., Chattopadhyay, K.K., Novel synthesis of Ni_{x}Zn_{1-x}Fe_{2}O_{4} (0 \leq x \leq 1) nanoparticles and their dielectric properties (2011) *Journal of Nanoparticle Research*, 13 (2), pp. 739-750.

20) Chaudhari, Y.A., Singh, A., Abuassaj, E.M., Chatterjee, R., Bendre, S.T. Multiferroic properties in BiFe_{1-x}Zn_{x}O_{3} (x = 0.1-0.2) ceramics by solution combustion method (SCM) (2012) *Journal of Alloys and Compounds*, 518, pp. 51-57.

33) Jadhav, P.S., Patankar, K.K., Mathe, V.L., Puri, V., Comparative study of structural, mechanical and electrical properties of Ni$_{0.8}$Co$_{0.1}$Cu$_{0.05}$Mn$_{0.05}$Fe$_2$O$_4$ prepared from different combustion routes (2013) Micro and Nano Letters, 8 (4), pp. 173-176.

41) Arya, G.S., Kotnala, R.K., Negi, N.S., Enhanced magnetic and magnetoelectric properties of in and Co codoped BiFeO₃ nanoparticles at room temperature (2014) *Journal of Nanoparticle Research*, 16 (1), art. no. 2155.

56) Ma, X., Yin, J., Zhou, Q., Xue, L., Yan, Y., Effect of Eu doping on structure and electrical properties of lead-free (Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_{3} ceramics (2014) Ceramics International, 40 (5), pp. 7007-7013.

58) Choi, D., Choi, M., Kim, J., Magnetic properties of Fe@FeSiAl oxide nanoparticles and magneto-dielectric properties of their composite sheets (2014) IEEE Transactions on Magnetics, 50 (11), art. no. 6971576.

60) Sarkar, K., Mukherjee, S., Mukherjee, S., Structural, electrical and magnetic behaviour of undoped and nickel doped nanocrystalline bismuth ferrite by solution combustion route (2015) Processing and Application of Ceramics, 9 (1), pp. 53-60.

62) John, F., Thomas, J.K., Solomon, S., Dielectric properties of nano crystalline LnTiNbO_{6} (Ln = Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb) ceramics (2015) IOP Conference Series: Materials Science and Engineering, 73 (1), art. no. 012011.

63) Rosa, R., Ponzoni, C., Veronesi, P., Natali Sora, I., Felice, V., Leonelli, C., Solution combustion synthesis of La_{1-x}Sr_{x}Fe_{1-y}Cu_{y}O_{3+w} (x=0, 0.2; y=0, 0.2) perovskite nanoparticles: Conventional vs. microwaves ignition (2015) Ceramics International, 41 (6), pp. 7803-7810.

70) Sawant, V.S., Bagade, A.A., Rajpure, K.Y., Studies on structural and electrical properties of Li0.5-xCo0.5Fe2.5-0.5xO4 (0≤x≤0.6) spinel ferrite (2015) Physica B: Condensed Matter, 474, pp. 47-52.

74) Kumar, G., Shah, J., Kotnala, R.K., Singh, V.P., Dhiman, M., Shirsath, S.E., Shahbuddin, M., Batoo, K.M., Singh, M., Mössbauer spectroscopic analysis and temperature dependent electrical study of Mg0.9Mn0.1GdyFe2.5O4 nanoferrites (2015) Journal of Magnetism and Magnetic Materials, 390, pp. 50-55.

77) Subohi, O., Kumar, G.S., Malik, M.M., Kurchania, R., Study of electrical and ferroelectric properties of Bi$_{3.4}$Ce$_{0.6}$Ti$_{2.4}$Zr$_{0.6}$O$_{12}$ ceramics (2015) *Journal of Materials Science: Materials in Electronics*, 26 (12), pp. 9342-9349.

86) Madhu, B.J., Kiran, T., Gurusiddesh, M., Shruthi, B., Synthesis, Characterization and Dielectric Behavior of Polyaniline/Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} Nanocomposites (2016) *Macromolecular Symposia*, 361 (1), pp. 24-29.

92) Ram, M., Bala, K., Sharma, H., Negi, N.S., Effect of Co doping on the structural and dielectric properties of ZnO nanoparticles (2016) *AIP Conference Proceedings*, 1731, art. no. 050104..

123) Jongprateep, O., Sato, N., Boonsalee, S., Pee, J., Microstructures and dielectric constants of Ba₀.₀₅SrₓCa₀.₉₅₋ₓTiO₃ (x = 0, 0.225, 0.475, 0.725 and 0.95) synthesized by the solution combustion technique (2018) Key Engineering Materials, 766 KEM, pp. 197-204.

Magnetic Materials

20) Costa, A.C.F.M., Tortella, E., Morelli, M.R., Kaminami, R.H.G.A., Nanosize $\text{Ni}_{0.7}\text{Zn}_{0.3}\text{Fe}_2\text{O}_4$ powders prepared by combustion synthesis, sintering and characterization (2002) *Materials Science Forum*, 403, pp. 57-64.

21) Costa, A.C.F.M., Tortella, E., Morelli, M.R., Kaminami, R.H.G.A., Synthesis, microstructure and magnetic properties of Ni-Zn ferrites (2003) *Journal of Magnetism and Magnetic Materials*, 256 (1-3), pp. 174-182. (*No. of citations=293*) High surface area Ni-Zn ferrite powders with a nominal composition of $\text{Ni}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4$ were prepared by combustion synthesis, using urea as fuel.

27) Deshpande, K., Mukasyan, A., & Varma, A. (2004). Direct synthesis of iron oxide nanopowders by the combustion approach: Reaction mechanism and properties. *Chemistry of Materials*, 16(24), 4896-4904. *(No. of citations=172)* Three iron oxide powders, viz., α-Fe$_2$O$_3$, γ-Fe$_2$O$_3$, and Fe$_3$O$_4$, that are important for different applications were synthesized by using the combustion synthesis (CS) method.

33) Hwang, C.-C., Wu, T.-Y., Wan, J., Tsai, J.-S., Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders (2004) *Materials Science and Engineering B: Solid-State Materials for Advanced Technology*, 111 (1), pp. 49-56. *(No. of citations=146)* Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$, ZnO, LiCoO$_2$, BaFe$_{12}$O$_{19}$ and YBa$_2$Cu$_3$O$_{7-x}$ (x \leq 0.25) were prepared by SCS by adding directly the fuels in to metal nitrates without adding water.

35) Fu, Y.-P., Lin, C.-H., Liu, C.-W., Preparation and magnetic properties of Ni$_{0.25}$Cu$_{0.25}$Zn$_{0.5}$ ferrite from microwave-induced combustion (2004) *Journal of Magnetism and Magnetic Materials*, 283 (1), pp. 59-64.

39) Wu, K.H., Huang, W.C., Yang, C.C., Hsu, J.S., Sol-gel auto-combustion synthesis of Ni_{0.5}Zn_{0.3}Fe_{2}O_{4}/(SiO_{2})_{x} (x = 10, 20, 30 wt.%) nanocomposites and their characterizations (2005) Materials Research Bulletin, 40 (2), pp. 239-248.

40) Fu, Y.-P., Hsu, C.-S., Tay, K.-W., Preparation and magnetic properties of Ni_{0.36}Zn_{0.64} ferrites from microwave-induced combustion (2005) Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 44 (3), pp. 1254-1257.

41) Fu, Y.-P., Hsu, C.-S., Microwave-induced combustion synthesis of Li_{0.5}Fe_{2.5-x}Mn_{x}O_{4} powder and their characterization (2005) Journal of Alloys and Compounds, 391 (1-2), pp. 185-189.

43) Fu, Y.-P., Hsu, C.-S., Microwave-induced combustion synthesis of Li_{0.5}Fe_{2.5-x}Mn_{x}O_{4} powder and their characterization (2005) Journal of Alloys and Compounds, 391 (1-2), pp. 185-189.

52) Fu, Y.-P., Microwave-induced combustion synthesis of Li$_{0.5}$Fe$_{2.5-x}$Cr$_x$O$_4$ powder and their characterization (2006) *Materials Research Bulletin*, 41 (4), pp. 809-816.

57) Fu, Y.-P., Yao, Y.-D., Hsu, C.-S., Microwave-induced combustion synthesis of Li$_{0.5}$Fe$_{2.5-x}$Al$_x$O$_4$ powder and their characterization (2006) *Journal of Alloys and Compounds*, 421 (1-2), pp. 136-140

65) Franco Júnior, A., Zapf, V., Egan, P., Magnetic properties of nanoparticles of Co5Fe(3-x)O4 (0.05≤x£1.6) prepared by combustion reaction (2007) Journal of Applied Physics, 101 (9), art. no. 09M506.

70) Fu, Y.-P., Characterization of Li$_{0.5}$Fe$_{2.5-x}$Cr$_x$O$_4$ ferrite sintered from microwave-induced combustion (2007) *Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers*, 46 (11), pp. 7314-7316.

72) Li, L., Qiu, H., Wang, Y., Jiang, J., Xu, F., Preparation and magnetic properties of Cu$_{0.4}$Zn$_{0.6}$Cr$_{0.5}$Sm$_{0.06}$Fe$_{1.44}$O$_4$/polyaniline nanocomposites (2008) *Journal of Rare Earths*, 26 (4), pp. 558-562.

74) Baykal, A., Kasapoğlu, N., Köseoğlu, Y., Başaran, A.C., Kavas, H., Toprak, M.S., Microwave-induced combustion synthesis and characterization of Ni$_x$Co$_{1-x}$Fe$_2$O$_4$ nanocrystals (x = 0.0, 0.4, 0.6, 0.8, 1.0) (2008) *Central European Journal of Chemistry*, 6 (1), pp. 125-130.

82) Bellakki, M.B., Manivannan, V., McCurdy, P., Kohli, S., Synthesis, and measurement of structural and magnetic properties, of La$_{1-x}$Na$_x$FeO$_3$ (0.0≤x≤0.3) perovskite oxides (2009) *Journal of Rare Earths, 27*(5), pp. 691-697.

90) Köseoğlu, Y., Baykal, A., Gözüak, F., Kavas, H., Structural and magnetic properties of Co$_x$Zn$_{1-x}$Fe$_2$O$_4$ nanocrystals synthesized by microwave method (2009) *Polyhedron, 28*(14), pp. 2887-2892. *(No. of citations=155)* Microwave assisted combustion method was used to produce nanocrystalline cobalt doped zinc ferrite, Co$_x$Zn$_{1-x}$Fe$_2$O$_4$ using urea as fuel.

94) Biering, I., Mcnon, M., Pryds, N., The effect of manganese stoichiometry on the curie temperature of La$_{0.67}$Ca$_{0.26}$Sr$_{0.07}$Mn$_{1+x}$O$_3$ used in magnetic refrigeration (2009) *Ceramic Transactions*, 205, pp. 71-76.

99) Sertkol, M., Köseoğlu, Y., Baykal, A., Kavas, H., Toprak, M.S., Synthesis and magnetic characterization of Zn$_{0.7}$Ni$_{0.3}$Fe$_2$O$_4$ nanoparticles via microwave-assisted combustion route (2010) *Journal of Magnetism and Magnetic Materials*, 322 (7), pp. 866-871.

108) Costa, A.C.F.M., Vieira, D.A., Diniz, V.C., Lira, H.L., Cornejo, D.R., Kiminami, R.H.G.A., Effect of different fuels on the microwave-assisted combustion synthesis of Ni$_{0.5}$Zn$_{0.5}$Fe$_{1.95}$Sm$_{0.05}$O$_4$ ferrites (2010) *Materials Science and Technology Conference and Exhibition 2010, MS and T’10*, 1, pp. 249-258.

125) Rani, R., Dhiman, P., Sharma, S.K., Singh, M., Structural and magnetic studies of Co$_{0.6}$Zn$_{0.4}$Fe$_2$O$_4$ nanoferrite synthesized by solution combustion method (2012) *Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry*, 42 (3), pp. 360-363.

148) Jadhav, P.S., Patankar, K.K., Mathe, V.L., Puri, V., Comparative study of structural, mechanical and electrical properties of Ni$_{0.8}$Co$_{0.1}$Cu$_{0.05}$Mn$_{0.05}$Fe$_2$O$_4$ prepared from different combustion routes (2013) *Micro and Nano Letters*, 8 (4), pp. 173-176.

166) Shahid, T.S., Govindaraj, G., Preparation and magnetic properties of exchange coupled nanocomposite of SrFe$_{12}$O$_{19}$ and Mn$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ (2014) *International Journal of ChemTech Research*, 6 (3), pp. 2201-2203.

167) Arya, G.S., Kotnala, R.K., Negi, N.S., Enhanced magnetic and magnetoelectric properties of In and Co codoped BiFeO$_3$ nanoparticles at room temperature (2014) *Journal of Nanoparticle Research*, 16 (1), art. no. 2155.

176) Choi, D., Choi, M., Kim, J., Magnetic properties of Fe@FeSiAl oxide nanoparticles and magneto-dielectric properties of their composite sheets (2014) *IEEE Transactions on Magnetics, 50* (11), art. no. 6971576.

195) Kumar, G., Shah, J., Kotnala, R.K., Singh, V.P., Dhiman, M., Shirsath, S.E., Shahbuddin, M., Batoo, K.M., Singh, M., Mössbauer spectroscopic analysis and temperature dependent electrical study of Mg$_{0.9}$Mn$_{0.1}$GdyFe$_{2-y}$O$_4$ nanoferrites (2015) *Journal of Magnetism and Magnetic Materials*, 390, pp. 50-55.

207) Ram, M., Negi, N.S., Effect of (Fe, Co) co-doping on the structural, electrical and magnetic properties of ZnO nanocrystals prepared by solution combustion method (2016) *Physica B: Condensed Matter*, 481, pp. 185-191.

209) Saini, J., Kumar, R., Rajput, J.K., Kumar, A., Study of Zr$_x$Zn$_{0.5-x}$Ni$_{0.5}$Fe$_2$O$_4$ $0 \leq x \leq 0.25$: Synthesis, structural, magnetic and electrical properties (2016) *Journal of Magnetism and Magnetic Materials*, 401, pp. 770-774.

229) He, A., Lu, R., Wang, Y., Xiang, J., Li, Y., He, D., Adsorption characteristic of Congo red onto magnetic MgFe$_2$O$_4$ nanoparticles prepared via the solution combustion and gel calcination process (2017) *Journal of Nanoscience and Nanotechnology*, 17 (6), pp. 3967-3974.

236) Li, S., Chen, J., Wu, X., Lu, Y., Lu, R., Liu, R., Preparation of magnetic Co$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ nanoparticles and their adsorption performances of Congo red (2017) Journal of Nanoscience and Nanotechnology, 17 (8), pp. 5415-5422.

237) Anupama, Rudraswamy, B., Dhananjaya, N., Influence of trivalent (Gd$^{3+}$, Cr$^{3+}$) ion substitution on the structural and magnetic properties of Ni$_{0.4}$Zn$_{0.6}$Gd$_{x}$Fe$_{1.5-x}$O$_4$ ferrite nanoparticles (2017) International Journal of Nanotechnology, 14 (9-11), pp. 867-874.

transformations in nanocrystalline Mn_{0.5}Zn_{0.5}Fe_{2}O_{4} ceramics (2017) *Journal of Solid State Chemistry*, 246, pp. 119-124.

278) Gurusiddesh, M., Madhu, B.J., Shankaramurthy, G.J., Structural, dielectric, magnetic and electromagnetic interference shielding investigations of polyaniline decorated Co0.5Ni0.5Fe2O4 nanoferrites (2018) *Journal of Materials Science: Materials in Electronics*, 29 (4), pp. 3502-3509.

296) Naserifar, M., Masoudpanah, S.M., Alamolhoda, S., Structural and magnetic properties of Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$/PVA composites (2018) *Journal of Magnetism and Magnetic Materials*, 458, pp. 80-84.

300) Saeedi Afshar, S.R., Hasheminiasari, M., Masoudpanah, S.M., Structural, magnetic and microwave absorption properties of SrFe$_{12}$O$_{19}$/Ni$_{0.6}$Zn$_{0.4}$Fe$_2$O$_4$ composites prepared by one-pot solution combustion method (2018) *Journal of Magnetism and Magnetic Materials*, 466, pp. 1-6.
Piezoelectric and Thermoelectric Materials

4) Nam, S.W., Lim, Y.S., Choi, S.-M., Seo, W.-S., Park, K., Thermoelectric properties of nanocrystalline Ca$_{3-x}$Cu$_x$Co$_4$O$_9$ (0 ≤ x ≤ 0.32) for power generation (2011) *Journal of Nanoscience and Nanotechnology*, 11 (2), pp. 1734-1737.

5) Park, K., Nam, S.W., Thermoelectric properties of Ca$_{2.8}$Cu$_{0.2}$Co$_4$O$_9$ ceramics fabricated by solution combustion method (2011) *Current Applied Physics*, 11 (3), pp. 939-944.

7) Park, K., Won Lee, G., Thermoelectric properties of Ca$_{0.8}$Dy$_{0.2}$MnO$_3$ synthesized by solution combustion process (2011) *Nanoscale Research Letters*, 6, art. no. 548, pp. 1-5.

11) Park, K., Choi, J.W., High-temperature thermoelectric properties of Na(Co$_{0.91}$Ni$_{0.09}$)$_2$O$_4$ fabricated by solution combustion method for power generation (2012) *Journal of Nanoscience and Nanotechnology*, 12 (4), pp. 3624-3628.

15) Dandeneau, C.S., Bodick, T.W., Bordia, R.K., Ohuchi, F.S., Thermoelectric properties of reduced polycrystalline Sr$_{0.5}$Ba$_{0.5}$Nb$_2$O$_6$ fabricated via solution combustion synthesis (2013) *Journal of the American Ceramic Society*, 96 (7), pp. 2230-2237.

18) Ma, X., Yin, J., Zhou, Q., Xue, L., Yan, Y., Effect of Eu doping on structure and electrical properties of lead-free (Bi$_{0.5}$Na$_{0.5}$)$_{0.94}$Ba$_{0.06}$TiO$_3$ ceramics (2014) *Ceramics International*, 40 (5), pp. 7007-7013.

21) Sheng, N., Han, C.-G., Zhu, C., Akiyama, T., One-step solution combustion synthesis of K$_{0.5}$Na$_{0.5}$NbO$_3$ powders at a large-scale (2018) *Ceramic International*, 44 (15), pp. 18279-18284.
Semiconductor

3) Baidya, T., Hegde, M.S., Gopalakrishnan, J., Oxygen-release/storage properties of $\text{Ce}_0.5\text{M}_{0.5}\text{O}_2$ ($\text{M} = \text{Zr, Hf}$) oxides: Interplay of crystal chemistry and electronic structure (2007) Journal of Physical Chemistry B, 111 (19), pp. 5149-5154.

CuO/BiVO$_4$ composite was prepared using urea and citric acid as co-fuels.

8) Kumar, V.R., Wariar, P.R.S., Koshy, J., Optical properties of the complex perovskite ceramic oxide $\text{Ba}_2\text{YZrO}_{6-d}$ (2010) Crystal Research and Technology, 45 (6), pp. 619-624.

10) Jawad, A., Ashraf, S.S.Z., Structural and magnetic properties of Cr$^{3+}$ doped nano-structured γ-Fe_2O_3 synthesized by a modified solution combustion technique (2011) EPJ Applied Physics, 54 (1), art. no. ap100470.

26) Dandeneau, C.S., Bodick, T.W., Bordia, R.K., Ohuchi, F.S., Thermoelectric properties of reduced polycrystalline Sr\(_{0.5}\)Ba\(_{0.5}\)Nb\(_2\)O\(_6\) fabricated via solution combustion synthesis (2013) *Journal of the American Ceramic Society*, 96 (7), pp. 2230-2237.

35) Shinde, K.N., Singh, R., Dhoble, S.J., Luminescence optimization of $Y_{0.94-x}Eu_{0.06}VO_4:M_x$ (M=Zn, Al, Bi) Red phosphors by the solution combustion method (2014) *Journal of Luminescence*, 145, pp. 588-594.

37) Pecovska-Gjorgjevich, M., Aleksovska, S., Marinšek, M., Dimitrovska-Lazova, S. Impedance and AC conductivity of GdCr$_{1-x}$Co$_x$O$_3$ (x = 0, 0.33, 0.5, 0.67 and 1) perovskites (2014) *Journal of the American Ceramic Society*, 97 (12), pp. 3864-3871.

50) Menon, S.S., Sen, S., Pramanik, P., Bhattacharyya, A., Gupta, B., Tiwari, B., Baskar, K., Singh, S., Anomalous red emission with competition and coexistence of defect and band edge emission in photo-electrochemically active (Zn$_{0.97}$Ga$_{0.03}$)(O$_{0.95}$N$_{0.05}$) solid solution (2016) *RSC Advances*, 6 (105), pp. 103081-103087.

67) Menon, S.S., Baskar, K., Singh, S., Comparative study on Ga$_{1-x}$Zn$_x$N$_{1-y}$O$_y$ oxynitride synthesized by different techniques for application in photocatalytic hydrogen production (2017) *Journal of Crystal Growth*, 468, pp. 139-143.

78) Menon, S.S., Bhalerao, G., Gupta, B., Baskar, K., Singh, S., Development of Zn\(_{1-x-y}\)Ga\(_x\)Co\(_y\)O\(_{1-z}\)N\(_z\) as a non-oxide semiconductor material with visible light photoelectrochemical activity (2018) *Vacuum*, 154, pp. 296-301.

Superconductors

4) Pederson, L.R., Maupin, G.D., Weber, W.J., McReady, D.J., Stephens, R.W. Combustion synthesis of $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$: glycine/metal nitrate method (1991) *Materials Letters*, 10 (9-10), pp. 437-443. (No. of citations=100) $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ and $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}/\text{Ag}$ prepared from an aqueous solution of the metal nitrates and glycine.

8. Energy Materials

Fuel Cell Materials

20) Bansal, N.P., Zhong, Z., Combustion synthesis of Sm$_{0.5}$Sr$_{0.5}$CoO$_3$–x and La$_{0.6}$Sr$_{0.4}$CoO$_3$–x nanopowders for solid oxide fuel cell cathodes (2006) *Journal of Power Sources*, 158 (1), pp. 148-153. (No. of citations=104) *Nanopowders of Sm$_{0.5}$Sr$_{0.5}$CoO$_3$–x (SSC) and La$_{0.6}$Sr$_{0.4}$CoO$_3$–x (LSC) compositions, which are being investigated as cathode materials for intermediate temperature SOFC were synthesized by SCS using glycine as fuel*

22) Lei, Z., Zhu, Q., Zhao, L., Low temperature processing of interlayer-free La$_{0.6}$Sr$_{0.4}$Co$_2$Fe$_{0.8}$O$_{3-δ}$ cathodes for intermediate temperature solid oxide fuel cells (2006) *Journal of Power Sources*, 161 (2), pp. 1169-1175.

24) Bastidas, D.M., Tao, S., Irvine, J.T.S., A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes (2006) *Journal of Materials Chemistry*, 16 (17), pp. 1603-1605. (*No. of citations = 240 times*) *(La_{0.75}Sr_{0.25})Cr_{0.5}Mn_{0.5}O_{3-δ} was prepared by SCS using ethylene glycol was used both as cathode and anode and symmetrical SOFC was demonstrated.*

30) Lei, Z., Zhu, Q.-S., Solution combustion synthesis and characterization of nanocrystalline La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-δ} cathode powders (2007) *Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica*, 23 (2), pp. 232-236.

33) Raza, M.A., Rahman, I.Z., Beloshapkin, S., Synthesis of nanoparticles of La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-δ} (LSCM) perovskite by solution combustion method for solid oxide fuel cell application (2009) *Journal of Alloys and Compounds*, 485 (1-2), pp. 593-597.

37) Choi, J.W., Hwang, H.K., Nam, S.W., Park, K., Electrical Properties of Nanocrystalline Ce₀.₈Sm₀.₂O₂₋δ and Ce₁₋ₓGdₓO₂₋δ (0.1 ≤ x ≤ 0.3) Ceramics for IT-SOFC (2010) Journal of Nanoscience and Nanotechnology, 10 (11), pp. 7684-7688.

38) Park, K., Hwang, H.K., Electrical conductivity of Ce₀.₈Gd₀.₂₋ₓDyₓO₂₋δ (0 ≤ x ≤ 0.2) co-doped with Gd ³⁺ and Dy³⁺ for intermediate-temperature solid oxide fuel cells (2011) Journal of Power Sources, 196 (11), pp. 4996-4999.

40) Vijaya Lakshmi, V., Bauri, R., Phase formation and ionic conductivity studies on ytterbia co-doped scandia stabilized zirconia (0.9ZrO₂-0.09Sc₂O₃-0.01Yb₂O₃) electrolyte for SOFCs (2011) Solid State Sciences, 13 (8), pp. 1520-1525.

41) Park, K., Hwang, H.K., Effect of Dy³⁺ on the microstructure and electrical properties of Ce₀.₈Sm₀.₂ₓDyₓO₁.₉ (0 ≤ x ≤ 0.15) electrolytes for IT-SOFC (2011) Journal of Fuel Cell Science and Technology, 8 (6), 061010-061010-6.

50) Zhu, C., Nobuta, A., Ju, Y.-W., Ishihara, T., Akiyama, T., Solution combustion synthesis of Ce\textsubscript{0.6}Mn\textsubscript{0.3}Fe\textsubscript{0.1}O\textsubscript{2} for anode of SOFC using LaGaO\textsubscript{3}-based oxide electrolyte (2013) International Journal of Hydrogen Energy, 38 (30), pp. 13419-13426.

54) Raza, M.A., Deen, K.M., Awan, H.F., Ahmad, R., Husnain, A., Synthesis and Characterization of La\textsubscript{0.75}Sr\textsubscript{0.25}Mn\textsubscript{1-x}Mg\textsubscript{x}O\textsubscript{3-δ} perovskite for alkaline fuel cell (2015) Materials Today: Proceedings, 2 (10), pp. 5522-5527.

Battery Materials

13) Suresh, P., Shukla, A.K., Munichandraiah, N., Synthesis and characterization of LiFeO$_2$ and LiFe$_{0.9}$Co$_{0.1}$O$_2$ as cathode materials for Li-ion cells (2006) Journal of Power Sources, 159 (2), pp. 1395-1400.

16) Jeong, S.K., Nahm, K.S., Stephan, A.M., Synthesis of Li(Co$_{0.8}$Ni$_{0.2}$-yAl$_y$)$_2$O$_2$ (y ≤ 0.02) by combustion method as a possible cathode material for lithium batteries (2007) Materials Science and Engineering A, 445-446, pp. 657-662.

31) Liu, G., Guo, J., Wang, B., LiNi$_{0.5}$Mn$_{1.5}$O$_4$ prepared by a solution combustion synthesis at different temperatures (2011) *Advanced Materials Research*, 186, pp. 3-6.

36) Manikandan, P., Ananth, M.V., Prem Kumar, T., Raju, M., Periasamy, P., Manimaran, K. Solution combustion synthesis of layered LiNi$_{0.5}$Mn$_{0.5}$O$_2$ and its characterization as cathode material for lithium-ion cells (2011) *Journal of Power Sources*, 196 (23), pp. 10148-10155.

46) Kebede, M., Kunjuzwa, N., Ozoemenka, K., Mathe, M., Synthesis and electrochemical properties of ni doped spinel LiNi$_x$Mn$_{2-x}$O$_4$($0 \leq x \leq 0.5$) cathode materials for Li-Ion battery (2012) *ECS Transactions*, 50 (40), pp. 1-14.

47) Kalidas, N., Nallathamby, K., Minakshi, M., Oxalic dihydrazide assisted novel combustion synthesized Li$_3$V$_2$(PO$_4$)$_3$ and LiVP$_2$O$_7$ compounds for rechargeable lithium batteries (2012) *ECS Transactions*, 50 (24), pp. 79-88.

51) Liu, G., Wang, B., He, Y., Guo, J., Phase structures of LiMn$_{1.95}$Fe$_{0.05}$O$_4$ prepared by solution combustion synthesis and molten-salt combustion synthesis methods (2013) Advanced Materials Research, 625, pp. 255-258.

57) Liu, G., Kong, X., Sun, H., Wang, B., Extremely rapid synthesis of disordered LiNi$_{0.5}$Mn$_{1.5}$O$_4$ with excellent electrochemical performance (2014) Ceramics International, 40 (9 PART A), pp. 14391-14395.

58) Manikandan, P., Periasamy, P., Jagannathan, R., Microstructure-twinning and hexad multiplet(s) in lithium-rich layered cathode materials for lithium-ion batteries (2014) RSC Advances, 4 (76), pp. 40359-40367.

59) Kong, X., Sun, H., Wang, Q., Yi, Z., Wang, B., Liu, G., Improvement in the electrochemical properties of LiNi$_{0.5}$Mn$_{1.5}$O$_4$ lithium-ion battery cathodes prepared by a modified low temperature solution combustion synthesis (2014) Ceramics International, 40 (8 PART A), pp. 11611-11617.

61) Hu, M., Jiang, Y., Yan, M., High rate Li$_4$Ti$_5$O$_{12}$–Fe$_2$O$_3$ and Li$_4$Ti$_5$O$_{12}$–CuO composite anodes for advanced lithium ion batteries (2014) *Journal of Alloys and Compounds*, 603, pp. 202-206.

64) Zhu, C., Akiyama, T. Optimized conditions for glycine-nitrate-based solution combustion synthesis of LiNi$_{0.5}$Mn$_{1.5}$O$_4$ as a high-voltage cathode material for lithium-ion batteries (2014) *Electrochimica Acta*, 127, pp. 290-298.

65) Kebede, M.A., Kunjuzwa, N., Jafta, C.J., Mathe, M.K., Ozoemena, K.I., Solution-combustion synthesized nickel-substituted spinel cathode materials (LiNi$_x$Mn$_{2-x}$O$_4$; 0≤x≤0.2) for lithium ion battery: Enhancing energy storage, capacity retention, and lithium ion transport (2014) *Electrochimica Acta*, 128, pp. 172-177.

68) Hu, M., Jiang, Y., Yan, M., High rate Li$_4$Ti$_5$O$_{12}$–Fe$_2$O$_3$ and Li$_4$Ti$_5$O$_{12}$–CuO composite anodes for advanced lithium ion batteries (2014) *Journal of Alloys and Compounds*, 603, pp. 202-206.

73) Liu, G., Sun, H., Kong, X., Li, Y., Wang, B., Facile synthesis of high performance LiNi$_{0.5}$Mn$_{1.4}$Mg$_{0.1}$O$_4$ and LiNi$_{0.5}$Mn$_{1.4}$Al$_{0.1}$O$_4$ by a low temperature solution combustion synthesis method (2015) International Journal of Electrochemical Science, 10 (8), pp. 6651-6662.

79) Prakash, K.R., Prakash, A.S., A time and energy conserving solution combustion synthesis of nano Li$_{1.2}$Ni$_{0.13}$Mn$_{0.54}$Co$_{0.13}$O$_2$ cathode material and its performance in Li-ion batteries (2015) RSC Advances, 5 (114), pp. 94411-94417.

83) Han, C.-G., Zhu, C., Saito, G., Akiyama, T., Improved electrochemical properties of LiMn$_2$O$_4$ with the Bi and La co-doping for lithium-ion batteries (2015) RSC Advances, 5 (89), pp. 73315-73322.

90) Bai, H., Xu, W., Li, Q., Guo, J., Su, C. Synthesis and electrochemical study of spinel LiCu$_{0.05}$Mn$_{1.95}$O$_4$ via a solution combustion method as a cathode material for lithium ion batteries (2016) International Journal of Electrochemical Science, 11 (3), pp. 2177-2184.

93) Xu, W., Li, Q., Guo, J., Bai, H., Su, C.-W., Ruan, R., Peng, J., Electrochemical evaluation of LiZn$_x$Mn$_{2-x}$O$_4$ (x≤0.10) cathode material synthesized by solution combustion method (2016) Ceramics International, 42 (5), pp. 5693-5698.

96) Lanina, E.V., Zhuravlev, V.D., Ermakova, L.V., Petrov, A.N., Pachuev, A.V., Sheldeshov, N.V., Electrochemical performances of composite cathode materials Li$_{1.2}$Ni$_{0.17}$Co$_{0.10}$Mn$_{0.53}$O$_2$ and Li$_{1.2}$Ni$_{0.2}$Mn$_{0.6}$O$_2$ (2016) *Electrochimica Acta*, 212, pp. 810-821.

100) Baskar, S., Sada, K., Barpanda, P., Layered P$_2$-Na$_x$CoO$_2$ and Na$_x$FeO$_2$ as cathode materials for potassium-ion batteries (2017) *ECS Transactions*, 80 (10), pp. 357-364.

101) Krishna Kumar, S., Ghosh, S., Ghosal, P., Martha, S.K. Synergistic effect of 3D electrode architecture and fluorine doping of Li$_{1.2}$Ni$_{0.15}$Mn$_{0.55}$Co$_{0.1}$O$_2$ for high energy density lithium-ion batteries (2017) *Journal of Power Sources*, 356, pp. 115-123.

103) Cao, Z., Zuo, C., Cr$_2$O$_3$/carbon nanosheet composite with enhanced performance for lithium ion batteries (2017) *RSC Advances*, 7 (64), pp. 40243-40248.

111) Sun, H., Kong, X., Wang, B., Luo, T., Liu, G., LiNi$_{0.5}$Mn$_{1.45}$Zn$_{0.05}$O$_4$ with excellent electrochemical performance for lithium ion batteries (2017) *International Journal of Electrochemical Science*, 12 (9), pp. 8609-8621.

112) Liu, J., Li, G., Bai, H., Shao, M., Su, C., Guo, J., Liu, X., Bai, W. Enhanced cycle and rate performances of Li(Li$_{0.05}$Al$_{0.05}$Mn$_{1.90}$)O$_4$ cathode material prepared via a solution combustion method for lithium-ion batteries (2017) *Solid State Ionics*, 307, pp. 79-89.

Ghorbanzadeh, M., Allahyari, E., Riahiifar, R., Hadavi, S.M.M., Solution-combustion synthesized Al–Mo co-substituted cathode Li[Li0.2Ni0.13Co0.13Mn0.54]O2 for improving electrochemical performance of lithium ion batteries (2018) Journal of Applied Electrochemistry, 48 (1), pp. 75-84.

130) Sun, H.Y., Kong, X., Wang, B.S., Luo, T.B., Liu, G.Y., Cu doped LiNi$_{0.5}$Mn$_{1.5-x}$Cu$_x$O$_4$ (x = 0, 0.03, 0.05, 0.10, 0.15) with significant improved electrochemical performance prepared by a modified low temperature solution combustion synthesis method (2018) *Ceramics International*, 44 (5), pp. 4603-4610.

131) Ghorbanzadeh, M., Allahyari, E., Riahifar, R., Hadavi, S.M.M., Effect of Al and Zr co-doping on electrochemical performance of cathode Li[Li$_{0.2}$Ni$_{0.13}$Co$_{0.13}$Mn$_{0.54}$]O$_2$ for Li-ion battery (2018) *Journal of Solid State Electrochemistry*, 22 (4), pp. 1155-1163.

135) Sheng, N., Han, C.-G., Lei, Y., Zhu, C., Controlled synthesis of Na$_{0.44}$MnO$_2$ cathode material for sodium ion batteries with superior performance through urea-based solution combustion synthesis (2018) *Electrochimica Acta*, 283, pp. 1560-1567.

Supercapacitor Materials

3) Aravindan, V., Reddy, M.V., Madhavi, S., Mhaisalkar, S.G., Subba Rao, G.V., Chowdari, B.V.R., Hybrid supercapacitor with nano-TiP$_2$O$_7$ as intercalation electrode (2011) *Journal of Power Sources*, 196 (20), pp. 8850-8854. (No. of citations=121) Nano-TiP$_2$O$_7$ powder synthesized by urea assisted SCS was used for fabrication of hybrid supercapacitor.

4) Senthilkumar, B., Vijaya Sankar, K., Kalai Selvan, R., Danielle, M., Manickam, M., Nano α-NiMoO$_4$ as a new electrode for electrochemical supercapacitors (2013) *RSC Advances*, 3 (2), pp. 352-357. (No. of citations=116) Nickel molybdate (α-NiMoO$_4$) nanoparticles were prepared by a solution combustion synthesis (SCS) technique and was studied as a potential electrode material for supercapacitors.

Solar Cell Materials

3) Kumar, V.R., Wariar, P.R.S., Koshy, J., Optical properties of the complex perovskite ceramic oxide Ba$_2$YZrO$_{6-d}$ (2010) Crystal Research and Technology, 45 (6), pp. 619-624.

12) Xiong, K., Li, G., Jin, C., Jin, S., La$_{0.65}$Sr$_{0.35}$MnO$_3$@RGO nanocomposites as an effective counter electrode for dye-sensitized solar cells (2016) Materials Letters, 164, pp. 609-612.

9. Miscellaneous

Biomaterials

20) Kavitha, M., Subramanian, R., Vinoth, K.S., Narayanan, R., Venkatesh, G., Esakkiraja, N. Optimization of process parameters for solution combustion synthesis of Strontium...

40) Ravichandran, A.T., Srinivas, J., Karthick, R., Manikandan, A., Baykal, A., Facile combustion synthesis, structural, morphological, optical and antibacterial studies of Bi$_{1-x}$Al$_x$FeO$_3$ (0.0 ≤ x ≤ 0.15) nanoparticles (2018) *Ceramics International*, 44 (11), pp. 13247-13252.
Coatings

22) Rasouli, S., Preparation of anticorrosive cobalt-doped ZnO nano pigments by a combustion method; A comparison study between microwave irradiation and a conventional heating source (2011) *Journal of Ceramic Processing Research*, 12 (6), pp. 668-672.

54) Xiao, J., Wang, W., Luo, D., Zhang, J., Purification of PM and NOx using Li\(\text{CO}_{0.9}\text{O}_2 \) catalyst and non-thermal plasma coordination (2016) *Huazhong Keji Daxue Xuebao (Ziran Kexue*

57) Krishna Kumar, S., Ghosh, S., Ghosal, P., Martha, S.K., Synergistic effect of 3D electrode architecture and fluorine doping of Li$_{1.2}$Ni$_{0.15}$Mn$_{0.55}$Co$_{0.1}$O$_2$ for high energy density lithium-ion batteries (2017) Journal of Power Sources, 356, pp. 115-123.

59) Shri Prakash, B., Parthasarathi, B., Senthil Kumar, S., Aruna S.T., Microstructure and electrical properties of plasma sprayed Gd$_{0.15}$Ce$_{0.85}$O$_{2-\delta}$ coatings from solution combustion synthesized flowable powders (2017) Journal of the European Ceramic Society, 37 (1), pp. 271-279.

64) Mukri, B.D., Hegde, M.S., High rates of catalytic hydrogen combustion with air over Ti$_{0.97}$Pd$_{0.03}$O$_{2-\delta}$ coated cordierite monolith (2017) Journal of Chemical Sciences, 129 (9), pp. 1363-1372.

ZnO and related oxides

41) Reddy, A.J., Kokila, M.K., Nagabhushana, H., Chakradhar, R.P.S., Shivakumara, C., Rao, J.L., Nagabhushana, B.M., Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis (2011) *Journal of Alloys and Compounds*, 509 (17), pp. 5349-5355. **(No. of citations=140)** ZnO:Cu nano particles were prepared via solution combustion technique with ODH fuel at low temperature (300 °C)

58) Erratum to Corrigendum to Photocatalytic decolorization of methylene blue using immobilized ZnO nanoparticles prepared by solution combustion method (Desalination and Water Treatment, 47 (1-3), p. 353.

73)Yadav, R.S., Verma, R.K., Rai, S.B., Intense white light emission in Tm$^{3+}$/Er$^{3+}$/Yb$^{3+}$ co-doped Y$_2$O$_3$-ZnO nano-composite (2013) *Journal of Physics D: Applied Physics*, 46 (27), art. no. 275101.

95) Silambarasan, M., Saravanan, S., Ohtani, N., Soga, T., Structural and photoluminescence studies of Ni-doped ZnO nanoparticles synthesized by solution combustion method (2014) *Palliative and Supportive Care*, 1584 (1).

107)Kumar, V., Som, S., Kumar, V., Kumar, V., Ntwaeaborwa, O.M., Coetsee, E., Swart, H.C. Tunable and white emission from ZnO: Tb^{3+} nanophosphors for solid state lighting applications (2014) *Chemical Engineering Journal*, 255, pp. 541-552.

149) Ram, M., Negi, N.S., Effect of (Fe, Co) co-doping on the structural, electrical and magnetic properties of ZnO nanocrystals prepared by solution combustion method (2016) Physica B: Condensed Matter, 481, pp. 185-191.

154) Ram, M., Bala, K., Sharma, H., Kumar, A., Negi, N.S., Investigation on structural and electrical properties of Fe doped ZnO nanoparticles synthesized by solution combustion method (2016) AIP Conference Proceedings, 1728, art. no. 020028.

155) Ram, M., Bala, K., Sharma, H., Negi, N.S., Effect of Co doping on the structural and dielectric properties of ZnO nanoparticles (2016) AIP Conference Proceedings, 1731, art. no. 050104.

191) Menon, S.S., Baskar, K., Singh, S., Comparative study on Ga1−xZnN1−yOxynitride synthesized by different techniques for application in photocatalytic hydrogen production (2017) *Journal of Crystal Growth*, 468, pp. 139-143.

MgO and related oxides

8) Nagappa B., Chandrappa, G.T., Mesoporous nanocrystalline magnesium oxide for environmental remediation, (2007) Microporous and Mesoporous Materials, 106 (1-3), pp. 212-218, 2007. (No. of citations=127) Mesoporous nanosize MgO prepared from SCS using glycine as fuel could remove 97% of fluoride from standard sodium fluoride solution (10 ppm) and 75% of fluoride from tube well water.

41) Suseel Jai Krishnan, S., Nagarajan, P.K., Experimental study on thermal conductivity of solution combustion synthesized MgO nanoparticles dispersed in water and ethylene glycol (50:50) binary mixture (2017) AIP Conference Proceedings, 1832, art. no. 050074.

10. Patents on Solution Combustion

1) Oxide fine particles with electrical, optical and magnetic applications - obtained by self-ignition of metallic nitrate solution containing at least metallic ion and mixed with water-soluble aminoacid, Shinohara K, Tanaka A, NIKON Corp(NIKR-C), JP8091809-A, 1996.

9) Method for burning synthesis of ytterbium and erbium -codoped conversion luminescent material on sodium yttrium fluoride, Huang M, Zhang X, Univ Qinghua(UYQI-C), CN1621492-A ; CN1298808-C, 2005.

12) Deposition of catalyst oxide, e.g. cerium oxide, on porous support of catalytic device, e.g. catalytic trap for diesel soot, the oxide being synthesized in situ by combustion process, Badini C, Fino P, Pavese M, Biamino S, Saracco G, Politecnico Di Torino(PLOI-C), WO2006084899-A1 ; IT1360532-B, 2006.

18) High-dielectric elastomer composition for high-frequency electronic components, such as antennas, contains high-dielectric ceramics obtained by combustion synthesis method at preset adiabatic flame temperature, Ohira T, Sakai K, Ntn Corp(Ntn-C), JP2007161874-A, 2007.

19) Dielectric ceramics used for dielectric antenna and capacitor, contain titanium powder with preset specific surface area and are obtained using ionic bond property substance used as oxygen supply source and specific raw material, Ohira T, Sakai K, Ntn Corp(Ntn-T-C), JP2007254210-A ; JP5114013-B2, 2007.
20) Dielectric ceramic for dielectric resonator, is obtained by subjecting lithium, calcium, titanium, oxygen, samarium and neodymium to combustion synthesis method, and has preset diffraction peak position of X-ray diffraction method, Ohira T, Sakai K, Ntn Corp(Ntnt-C), JP2007261891-A, 2007.

22) Dielectric ceramics for dielectric antenna, comprises strontium, lithium, titanium, oxygen, rare earth element and neodymium as constituent element, and is obtained by combustion, synthesis method, Ohira T, Ntn Corp(Ntnt-C), JP200805653-A, 2008.

23) Elastomer composition used for electronic component such as mobile telephone and cordless phone, is obtained by mixing ceramic with elastomer containing preset amount of strontium, lithium, titanium, neodymium and/or rhenium, Ohira T, Ntn Corp(Ntnt-C), JP2008112586-A, 2008.

24) Method for synthesizing of nickel cobalt manganate lithium comprises mixing, adding water and ammonia, controlling pH, adding precipitating agent, drying, adding water or alcohol to lithium acetate, regulating rheologic phase, and tempering, Tian H, Ye N, Liu D, Guilin Eng College (Guil-Non-Standard), Univ Guilin Technology(Uygi-C), CN101215011-A ; CN100591624-C, 2008.

25) Transparent ceramic laser material for solid heat capacity laser comprises rare earth doped hafnium dioxide and gadolinium oxide solid solution, where rare earth ion is niobium, ytterbium, cerium, praseodymium, europium, thulium or terbium, Feng T, Shi J, Jiang D, Shanghai Ceramic Chem & Technology Inst(Cagu-C), Chinese Acad Sci Shanghai Inst Ceramics(Cagu-C), CN101247021-A ; CN101247021-B, 2008.

27) Catalyst, useful e.g. for selective reduction of nitrogen oxide emitted by a stationary/mobile source and an internal combustion engine, comprises components e.g. molybdenum oxide and cerium oxides, Cheng H, Li Y, Okada A, Wang S, Xie Y, Gang T, Corning Inc(Corg-C), Chinese Acad Sci Dicp (Chsc-Non-Standard), Cas Dalian Chem & Physical Inst(Cacp-C),

37) Preparation of strontium aluminate long afterglow luminescent powder doped with rare earth element involves mixing metal nitrate solution, fluxing agent, fuel and water, heating, cooling and grinding obtained foam-like product, Yan D, Chen K, Han R, Univ Qingdao Sci & Technology(Uyqs-C), CN101775285-A

38) Process of producing porous bioactive scaffolds, porous bone filler materials, nano sized calcium hydroxyapatite powder or composite with other calcium phosphates, Datta S, Basu D, Ghosh S K, Council Sci & Ind Res India(Coui-C), Council Sci & Ind Res India(Coui-C), IN200900620-II ; IN268374-B, 2011.

40) Combustion synthesized zirconia as material and catalyst, Yadav G D, Ajgaonkar N P, Yadav G D(Yada-Individual), IN201100016-I3 ; IN268910-B, 2011.

43) Luminescent material exhibiting a temperature-dependent luminescence decay time useful as a temperature-sensitive component of a temperature-sensitive paint or coating, comprises chromium(III) doped yttrium aluminum borate, Klimant I, Borisov S, Gatterer K, Melsungen Ag B(Bint-C), EP2354208-A1 ; WO2011095530-A1, 2011-K05474

44) Synthesizing nanocrystalline metal powders comprises forming combustion synthesis solution by dissolving an oxidizer, fuel and base-soluble ammonium salts of e.g. tungsten and rhenium in water, and heating combustion synthesis solution, Frye J G, Weil K S, Lavender C A, Kim J Y, Battelle Memorial Inst(Batt-C), Frye J G(Frye-Individual), Weil K

49) Preparing tungsten powder doped with nano rare earth oxide, comprises e.g. preparing raw material powder by taking analytical grade partial ammonium tungstate, rare earth nitrate, fuel and complexing agent, and mixing components, Liu Y, Qu X, Zhang L, Qin M, Univ Beijing Sci & Technology(Unbs-C), CN102626785-A ; CN102626785-B, 2012.

50) Low temperature combustion synthesis of tungsten carbide micropowder used for gas diffusion electrode, by mixing ammonium tungstate, urea, and nitric acid, heating, grinding, and carrying out carbonization reaction with argon gas, Cui L, Li P, Li Y, Qu X, Wan Q, Yin H, Zhang W, Zhai F, Univ Beijing Sci & Technology(Unbs-C), CN102674352-A; CN102674352-B, 2012.

54) Combustion synthesis for mesoporous nanocrystalline alkali promoted alkaline earth metal oxide involves dissolving metal precursors and fuel in distilled water, evaporating excess water, and combustion of resultant mixture, Prasad S S, Pawar S V, Yadav G D, Surve P S, Yadav G D (Yada-Individual), WO2013171755-A2; IN201201111-I3; IN201201112-I3; WO2013171755-A3, 2013-V14575

55) Microwave combustion synthesis of magnesium oxide/yttrium oxide nanopowder by preparing ternary system from any of yttrium nitrate, magnesium nitrate, palladium acetate and magnesium acetate, mixing with water and microwave combusting, Gong H, Li T, Tan S, Sun H, Zhang Y, Univ Shandong (Usa-C), CN103951392-A; CN103951392-B, 2014-S95399

56) Catalyst used for dimethyl oxalate vapor phase hydrogenation of ethylene glycol and glycolic acid methyl ester comprises soluble copper salt, metal salt containing other metals, and nano-titanium dioxide as catalyst carrier, Dai W, Chen X, Cui Y, Wang B, Wen C, Univ Fudan (Uyfu-C), CN104492445-A, 2015-34176Q

61) Preparing yttrium ferrite powder comprises e.g. taking yttrium nitrate and ferric nitrate, adding deionized water, dissolving, adding reducing agent, stirring, carrying out combustion

62) Production process of lithium-manganese-oxide (LMO) spinel material for use in electrochemical cell, involves annealing raw LMO material or treated material to obtain annealed material which is subjected to microwave treatment, Nkosi F, Ozoemena K I, Ozoemena K, Council Sci & Ind Res South Africa(Coul-C) Council Sci & Ind Res India(COUI-C), WO2016070205-A2 ; WO2016070205-A3 ; CA2966361-A1 ; IN201747018448-A ; KR2017078791-A ; CN107108260-A ; EP3212578-A2 ; JP2018500722-W, 2016.

64) Manufacture of aluminum-substituted langatite for e.g. sensor, involves heating raw material containing lanthanum, tantalum, gallium and aluminum at predetermined temperature, carrying out solution combustion synthesis, and heating, Akiyama T, Koike R, Zhu C Y, Univ Hokkaido(Uhok-C) Citizen Holdings Co Ltd(CITL-C), JP2016172648-A, 2016.

66) Soil amendment composition used for remediation of heavy metal contaminated soil and as liner for hazardous waste containment facilities, comprises essentially of calcium nitrate, fumed silica and citric acid, Fakrudeen S P, Mohammed S A S, Mohammed S A S(Moha-Individual) Fakrudeen S P(Fakr-Individual), IN201502765-I4, 2017.

69) Preparation of ultrafine-crystalline tungsten-based gas spark switch electrode involves combusting ammonium metatungstate, ammonium nitrate, glycine and rare-earth oxide, mixing
nano tungsten powder and binder and sintering mixture, Qin M, Chen Z, Chen P, Li R, Wu H, Jia B, Qu X, Univ Beijing Sci & Technology(UNBS-C), CN107737951-A, 2018.

70) Preparing nano nickel oxide cathode material of lithium ion battery, comprises e.g. adding nickel acetate into muffle furnace, heating to predetermined temperature, maintaining the temperature for predetermined time, taking out, and cooling, Huang J, Zhao D, Zhou P, Fujian Xiangfenghua New Energy, CN107792890-A, 2018.

71) High flux combustion synthesis device used for preparing powder material includes matrix raw material reagent bottle, quality control valve, mechanical arm, computer, solution storage tank, feeding system, and atomizing device, Qin M, Wu H, Jia B, Lu H, Zhang L, Qu X, Univ Beijing Sci & Technology(UNBS-C), CN107892329-A, 2018.

Appendix

Theses on Solution combustion synthesis from Indian Institute of Science

2) S. Sundar Manoharan, Combustion synthesis and properties of fine particle spinel, perovskite and K\textsubscript{2}NiF\textsubscript{4} type oxides (1991).

5) N. Arul Dhas, Studies on zirconia and related oxides: Combustion synthesis and properties (1994).

12) Parthasarathi Bera, Promoting effect of ceria in combustion synthesized M/CeO\textsubscript{2} catalysts (M= Cu, Ag, Au, Pd and Pt) for environmental catalysis (2002).

14) Arup Gayen, Synthesis of nano-Ce\textsubscript{1-x}M\textsubscript{x}O\textsubscript{2-3δ}(M=Cu, Ru, Rh, Pd And Pt) : Enhancement of redox-catalytic activity due to Mn3+-O2--Ce4+ ionic interaction (2005).

15) Tinku Baidya, Synthesis, structure and redox catalytic properties of Pt and Pd ion substituted Ce\textsubscript{1-x}M\textsubscript{x}O\textsubscript{2}(M= Ti, Zr & Hf) oxygen storage capacity nano-materials (2008).
16) Sounak Roy, Noble metal and base metal ion substituted CeO$_2$ and TiO$_2$: Efficient catalysts for NO$_x$ abatement (2008).

17) Sudanshu Sharma, Gas phase and electrocatalytic reaction over Pt, Pd ions substituted CeO$_2$, TiO$_2$ catalysts and electronic interaction between noble metal ions and the reducible oxide (2009).

18) Preetam Singh, Novel synthesis of transition metal and nobel metal ion substituted CeO$_2$ and TiO$_2$ nanocrystallites for hydrogen generation and electro-chemical applications (2010).

19) A. Gupta, Structure and oxygen storage capacity of Ce$_{1-x}$M$_x$O$_{2-δ}$ (M= Sn, Zr, Mn, Fe, Co, Ni, Cu, La, Y, Pd, Pt, Ru): Experimental and density functional theory study (2010).

22) Ujwala Ail, Thin film semiconducting metal oxides by nebulized spray pyrolysis and MOCVD, for gas-sensing applications, 2011

28) Vinayak B. Kamble, Studies on effect of defects, doping and additives on Cr$_2$O$_3$ and SnO$_2$ based metal oxide semiconductor gas sensors, 2015.

32) Disha Jain, Development of ionic catalysts for methane reforming (To be submitted).

33) Satyapaul Singh, Development of ionic catalysts for reforming (To be submitted).
34) Ch. Anil, Development of nanomaterials for energy applications (To be submitted).